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Hand-foot syndrome (HFS) is a common capecitabine-based chemotherapy-related
adverse event (CRAE) in patients with colorectal cancer (CRC). It is of great
significance to comprehensively identify susceptible factors for HFS, and further to
elucidate the biomolecular mechanism of HFS susceptibility. We performed an
untargeted multi-omics analysis integrating DNA methylation, transcriptome, and
metabolome data of 63 Chinese CRC patients who had complete CRAE records
during capecitabine-based chemotherapy. We found that the metabolome changes for
each of matched plasma, urine, and normal colorectal tissue (CRT) in relation to HFS were
characterized by chronic tissue damage, which was indicated by reduced nucleotide
salvage, elevated spermine level, and increased production of endogenous cytotoxic
metabolites. HFS-related transcriptome changes of CRT showed an overall suppressed
inflammation profile but increased M2 macrophage polarization. HFS-related DNA
methylation of CRT presented gene-specific hypermethylation on genes mainly for
collagen formation. The hypermethylation was accumulated in the opensea and shore
regions, which elicited a positive effect on gene expression. Additionally, we developed
and validated models combining relevant biomarkers showing reasonably good
discrimination performance with the area under the receiver operating characteristic
curve values from 0.833 to 0.955. Our results demonstrated that the multi-omics
variations associated with a profibrotic phenotype were closely related to HFS
susceptibility. HFS-related biomolecular variations in CRT contributed more to the
relevant biomolecular mechanism of HFS than in plasma and urine. Spermine-related
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DNA hypermethylation and elevated expression of genes for collagen formation were
closely associated with HFS susceptibility. These findings provided new insights into the
susceptible factors for chemotherapy-induced HFS, which can promote the
implementation of individualized treatment against HFS.

Keywords: adverse effects, chemotherapy, DNA methylation, hand-foot syndrome, immune response, multi-omics,
spermine, susceptible factors

INTRODUCTION

According to the National Comprehensive Cancer Network
(NCCN) guidelines and routine clinical practice, the
capecitabine-based chemotherapy XELOX (capecitabine plus
oxaliplatin) is the most recommended and adopted treatment
(Benson et al., 2018) for types of solid tumors, including
colorectal cancer (CRC) (Bray et al., 2018). Owing to the
cytotoxicity of capecitabine, however, XELOX can cause
various chemotherapy-related adverse events (CRAEs), one of
the most common of which is the hand-foot syndrome (HFS, also
called palmar-plantar erythrodysesthesia). It ranks within the top
3 CRAEs with an incidence rate of up to 70% (Lou et al., 2016;
Yap et al., 2017; Deng et al., 2020; Li et al., 2021). HFS symptoms
include redness, swelling, as well as pain on the palms of the
hands and the soles of the feet. Consequently, HFS can influence a
patient’s adherence to a chemotherapy regimen and adversely
affect his/her quality of life.

Personalized medicine can help prevent CRAEs because a
personalized approach ensures the proper selection of drugs and
their dosages. One of the prerequisites for personalized medicine
is predictive markers. However, the CRAE biomarkers need to be
optimized in at least two aspects. First, the currently available
HFS biomarkers focus mainly on capecitabine metabolism.
Germline polymorphisms of genes controlling drug
metabolism (Lam et al., 2016) and each drug’s
pharmacokinetic parameters (Daher Abdi et al., 2014) are
related to HFS. Nonetheless, the response to a particular
cytotoxic substance (including a drug) may vary amongst
individuals, which can also contribute to the sensitivity to
CRAEs. Notably, our preliminary study has revealed potential
valuable CRAE biomarkers derived from both endogenous urine
metabolites (Deng et al., 2020) and germline DNA methylation
(M et al., 2021). Second, the pathological mechanism of HFS
requires further investigation. Although the most widely accepted
mechanism involves inflammation mediated by cyclooxygenase 2
(COX2) overexpression (Lou et al., 2016), a prospective study
reported that pyridoxine, which suppresses inflammation, cannot
effectively prevent HFS (Yap et al., 2017). Our limited
understanding of the HFS mechanism may be partially
attributable to the lack of any apparent linkage between HFS-
related alterations in cell biochemistry as assessed with multi-
omics datasets.

To further address the mechanism underlying HFS, we
conducted an integrated multi-omics analysis of 63 CRC
patients before they received adjuvant chemotherapy. The
analysis integrated matched multi-omics data for normal
colorectal tissue (CRT), including transcriptome and DNA

methylation, plus the metabolome data for CRT, plasma, and
urine samples. Dietary intake data were also recorded during
flow-up. The results advance our understanding of HFS
biochemistry and provide better biomarkers, which can further
facilitate individualized treatment against HFS.

