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Skeletal muscle undergoes vigorous tissue remodeling after injury. However, aging,
chronic inflammatory diseases, sarcopenia, and neuromuscular disorders cause
muscle loss and degeneration, resulting in muscular dysfunction. Cellular senescence,
a state of irreversible cell cycle arrest, acts during normal embryonic development and
remodeling after tissue damage; when these processes are complete, the senescent cells
are eliminated. However, the accumulation of senescent cells is a hallmark of aging tissues
or pathological contexts and may lead to progressive tissue degeneration. The
mechanisms responsible for the effects of senescent cells have not been fully
elucidated. Here, we review current knowledge about the beneficial and detrimental
effects of senescent cells in tissue repair, regeneration, aging, and age-related disease,
especially in skeletal muscle. We also discuss how senescence of muscle stem cells and
muscle-resident fibro-adipogenic progenitors affects muscle pathologies or regeneration,
and consider the possibility that immunosenescence leads to muscle pathogenesis.
Finally, we explore senotherapy, the therapeutic targeting of senescence to treat age-
related disease, from the standpoint of improving muscle regeneration.
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INTRODUCTION

Cell senescence was first described more than 50 years ago (Hayflick and Moorhead, 1961). Hayflick
and Moorhead observed that normal human fibroblasts have a finite proliferative capacity in culture.
They termed the cell cycle arrest at the exhaustion of this capacity “replicative senescence”; the word
“senescence” is derived from the Latin word senex, meaning “old.” Subsequently, it was recognized
that cellular senescence arises from telomere shortening, which is associated with chromosomal
instability; accordingly, senescence was viewed as a tumor suppressor mechanism (Serrano et al.,
1997; Lowe et al., 2004). Later studies revealed the physiological importance of cellular senescence
beyond its tumor suppressor functions in processes such as wound healing (Jun and Lau, 2010;
Demaria et al., 2014), embryonic development (Storer et al., 2013), and tissue repair and regeneration
(Krizhanovsky et al., 2008; Muñoz-Espín and Serrano, 2014). On the other hand, cellular senescence
also contributes to organismal aging and related diseases (Song et al., 2020). Senescent cells are
metabolically active and secrete a variety of factors: inflammatory cytokines and chemokines
collectively termed the senescence-associated secretory phenotype (SASP), which can induce
chronic inflammation (Coppé et al., 2008; Gorgoulis et al., 2019, Birch 2020). A recent study
showed that senescent cells can induce other non-senescent cells to undergo senescence by juxtacrine
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or paracrine effects, including the SASP, a phenomenon known as
secondary senescence (Admasu 2021). In addition, cellular
senescence can occur in post-mitotic cells, such as neurons
and muscle cells (Zglinicki 2021). These discoveries suggested
that senescent cells can have a widespread impact on various
tissue and pathologies. Therefore, senolytic agents, which
eliminate accumulated senescent cells, have attracted a great
deal of attention as potential treatments for age-related
diseases, which are frequently associated with chronic
inflammation (Bussian et al., 2018; Xu et al., 2018; Hickson
et al., 2019; Justice et al., 2019). Multiple aspects of cellular
senescence are involved in skeletal muscle physiology and
disease (Kudryashova et al., 2012; Saito et al., 2020; Sugihara
et al., 2020), raising the question of whether fundamentally
different mechanisms underlie the beneficial and detrimental
effects of senescence in skeletal muscle. This review focuses on
how senescent cells are involved in skeletal muscle physiology
and pathology and how senolytics or pro-senescent therapies
(including exercise) could be used to treat diseases of skeletal
muscle.

MECHANISMS OF SENESCENCE

Cellular senescence is an adaptive response induced by multiple
physiological and pathological stresses that results in irreversible
cell cycle arrest (Muñoz-Espín and Serrano, 2014; van Deursen,
2014; Gorgoulis et al., 2019; Borghesan et al., 2020). Senescence
provides a defense mechanism that limits tumorigenesis to
maintain tissue homeostasis and allow tissue remodeling via
removal of damaged senescent cells (Muñoz-Espín and
Serrano, 2014). However, permanent accumulation of
senescent cells is a major cause of age-related disease and
chronic inflammation. Leonard Hayflick and Paul Moorhead
found that human fibroblasts have a finite in vitro proliferative
capacity (Hayflick and Moorhead, 1961), and subsequent work
showed that replicative senescence is caused by the shortening of
the telomeres at the ends of chromosomes, which triggers the
DNA damage response (DDR) and causes cell cycle arrest
(Sedelnikova et al., 2004; Campisi and d’Adda di Fagagna,
2007). Similarly, cellular senescence can arise due to DNA
damage from various stresses, including radiation (Le et al.,
2010), oncogene activation (Di Micco et al., 2006), high levels
of reactive oxygen species (ROS) (von Zglinicki, 2002),
mitochondrial dysfunction (Chapman et al., 2019), mechanical
stress (Xing et al., 2010), protein aggregation (Johmura et al.,
2021), failure of protein removal due to diminished autophagy
(García-Prat et al., 2016), and inflammatory cytokines and
growth factors (Beyne-Rauzy et al., 2004; Hubackova et al.,
2012). These stresses activate DDR components including
ATR, ATM, and p53, which promote activation of cyclin-
dependent kinase (CDK) inhibitors such as p16INK4a