MATERIALS AND METHODS

Patient Selection and Sample Collection
Figure 1A illustrates the study design. Patients were selected from
a registered ongoing clinical trial (registered at www.clinicaltrials.
gov, NCT03030508) carried out at Shanghai Changzheng
Hospital from January 2018 to April 2019. The study protocol
was approved by the Biomedical Research Ethics Committee of
Shanghai Changzheng Hospital, and written consent was
obtained from each patient. Inclusion criteria were: 1) over
18 years old; 2) CRC confirmed by biopsy; 3) the first
treatments were resection followed by capecitabine-based
adjuvant chemotherapy. CRAEs were recorded according to
Common Terminology Criteria for Adverse Events (CTCAE,
Version 4.0), based on which patients were divided into three
groups: grade 0 HFS (HFS0), grade 1 HFS (HFS1), and grade 2/3
HFS (HFS2/3) (Additional file 2: Supplementary Table S1).

Fasting urine samples were collected into 15-ml Falcon tubes,
and plasma samples were collected into 15-ml EDTA tubes
1–3 days before resection. CRT was collected during resection.
Immediately after resection, samples were taken from the CRC
tumor and the adjacent CRT (approximately 5–10 cm away from
the tumor site), and the entire CRT was then separated from the
tumor. All samples were stored at −80°C for later analysis. A total
of 63 cases with stored frozen tissue samples and complete CRAE
records were selected for subsequent analyses, which included 21
grade 0 HFS, 33 grade 1 HFS, and 9 grade 2/3 HFS patients.

Metabolome Assays
The metabolome assays were completed on a UHPLC system
coupled to a quadruple time-of-flight mass spectrometer. Each
prepared sample was screened under both positive and negative
ionization modes (see the detailed descriptions of these methods
in Additional file 1: Supplementary Material). Metabolite data
were processed throughmultiple steps, including 1) best-matched
internal standard correction for peak areas, with an additional
creatinine correction for the urine metabolome, 2) 80% filtering
rule and cutoff for >40% coefficient of variation, outlier detection,
and imputation, and 3) normalization and transformation:
quantile normalization, log10 transformation, Pareto scaling
(Bijlsma et al., 2006).
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FIGURE 1 | Study design and differential analyses on multi-omics datasets. (A) Sample collection and the experimental design. (B) The weighted average proportion
variance of each clinical covariate effect in each omics dataset (CRT methylation, CRT transcriptome, CRT/plasma/urine metabolome). (C) Data analysis plan. (D) Distributions of
differentially expressed features (DEFs) related to HFS susceptibility in each omics dataset. (E)Overview of intra- and inter-group variations. A principal components analysis (PCA)
plotwas generated usingDEFs fromeachomicsdataset. Themetabolomedatawere acquired under positive (pos) and negative (neg)modes and are plotted separately. The
circle of each group represents the 75% confidence interval. Abbreviations: CRC, colorectal cancer; CRAE, chemotherapy-related adverse event; CRT, normal colorectal tissue;
DEF, differentially expressed feature; Meta, metabolome; Trans, transcriptome; P._Island, promoter-island region; P._Shore, promoter-shore region; P._Shelf, promoter-shelf
region; P._Opensea, promoter-opensea region. Here, we focused on DMPs mapped to a specific gene, and thus DMPs in intergenic regions are not displayed here.
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DNA Methylation Assays
DNA was extracted from frozen tissue samples using the Takara
Genomic DNA Purification Kit. DNA was quantified using a
Qubit 2.0 fluorometer (Invitrogen, Waltham, MA, United States).
Bisulfite conversion of DNA was conducted using the Zymo
bisulfite D5005 kit. Microarray assays were performed according
to Illumina’s standard protocol with the EGMK91396 kit.
Processed methylation chips were scanned using an iScan
reader (Illumina, San Diego, CA, United States).

Methylation data were analyzed using the ChAMP package
(Tian et al., 2017). The extent to which each probe was
methylated was calculated as the β-value: β � intensity
(methylated) ÷ intensity (methylated + unmethylated).
Probes were accepted if they had significantly higher
intensity (p ≤ 0.05, compared with negative controls on each
chip) and higher frequency (≥95% amongst all samples).
Exclusion of probes from non-CpG sites, sex chromosomes,
and those containing a known SNP(s) yielded 753,722 probes
that were subsequently normalized with respect to beta-mixture
quantile, and probes having a coefficient of variation value of
>20% were excluded.