(CDKN2A) and p21WAF1/Cip1(CDKN1A) (Gorgoulis et al.,
2019). Defects in ribosome biogenesis and derepression of
retrotransposons also contribute to cell cycle arrest in
senescent cells (Lessard et al., 2018; De Cecco et al., 2019). To
date, however, no specific markers of the cell cycle have been

identified in senescent cells. For example, p16INK4a is also
expressed in non-senescent cells (Sharpless and Sherr, 2015)
and is not expressed in all senescent cells (Hernandez-Segura
et al., 2017). Furthermore, senescence induced by E2F3 activation
or c-Myc inhibition is DDR-independent and involves p16INK4a

and p19ARF (Lazzerini Denchi et al., 2005). Another DDR-
independent inducer of cellular senescence is BRAF (V600E),
which activates senescence through a metabolic mechanism
involving upregulation of mitochondrial pyruvate
dehydrogenase (Kaplon et al., 2013; van Deursen, 2014).
Senescent cells exhibit characteristic morphological and
physiological changes associated with this condition. In other
words, senescent cells become hypertrophied and flattened
in vitro, and the nuclear envelope is incomplete due to
reduced expression of lamin B1 (González-Gualda et al.,
2021). Accumulation of senescence-associated β-galactosidase
(SA-β-gal) due to changes in lysosomal activity is another
characteristic of cellular senescence (Gorgoulis et al., 2019).
Chromatin rearrangement, especially the formation of
senescence-related heterochromatin foci (SAHFs), is a
frequently observed biomarker in oncogene-induced senescent
(OIS) cells. SAHFs contain histone H3 methylated on lysine 9
(H3K9Me) (Braig et al., 2005), heterochromatin protein 1 (HP1),
and histone H2A variant H2AX phosphorylated on Ser139
(γH2AX), and thus can be used as indicators of DNA damage
to assess senescence (Dungan et al., 2020). To date, however,
specific and sensitive markers of senescent cells have not been
identified. Consequently, combinations of biomarkers, such as
nuclear (p16INK4a, p21WAF1/Cip1, Ki67, γH2AX), cytoplasmic
(SA-β-gal), SASP, context, and cell-type-specific markers, are
generally used to define the presence of senescence (Coppé
et al., 2008; Childs et al., 2015; Gorgoulis et al., 2019).

Senescent cells limit their own proliferation but remain
metabolically active, secreting a variety of factors:
inflammatory cytokines such as IL-6, IL-8, and TNF-⍺;
chemokines; growth factors such as TGFβ; matrix
metalloproteinases (MMPs); and micro-RNAs. Collectively,
these secreted factors are referred to as the SASP (Coppé
et al., 2008). The SASP is considered a hallmark of cellular
senescence, and some of the secreted factors exert various
autocrine/paracrine effects on the microenvironment of
surrounding tissues. The SASP has both beneficial and
detrimental consequences, depending on the context. For
example, the SASP recruits immune cells to initiate tissue
repair through removal of damaged cells (Krizhanovsky et al.,
2008; Chikenji et al., 2019) but is also associated with
angiogenesis and ECM remodeling, which may promote tumor
cell progression (Gonzalez-Meljem et al., 2018; Levi et al., 2020).
Although the SASP regulates beneficial effects such as
developmental senescence (Muñoz-Espín et al., 2013; Storer
et al., 2013) and wound healing (Demaria et al., 2014), it also
contributes to the pathology of chronic inflammation (Franceschi
and Campisi, 2014). The composition of the SASP varies
depending on senescence trigger and cell type. For example,
mitochondria dysfunction causes a distinct senescence
response, termed mitochondrial dysfunction–associated
senescence (MiDAS). MiDAS is associated with lower NAD+/
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NADH ratios, which both cause growth arrest and prevent the IL-
1–associated SASP through AMPK-mediated p53 activation
(Wiley et al., 2016). A recent analysis demonstrated that
soluble SASP factors, including exosomes, differ markedly
among different senescence triggers and distinct cell types, and
also identified common SASP factors representing the “core
SASP” (Basisty et al., 2020). The authors also found that
several SASP factors, including growth/differentiation factor 15
(GDF15), stanniocalcin 1 (STC1), and serine protease inhibitors
(SERPINs), correlated with age in plasma from a human cohort
(Basisty et al., 2020). The composition and strength of the SASP
are dynamic, changing at intervals after senescence induction
(Hernandez-Segura et al., 2017). The dynamic and complex
nature of the SASP is likely critical to the diverse biological
functions associated with senescence.

Beneficial vs. Detrimental Senescence and
Therapeutic Targeting of Senescence
(Senotherapy)
Cellular senescence plays roles in diverse processes ranging from
embryonic development to wound healing, tissue repair,
regeneration, cancer, aging, and age-related disease. During
normal development, senescent cells are regulated by TGFβ/
SMAD and PI3K/FOXO pathways and express the SASP to
recruit immune cells, which can remodel tissue through cell
clearance (Muñoz-Espín et al., 2013; Storer et al., 2013).
Senescence also prevents tumorigenesis. Specifically, oncogene
activation induces cell cycle inhibitors such as p16INK4a and p53,
which offset oncogenic signaling and cause cells to enter
senescence, thereby preventing tumorigenesis (Muñoz-Espín
and Serrano, 2014). Furthermore, SASP-mediated
inflammation can help recruit tumor-targeting immune cells,
thus providing a barrier against tumor formation (Rao and
Jackson, 2016). Therefore, the pro-senescence approach has
been proposed as a cancer treatment protocol (Nardella et al.,
2011). Cellular senescence has also been proposed to ameliorate
the effect of skin scarring (Jun and Lau, 2010), oral submucous
fibrosis (Pitiyage et al., 2011), liver fibrosis (Krizhanovsky et al.,
2008), and renal fibrosis (Wolstein et al., 2010) as well as promote
cardiac regeneration (Feng et al., 2019). Most types of senescent
cells are activated fibroblasts/mesenchymal cells, and deletion of
the senescent cells promotes fibrosis. For example, skin fibroblast
senescence is induced by the extracellular matrix protein CCN1
(also known as CYR61), which is associated with the expression
of pro-inflammatory cytokines and antifibrotic MMPs (Jun and
Lau, 2010). Cyr61-deficient mice do not activate senescence in
skin fibroblasts that promote cutaneous healing, leading to
exacerbated fibrosis (Jun and Lau, 2010). As in skin fibrosis
and recovery, liver fibrosis is also limited by senescence of
hepatic stellate cells (HSC). Activated HSCs upregulate p53,
p21WAF1/Cip1, and p16INK4a, which are associated with the
SASP. The SASP attracts immune cells, promotes clearance of
senescent HSCs by NK cells, and eliminates fibrotic scars
(Krizhanovsky et al., 2008). Furthermore, senescence of
fibroadipogenic progenitors (FAP) limits skeletal muscle
fibrosis and regulates tissue repair after injury (Saito et al., 2020).

Although cellular senescence has beneficial effects by
promoting the clearance of senescent cells, chronic
accumulation of senescent cells in aged individuals promotes
age-related disease and tissue dysfunction. Accumulation of
senescent cells is observed particularly in age-associated chronic
inflammatory diseases, such as chronic kidney disease
(Docherty et al., 2019), idiopathic pulmonary fibrosis
(Schafer et al., 2017), diabetes (Palmer et al., 2019),
atherosclerosis (Wang and Bennett, 2012), sarcopenia
(Sousa-Victor et al., 2014), osteoarthritis (Coryell et al.,
2021), osteoporosis (Farr and Khosla, 2019), and obesity
(Ogrodnik et al., 2019). Furthermore, higher levels of
senescent cells are observed in neurodegenerative disorders
such as Alzheimer’s disease and Parkinson’s disease
(Riessland et al., 2019; Zhang et al., 2019).

It remains unclear why senescent cells accumulate. Apoptotic
resistance of senescent cells appears to contribute to tissue
dysfunctions (Wang, 1995). Senescent cells may prevent their
own clearance through protective anti-apoptotic pathways by
upregulating BCL-2 family members (Zhu et al., 2015). Impaired
elimination of senescent cells by the immune system also results
in the accumulation of senescent cells. Surveillance of senescent
cells is performed by various immune cell types, including
macrophages, neutrophils, natural killer (NK) cells, and CD8+

T cells, depending on the pathophysiological situation (Ovadya
et al., 2018; Chikenji et al., 2019). HLA-E, a non-classical MHC-
class Ib molecule, inhibits immune responses against senescent
dermal fibroblasts by interacting with the inhibitory receptor
NKG2A expressed on NK cells and highly differentiated CD8+

T cells (Pereira et al., 2019).
Approaches for therapeutically targeting senescence to

improve age-related disease, known as senotherapy, have
developed rapidly. Senolytics are senotherapies aimed at
selective elimination of senescent cells through programmed
cell death, including apoptosis. The molecular targets of
senolytics include PI3K/AKT and p53/p21 (Kim et al., 2019),
Bcl-2/Bcl-x family (Zhu et al., 2015, 2016; Chang et al., 2016;
Yosef et al., 2016), p53/Mdm2 (He et al., 2020), and p53/FOXO4
(Zhang et al., 2020). Among senolytics, dasatinib (D)/quercetin
(Q) combination therapy has been extensively clinically
researched; its potential molecular targets are PI3k/AKT/
mTOR, BCL-xL, ephrins, p21, and PAI-2 (Zhu et al., 2015;
Cavalcante et al., 2020). Clinical trials are planned, ongoing, or
completed for idiopathic pulmonary fibrosis, Alzheimer’s disease,
chronic kidney disease, frailty, and skeletal aging (ClinicaTtrials.
gov identifiers: NCT02874989, NCT04785300, NCT04685590,
NCT02848131, NCT03675724, NCT03430037, and
NCT04313634).