RNA Sequencing
RNA sequencing was performed on 54 normal CRT samples.
Libraries were prepared using the Illumina TruSeq stranded
mRNA sample preparation kit, starting with 2 μg RNA.
Oligo(dT) magnetic beads were used to reduce the abundance
of ribosomal RNA. The ribosomal RNA–depleted RNA samples
were then randomly cleaved into ∼200-bp fragments, where were
then reverse transcribed into strand-specific complementary
DNA (cDNA) using random primers. Second-strand cDNA
was then synthesized, with dTTP being replaced by dUTP.
The resulting double-stranded cDNAs were purified using
AMPure XP beads and then subjected to end repair and
A-tailing. Finally, each cDNA was ligated to an index adaptor.
The products then underwent PCR amplification (15 cycles)
using an Illumina cBot system to create the final cDNA
libraries that were competent for cluster generation and
sequencing using the Illumina NovaSeq 6,000 platform with a
paired-end protocol.

Adapter sequences were removed from reads, and low-quality
3′-end fragments were excluded using Skewer (v0.2.2) (Jiang
et al., 2014). After quality control using FastQC (v0.11.5,
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), the
reads were mapped to reference genome GRCh38 using STAR
(v2.5.3a) (Dobin et al., 2013) with default parameters (Dobin and
Gingeras, 2015). Software RseQC (v2.6.4) (Wang et al., 2012) was
used to check alignment quality, including total mapped reads,
reads mapped ratio, and the number of uniquely mapped reads.
Read counts for each sample were calculated using HTseq
(Anders et al., 2015). The FPKM value, i.e., fragments per
kilobase of transcript per million fragments mapped, was
calculated using StringTie (v1.3.1c) (Pertea et al., 2016). Genes
for which FPKM was >0 in ≥50% of samples were retrained, and
outlier detection and imputation were employed, and the
log2(FPKM + 1) transformation was used for further analysis.

Assessment of the Nutritional Status of
Patients
To evaluate the contribution of dietary intake to any observed
variations in metabolite levels, a simple food-frequency
questionnaire (FFQ25) for Shanghai residents was
administered to each of the enrolled patients during
chemotherapy (Gao et al., 2011).

Integrated Analysis of Multi-Omics
Datasets
We carried out a multi-omics factor analysis (MOFA) (v1.2.0) by
integrating differentially expressed features (DEFs) of five omics
datasets for CRT DNA methylation, CRT transcriptome, and
metabolomes (in both positive and negative modes) from CRT,
plasma, and urine with partially shared samples. The following
parameters were used: 1) #tolerance, 0.01; 2)
#DropFactorThreshold, 0.02; and 3) other parameters were set
to default (Argelaguet et al., 2018). Based on the weighted DEFs
determined by MOFA, the DEFs at different developmental
stages of HFS were further studied by pathway enrichment
analyses using the Reactome Database (online available:
https://reactome.org/) (Fabregat et al., 2016).

Construction and Validation of Potential
Marker Systems for Hand-Foot Syndrome
Prediction
To develop and evaluate the performance of the HFS prediction
model based on each omics dataset (except for the transcriptome)
separately, we randomly divided the samples into training and
validation sets (7:3). While developing the model, a univariate
logistic analysis was performed using features with consistent
change in both the HFS1 and HFS2/3 groups compared with the
HFS0 group to identify features significantly associated with HFS.
To further narrow the candidate metabolome marker lists,
LASSO (least absolute shrinkage and selection operator)
analysis with 10-fold cross-validation and randomForest
analysis with 1,000 trees were performed. Based on the
intersection of the top 10 features according to the non-zero
coefficients in LASSO and mean decrease of accuracy in
randomForest, these important HFS-related features were
combined to establish a HFS prediction model for the multiple
combined-marker systems using multivariate logistic regression.
To further narrow down DNA methylation makers, a slightly
different route was applied. The randomly sampling, LASSO-
logistic and randomForest modeling was repeated 5,000 times,
and then the fibrosis-related DMPs from the top10 most
frequently selected DMP markers were enrolled for DNA
methylation model construction. At last, by using our
preliminary data as an independent validation dataset, which
contained DNAmethylation data from 21 CRC patients (M et al.,
2021) (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc�GSE149282), we tested our DNA methylation model.
Unfortunately, so far there is no other public dataset available
for further validation. ROC curves were analyzed to evaluate the
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predictive performance of each model. A flow chart for the model
development and validation is presented in Figure 8A.