While senolytics aim at selective elimination of senescent cells,
another approach is to target the SASP (so-called “senomorphic”
therapy) (Gorgoulis et al., 2019). Rapamycin is considered a
senomorphic drug that inhibits mTOR and promotes
autophagy, which reverses senescence (García-Prat et al.,
2016). Metformin is another senomorphic drug that activates
AMPK and regulates mTOR (Li et al., 2020); however, metformin
also promotes beneficial senescence, which enhances the
anticancer effect (Hu et al., 2020).
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SENESCENCE IN SKELETAL MUSCLE

Several studies have reported a relationship between senescence
and muscle diseases, including aging. In skeletal muscle tissue of
aged mice, the mRNA expression of Cdkn2a, Cdkn1a, Trp53,
Gadd45a, Il6, Serpine1,Mmp1, andMmp3 is elevated, and muscle
mass and muscle functions are reduced (Edwards et al., 2007;
Baker et al., 2016; Solovyeva et al., 2021). In humans, skeletal
muscle tissue from older women (65–71 years old) expresses
higher levels of CDKN1A than skeletal tissue from young
women (20–29 years old) (Welle et al., 2004). Several potential
mechanisms of muscle cell senescence–mediated, aging-
associated muscle loss (sarcopenia) were proposed based on an
in vitro study using C2C12 cells, a murine myoblast cell line
(Alcalde-Estévez et al., 2020; Mijares et al., 2021; Moustogiannis
et al., 2021). These studies revealed that elevated intracellular
Ca2+ concentration or endothelin-1 receptor in C2C12 cells
induces cellular senescence, and senescent C2C12 cells increase
the expression of apoptotic, atrophic, and inflammatory factors,
which might in turn induce sarcopenia mediated by muscle cell
senescence (Alcalde-Estévez et al., 2020; Mijares et al., 2021;
Moustogiannis et al., 2021). On the other hand, recent in vivo
analysis of human skeletal muscle revealed that there is no

difference in the abundance of γH2AX-positive myonuclei
between young individuals (21–30 years old) and old
individuals (70–86 years old) (Dungan et al., 2020).
Interestingly, young obese individuals (21–24 years old, BMI:
34–46) have higher γH2AX expression in myonuclei than
young lean individuals (21–24 years old, BMI: 20–25) (Dungan
et al., 2020). These studies suggested that aging and obesity, which
are related to the impairment of muscle function, regenerative
capacity, and muscle volume, tend to increase the abundance of
senescent muscle cells; however, this idea remains still
controversial.

Senescence of Muscle Stem Cells
The mechanism of sarcopenia is not fully understood, but some
studies have implicated that senescence of muscle stem cells
(MuSCs), also known as satellite cells, in this process (Carlson
et al., 2008; Cosgrove et al., 2014; Sousa-Victor et al., 2014;
García-Prat et al., 2016). In geriatric mice, MuSCs express
high levels of SA-β-Gal and Cdkn2a, Cdkn2b, and Igfbp5
mRNA, resulting in impaired muscle regeneration after injury
(Sousa-Victor et al., 2014). In addition, transplantation of
geriatric mouse–derived MuSCs decreased regenerative
capacity after injury, even in young mice (Cosgrove et al.,

FIGURE 1 | Senescence in muscle stem cells and fibro/adipogenic progenitors during acute and chronic inflammation. During acute inflammation leading to
regeneration, the level of senescence in fibro/adipogenic progenitors (FAPs) transiently increases at the early phase of acute inflammation and decreases as the cell
approaches regeneration. SASP factors produced during acute inflammation promote immune cell recruitment and muscle stem cell (MuSC) activation. IL-6 has the
potential to promote in vivo reprogramming of MuSCs. The expression level of senescence decreases after clearance of senescent FAPs by immune cells. During
chronic inflammation leading to degeneration phase, the levels of senescence in FAPs andMuSCs gradually increase as the cell approaches degeneration. SASP factors
produced during chronic inflammation, especially TGF-β, promote MuSC senescence and exhaustion, resulting in impairment of muscle regeneration impairment.
Chronically senescent FAPs have an anti-apoptotic phenotype, and their prolonged accumulation in muscle results in fibrosis.
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2014). These results indicate that cellular senescence in MuSCs
impairs muscle regeneration (Figure 1). A potential mechanism
of senescence-induced impairment of muscle regeneration
involves premature senescence induced by persistent p38
MAPK activity and stem cell exhaustion (Figure 1) (Bernet
et al., 2014; Cosgrove et al., 2014; Sousa-Victor et al., 2014; Blau
et al., 2015). Another study showed that Slug, a member of zinc-
finger transcriptional factor in the Slug/Snail superfamily, is
downregulated with aging; MuSC-specific knockout of Slug
promotes p16INK4a expression in MuSC after muscle injury,
resulting in impaired muscle regeneration (Zhu et al., 2019).
Similarly, the cell surface protein Cdon, which positively
regulates myogenesis, is downregulated in progeria model
mice, and MuSC-specific knockout of Cdon promotes
γH2AX expression in MuSCs after injury, resulting in
impaired muscle regeneration (Bae et al., 2020). In addition
to aging, obesity and muscular dystrophy are associated with
accumulation of senescent MuSCs (Kudryashova et al., 2012;
Mu et al., 2015; Roux et al., 2015; Zhang et al., 2016; Dungan
et al., 2020; Sugihara et al., 2020). Although the disease-specific
mechanism of senescence induction remains unknown,
senescence in MuSCs can result from reduced mitophagy,
TGF-β–induced Smad3 activation, and over-activation of
Notch (Figure 1) (Carlson et al., 2008; Mu et al., 2015;
García-Prat et al., 2016).

Senescence of Fibro/Adipogenic
Progenitors
Muscle resident mesenchymal progenitors, known as fibro/
adipogenic progenitors (FAPs), contribute to muscle
regeneration under physiological conditions and to ectopic
tissue formation under pathological conditions (Joe et al.,
2010; Uezumi et al., 2010; Murphy et al., 2011; Uezumi et al.,
2011; Ito et al., 2013; Uezumi et al., 2014; Lemos et al., 2015; Scott
et al., 2019; Theret et al., 2021). Upon injury, under conditions of
acute inflammation, the number of FAPs increases transiently
from days 2–5 and then returns to basal levels 14–21 days after
injury to complete muscle regeneration; however, in chronic
inflammation, prolonged FAP proliferation and deficient
clearance results in FAP accumulation and fibrosis (Joe et al.,
2010; Uezumi et al., 2010, 2011, 2014; Murphy et al., 2011; Ito
et al., 2013; Lemos et al., 2015; Scott et al., 2019). These dynamic
changes in FAP proliferation and clearance might be important
for regulation of muscle regeneration and degeneration, but the
underlying mechanisms are not fully understood. In regard to
FAP proliferation, a recent study showed that expression of
hypermethylated in cancer 1 (Hic1) maintains FAPs in a
quiescent state, whereas reduced expression of Hic1
immediately after injury results in FAP proliferation (Scott
et al., 2019). Another study suggested that activation of the IL-
4/STAT6 pathway promotes FAP proliferation (Heredia et al.,
2013), and that IL-15 also promotes FAP proliferation. In regard
to FAP clearance, Ly6C + TNF-α–rich macrophages play an
important role in FAP clearance via their pro-apoptotic effects
(Lemos et al., 2015). Moreover, senescence in FAPs after acute
muscle injury promotes SASP expression and recruitment of

phagocytic cells to promote FAP clearance (Figure 1)
(Chikenji et al., 2019; Saito et al., 2020). On the other hand,
FAP clearance is impaired by the anti-apoptotic phenotype of
these cells, e.g., excessive TGF-β signaling by Ly6C- macrophages
activates pro-survival signaling in FAP (Figure 1) (Lemos et al.,
2015; Juban et al., 2018; Saito et al., 2020). Collectively, these
studies indicate that pro-inflammatory, pro-apoptotic/anti-
inflammatory, anti-apoptotic signals must be balanced in order
to achieve complete muscle regeneration. In a mouse model of
chronic inflammatory myopathy, senescent FAPs promote the
recruitment of macrophages and NK cells and activate MuSCs,
resulting in muscle regeneration (senescence–clearance–regeneration
sequence) (Figure 2) (Chikenji et al., 2019). Furthermore,
during acute muscle injury, senescent FAPs increase the
expression of several cytokines, and IL-33 expression levels
in FAPs are correlated with Cdkn2a and Trp53 expression levels
(Saito et al., 2020). IL-33 is a potent inducer of pro-
inflammatory cytokines and chemokines, promotes the
production of TNF-α by macrophages (Liew et al., 2010; Xu
et al., 2017), and also regulates muscle regulatory T cells (Tregs)
that promote muscle regeneration (Kuswanto et al., 2016).
Thus, senescent FAPs can activate immune cells and MuSCs
to create a state of regenerative inflammation (Figure 2). In a
mouse model of early aging, BubR1H/H, p16INK4a expression in
FAPs is upregulated, and muscle regeneration after injury is
delayed (Baker et al., 2013). Interestingly, mouse knockouts of
two other senescence-related genes, p53 and p21 (BubR1H/H;
p53-/- and BubR1H/H; p21-/-) impairs the muscle regeneration
capacity of the BubR1H/H mice (Baker et al., 2013). Another
study reported that senescent FAPs are more abundant in obese
humans and a rat model of Duchenne muscular dystrophy;
however, the causal link between the increased senescent FAPs
and muscle pathology remains unclear (Dungan et al., 2020;
Sugihara et al., 2020).

Senescence-Associated Reprograming
As mentioned above, cellular senescence in MuSCs increases with
aging and disease, which adversely affects skeletal muscle. By
contrast, senescence in FAPs not only increases with aging and
disease but also contributes to muscle regeneration. It remains
controversial whether senescent cells in skeletal muscle inhibit or
promote muscle regeneration; however, senescent cells may be
able to induce MuSCs reprogramming in response to muscle
injury. One study used i4F mice to determine whether senescent
cells affect MuSC reprogramming (Chiche et al., 2017). When
treated with doxycycline, i4F mice induce expression of four
mouse reprogramming genes, Oct4, Klf4, Sox2, and c-Myc
(OSKM, known as the Yamanaka factors) (Mosteiro et al.,
2016; Chiche et al., 2017). The results revealed that muscle
injury promoted in vivo reprogramming in muscle;
interestingly, the Nanog + reprogrammed cells were frequently
near senescent cells located in the interstitial space (Chiche et al.,
2017). Furthermore, when senescent cells were depleted, or
production of the SASP factor IL-6 was suppressed, the
reprogramming efficiency of MuSCs was reduced, indicating
that senescent cells, which become more abundant in response
to injury, may contribute to muscle regeneration by promoting
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MuSC reprogramming (Figure 1) (Chiche et al., 2017). Another
study supported the idea that the senescence-related factor p21 is
important for in vivo reprogramming mediated by muscle
regeneration (Wang et al., 2021) by showing that myofiber-
specific short-term induction of OSKM promotes muscle
regeneration and upregulation of p21, which attenuates Wnt4
signaling (Wang et al., 2021). These findings could have
implications for the development of novel therapeutic
strategies based on transient induction of senescence and
muscle-lineage cell reprogramming.

THE EFFECT OF IMMUNOSENESCENCE
ON MUSCLE

Immunosenescence is an age-related process of immune
dysfunction that contributes to morbidity and mortality
(Kennedy et al., 2014; Ventura et al., 2017; Duggal et al.,
2019). Among several biomarkers for immunosenescence that
have been reported, p16INK4a is a reliable marker for senescence in
T cells, B cells, and macrophages (Liu et al., 2009; Cudejko et al.,
2011; Liu et al., 2011; Liu et al., 2019). In T cells, expression of the
proliferation marker Ki-67 and activated T cell marker are
observed with aging, and depletion of p16INK4a attenuates
these features of senescence (Liu et al., 2009). The authors of
the same study showed that depletion of p16INK4a in B cells

attenuates senescence hallmarks that arise with aging (Liu et al.,
2009). Bone marrow–derived macrophages isolated from
p16INK4a-deficient mice downregulate genes associated with
inflammatory M1 macrophages and increase expression of
genes associated with M2 macrophages (Cudejko et al., 2011).
The expression level of the p16INK4a in macrophages does not
affect M1/M2 polarization, although p16INK4a-high macrophages
have higher phagocytic activity than p16INK4a-low macrophages
(Liu et al., 2019). Skeletal muscle regeneration is regulated not
only by MuSCs and FAPs but also by immune cells; hence,
immunosenescence must affect muscle regeneration, although
evidence of a connection between the two phenomena remains
limited. Recently, a study using Vav-iCre(+/−); Ercc1 (−/fl) mice
showed that immune cell–specific induction of senescence
decreased muscle strength and impaired regeneration after
muscle injury (Yousefzadeh et al., 2021). Furthermore,
immune cell–specific senescence induction increased the
number of infiltrating macrophages and decreased the ratio of
M2 to M1 macrophages after muscle injury (Yousefzadeh et al.,
2021). On the other hand, the Newcastle 85 + Study, a
prospective, population-based study of very old adults living in
the Newcastle and Tyneside regions, United Kingdom, showed
that immunosenescence profiles were not associated with muscle
function and sarcopenia risk (Granic et al., 2020). Although it
remains controversial whether immunosenescence affects muscle
inflammation and regeneration, a deeper understanding of the

FIGURE 2 |Muscle regeneration by the senescence–clearance–regeneration sequence. Fibro/adipogenic progenitors (FAPs) act as beneficial senescent cells and
express high levels of senescence factors during acute inflammation. Beneficial senescent cells secrete SASP factors to recruit immune cells and promote muscle
stem cell (MuSC) activation and differentiation, and then the senescent FAPs are eliminated by immune cells to complete tissue regeneration
(senescence–clearance–regeneration sequence). On the other hand, in chronic inflammation, the FAPs produce lower levels of senescence factors than in acute
inflammation and act as detrimental senescent cells. Pro-senescence therapy, e.g., transplantation of senescent mesenchymal stromal cells (MSC) or the combination of
exercise and AICAR, induces resident FAP senescence and promotes immune recruitment. Subsequently, the FAPs are cleared by immune cells, and muscle
regeneration is completed via the senescence–clearance–regeneration sequence, as seen in acute inflammation.
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mechanistic regulation of immunosenescence and muscle
regeneration could help promote the progress of senotherapy
for muscle aging and disease.

POTENTIAL OF SENOTHERAPY FOR
MUSCLE INFLAMMATION AND
REGENERATION

Proper regulation of two types of senescent cells, detrimental-
senescent cells and beneficial-senescent cells, could exert
beneficial effects on muscle regeneration. Several previous
studies showed that senolytics restore muscle loss and
inflammation in aged mice. Upon genetic elimination of
senescent cells using INK-ATTAC mice, mRNA expression of
p16, p21, p19, and SASP genes including Pai1, Il6, Mmp6, and
Mmp13 were reduced in aged C57BL/6 mice and BubR1H/H
mice, a model of early aging (Baker et al., 2011, 2016).
Pharmacological elimination of senescent cells by dasatinib/
quercetin treatment also decreased muscle strength and
function in aged C57BL/6 mice, which develop age-related
muscle loss and inflammation in skeletal muscle (Xu et al.,
2018). Another senolytic drug, ABT263, also inhibits
production of the SASP factors IL-6, TGF-β, and IL-1β in a
rat model of Duchenne muscular dystrophy (Sugihara et al.,
2020). Treatment with the NAD + precursor nicotinamide
riboside (NR) prevents MuSC senescence and decreases
production of SASP factors in aged mice as well as in mdx
mice, a model of muscular dystrophy (Zhang et al., 2016). On
the other hand, other studies suggested that pro-senescence
therapy can promote muscle regeneration. The combination of
exercise and AICAR, a cell-permeable AMPK activator, promotes
muscle regeneration by inducing FAP senescence in chronic
inflammatory myopathy model mice (Wang et al., 2003; Saito
et al., 2020). Another study found that transplantation of
functional senescent mesenchymal stromal cells (MSC) treated
with placenta extract promoted muscle regeneration in chronic
inflammatory myopathy model mice (Figure 2) (Chikenji et al.,
2019). In mechanistic terms, transplantation of functional
senescent MSC, which have phenotypes distinct from those of
cells induced to senesce by continuous cultivation,
promotes FAP senescence followed by phagocytic cell
recruitment and MuSC proliferation (Figure 2) (Chikenji
et al., 2019). In cardiac muscle, fibroblast senescence plays
important roles in heart regeneration (Feng et al., 2019; Sarig
et al., 2019). One study found that treatment with CCN1, a
matricellular protein, induced PDGFRα+ fibroblast senescence,
decreased cardiac fibrosis, and triggered the expression of SASP
factors including IL-1a and IL-6, thereby promoting
cardiomyocyte proliferation and heart regeneration (Feng
et al., 2019). Interestingly, the senolytic drug ABT263
decreases cardiomyocyte proliferation and increases
proliferation of PDGFRα+ fibroblasts, thus promoting heart
fibrosis (Feng et al., 2019). Another study found that treatment
with the extracellular matrix molecule agrin induced transient
senescence in vimentin + fibroblasts and promoted

heart regeneration after myocardial infarction (Sarig et al.,
2019). Together, the results of these studies suggest that pro-
senescent therapy, especially targeting fibroblasts or
mesenchymal stromal cells, represents a novel strategy
for regulating muscle inflammation and regeneration
(Figure 2).

Exercise-Mediated Cellular Senescence:
Potential of Senotherapy
Continuous exercise is effective for maintaining homeostasis and
improving muscle function by increasing muscle mass and
oxygen supply. These effects of exercise are induced by a
complex of stimuli on skeletal muscle, including mechanical
stress, oxidative stress, changes in the AMP:ATP ratio, an
increase in calcium flux, changes in redox balance, and a
decrease in the partial pressure of intracellular oxygen
(Figure 3) (Egan and Zierath, 2013). High-force muscle
contractions caused by resistance training transiently disrupt
the sarcolemma and increase the concentration of membrane
phosphatidic acid (PA) by activating phospholipase D (PLD),
which in turn activates PI3K, Akt, andmTOR, resulting in muscle
protein synthesis (Fang et al., 2001). In addition, Akt signaling
suppresses muscle RING finger 1 (MuRF1) and muscle atrophy F
box (MAFbx) by inhibiting Forkhead box–containing proteins
(FOXOs), resulting in the suppression of muscle protein
degradation (Sandri et al., 2004; Egan and Zierath, 2013).
Muscle contraction also activates focal adhesion kinase (FAK),
a mechanosensor, to stimulate muscle protein synthesis in an
mTOR-dependent or -independent manner (Wilkinson et al.,
2008; Durieux et al., 2009; Klossner et al., 2009; Philp et al., 2011).
The increase in calcium ion concentration caused by muscle
contraction can induce the phosphorylation of calmodulin-
dependent protein kinases II (CaMKII) (Rose and Hargreaves,
2003), which in turn induces phosphorylation and nucleo-
cytoplasmic shuttling of HDAC4 (Liu et al., 2005). Exercise-
induced mechanical stress can activate production of ROS, which
stimulates the MAPK subfamilies ERK1/2, JNK, and p38 MAPK
(Kramer and Goodyear, 2007). The metabolic changes that occur
during muscle contraction affect the AMP:ATP and NAD+:
NADH ratios, which induce activation of AMP-activated
protein kinase (AMPK) and sirtuins (Sirt1, Sirt3), respectively
(Jørgensen et al., 2006; Cantó et al., 2009; White and Schenk,
2012). Exercise also decreases the partial pressure of oxygen in
skeletal muscle and activates HIF-1α (Ameln et al., 2005). Thus,
exercise has the potential to regulate various signaling pathways,
some of which are involved in the control of cellular senescence
(Wang et al., 2003; Jones et al., 2005; Welford and Giaccia, 2011;
Davalli et al., 2016; Zhang et al., 2016; Nacarelli et al., 2019; Chan
et al., 2020; Vliet et al., 2021) (Figure 3). Accordingly, senescence-
targeted exercise therapy has enormous potential for clinical
benefit.

A systematic review (Chen et al., 2021) discussed whether
exercise has a senolytic effect on various types of cells and tissues,
as demonstrated by human and animal studies. The authors
reported the senolytic effect on human skeletal muscle (Wu
et al., 2019), human skeletal muscle–derived vascular
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FIGURE 3 | Exercise regulation of senescence in skeletal muscle. Exercise-induced complex stimulation if skeletal muscle can regulate senescence. Mechanical
stress, altered ATP:AMP ratio, and oxidative stress–mediated up-regulation of Akt-mTOR, AMPK, and MAPK signaling promote senescence, whereas NAD +
metabolism governs SASP expression. On the other hand, altered ATP:AMP ratio, altered redox balance, and AMPK activation mediated by reduced tissue oxygen
inhibit SASP expression, and NAD +metabolism and HIF-1 activation inhibit senescence. The outcome of exercise-induced muscle regeneration could depend on
cell type, exercise type, and the intensity and frequency, all of which affect senescence.

FIGURE 4 |Diverse roles of cellular senescence in skeletal muscle regeneration and degeneration. Cellular senescence in skeletal muscle plays dual roles in muscle
regeneration and degeneration. Although senescent fibro/adipogenic progenitors (FAPs) activate immune cells and promote muscle stem cell (MuSC) differentiation and
reprogramming during muscle regeneration, they also contribute to muscle degeneration through anti-apoptotic and pro-fibrotic phenotypes, as well as prolonged
SASP expression. Senescent MuSC exhibits impairment of self-renewal capacity, which induces stem cell exhaustion. The beneficial roles of senescent MuSC
remain unknown. Senescent myoblasts/myocytes facilitate their own in vivo reprogramming, a beneficial role; however, senescent myoblasts/myocytes also contribute
to muscle degeneration by decreasing proliferation and differentiation capacity and increasing expression of atrophic and inflammatory factors.
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endothelial progenitor cells (Yang et al., 2018), rat skeletal muscle
(Fan et al., 2014), mouse skeletal muscle (Yoon et al., 2019), and
mouse skeletal muscle–derived FAPs. Three studies using whole
skeletal muscle tissue reported no change in the number of
senescent cells or the expression of p16INK4a and p21 protein
after exercise (Fan et al., 2014; Wu et al., 2019; Yoon et al., 2019).
A study by Yang et al. on vascular endothelial progenitor cells
derived from human skeletal muscle reported a reduction in
senescent vascular endothelial progenitor cells following squat
training in which resistance was set at 70% of each individual’s
one-repetition maximum (1RM) (Yang et al., 2018). On the other
hand, cellular senescence of FAPs was induced by downhill
running at an intensity that caused muscle damage (Saito
et al., 2020). The exercise-induced senescent FAPs exhibited a
pro-apoptotic phenotype with elevated expression of SASP
factors, similar to the FAP phenotype during muscle
regeneration after acute inflammation, indicating that FAPs
may function as beneficial senescent cell (Saito et al., 2020). It
remains unclear whether cellular senescence in skeletal muscle is
induced or inhibited depending on the type of exercise, intensity,
duration, and cell type, and whether the induced or eliminated
senescent cells are beneficial or detrimental. However, regulation
of cellular senescence by exercise represents a new therapeutic
strategy as a senotherapy for skeletal muscle.

DISCUSSION

Understanding the mechanism of cellular senescence–mediated
tissue regeneration and degeneration is essential for maintaining
healthy skeletal muscle. Mounting evidence supports the hypothesis
that cellular senescence in skeletal muscle plays diverse roles in
muscle regeneration and degeneration. In this review, we described
the basic mechanisms of cellular senescence and the beneficial and
detrimental effects of senescence on muscle regeneration and
degeneration (Figure 4). Unfortunately, there are no
distinguishing features of beneficial and detrimental senescent
cells; however, several pieces of evidence suggested that a
transient increase in the proportion of senescent cells exerts
beneficial effects, whereas prolonged accumulation of senescent
cells exerts detrimental effects. In regard to PDGFRα+
mesenchymal cells in skeletal muscle and cardiac muscle,
induction of senescence is likely to have a positive effect on
muscle regeneration by promoting the proliferation of
parenchymal cells and inhibiting fibrosis by activating
phagocytic cells.

A deeper understanding of the relationship between cellular
senescence and muscle physiology and pathology will lead to
advances in research on skeletal muscle. However, there are still

some outstanding questions. First, what are the molecular and
cellular differences between beneficial senescence and
detrimental senescence? Second, which cell types, such as
MuSCs and FAPs, frequently enter senescent states during
acute injury, chronic muscle disease, and aging? Third, what
kind of SASP factors contribute to muscle regeneration or chronic
inflammation. Fourth, can senotherapy attenuate chronic muscle
inflammation and promote muscle regeneration? In addition,
which type of senotherapy (e.g., senolytics, senomorphics, or pro-
senescence therapies) can exert positive effects on muscle health?
Fifth, can exercise-mediated senescence regulation provide a
therapeutic effect against chronic muscle diseases or aging? If
so, how can we optimize the intensity and frequency of exercise to
regulate senescence in each cell type? Addressing these questions
will lead to the development of therapies that target cellular
senescence.

Finally, many senotherapy drugs have been developed; some
have proceeded to clinical trials, and even newer senotherapy
drugs continue to be reported today. Undoubtedly,
senotherapies, including not only pharmacological therapies,
but also cell-based therapies, exercise therapies, and a
combination of these therapeutic approaches could provide a
beneficial outcome in patients with chronic inflammatory
muscular disease and aging-related muscle dysfunction.
Importantly, an in-depth understanding of the complex roles
of senescent cells, which remain largely unknown, is essential
for the development of truly effective senescence-targeting
therapies.
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