Statistical Analysis
We eliminated the effects of baseline and potential confounding
factors of sex, age, weight, height, body mass index (BMI), CRC
location, and CRC stage (Combat method in ChAMP for
methylation, removeBatchEffect method in limma for all
others). Differential expression analyses were performed to
identify HFS-related features in each omics dataset (ChAMP
for methylation and limma for transcriptome/ metabolome
data) (Ritchie et al., 2015; Tian et al., 2017). DEFs for the
methylation, the transcriptome, and the metabolome were
filtered based on the following respective criteria: |Δ β-values|
> 0.1; |log2 FC| > [mean ± 2 SD]; |log10FC| > 0. The “pvca”
package was used for exploring the variation of the covariate
effect. The “CIBERSORT” package was employed for the analysis
of the abundance of 22 infiltrating immune cells for
transcriptome data (Newman et al., 2019). The “glmnet” and
“randomForest” packages were respectively applied for LASSO
and randomForest analyses to select features. The “pROC”
package was used for the analysis and visualization of
AUROC. Gephi software (v0.9.2) was used to generate a
network based on the results of the correlation analysis
(Bastian et al., 2009). All statistical analyses were performed
using R software (v3.6.3), and p < 0.05 was considered
statistically significant.

RESULTS

Patient Characteristics
The 63 CRC patients all received capecitabine-based
chemotherapy on a 3-weeks cycle after resection surgery. The
study design is illustrated in Figure 1A. Patient samples of CRT,
plasma, and urine were collected before chemotherapy. During
each cycle, patients received oxaliplatin (0.16–2 g/d)
intravenously on day one and capecitabine (1.5 g/d) orally for
the first two weeks. These patients received chemotherapy for at
least three cycles, and the median number of chemotherapy cycles
was eight. These multi-omics datasets collected from those
patients were affected by several covariates, the variation
proportion of which are shown in Figure 1B using principal
variance component analysis (PVCA) (Bushel, 2020); and the
influence of these covariates were adjusted before the subsequent
analysis (Figure 1C).

Differentially Expressed Features
Generated on the Multi-Omics Datasets
To comprehensively explore the mechanism of HFS
development from different perspectives, we initially
performed differential expression analysis for each omics
dataset between any two of the three HFS grades, namely
HFS0, HFS1, and HFS2/3 (Figure 1D). The following
numbers of DEFs were identified: 15,152 DEFs for
methylation of CRT genomic DNA, 1,449 for the CRT

transcriptome, 467 for the CRT metabolome, 327 for the
plasma metabolome, and 442 for the urine metabolome
(Additional file 2: Supplementary Table S2). The results
indicated that DNA hypermethylation was the most common
susceptibility marker for HFS. The number of hypermethylated
DMPs correlated positively with HFS severity (Figure 1D).
Most of the hypermethylated DMPs were in the CpG-shore
and opensea regions. Overall, most HFS-related transcriptome
features were downregulated. However, the number of
downregulated transcriptome features correlated negatively
with HFS severity. For the HFS-related metabolome data, the
majority of the metabolites in CRT were downregulated.
Principal component analysis (PCA) for each omics dataset
revealed that the DEFs could be reasonably categorized into the
three HFS grades (Figure 1E). The smallest sum of the first two
principal components was 27.8% [plasma metabolome profile
(pos)], and the largest sum was 41.2% (CRT genomic DNA
methylation profile).

Integrated Multi-Omics Response Profiles
We further adopted MOFA to integrate the DEFs of the multi-
omics datasets with partially matched samples in an unsupervised
manner (Figure 2A). MOFA can accommodate missing
values and provide more rigorous statistics than other
statistical tools for multi-omics datasets (Argelaguet et al.,
2018). MOFA captured a total of 11 latent factors (LFs). All
LFs explained 66.8% of the variation in DNA methylation
data, followed by 36.0% in the RNA transcriptome, 23.4%
in the CRT metabolome, 16.5% in the plasma metabolome,
and 15.1% in the urine metabolome. LF1 explained the
greatest percentage of variations across all five datasets and
yielded the best categorization of the three HFS grades
(Figures 2B,C). According to the MOFA weight given by LF1,
the CRT metabolome profile had the greatest number of
features having a high value of MOFA weight (Figures 2D,E).
Within these top-weighted CRT features, spermine had the
highest MOFA weight. Spermine, spermidine, and serotonin
were enriched in pathways such as amine oxidase reactions,
organic cation transport, and polyamine oxidase reactions
(Figure 2F).

Hand-Foot Syndrome-Related Metabolome
in Colorectal Tissue, Plasma, and Urine
To further investigate the LF1 results from the MOFA model,
pathway enrichment was analyzed based on MOFA weighted
features. For the CRT metabolome, the most significantly altered
pathways shared between HFS1 and HFS2/3 were nucleobase
catabolism, nucleotide salvage, and nucleotide metabolism, all of
which were downregulated in HFS1 and HFS2/3 compared with
HFS0 (Figure 3A). Also, the downregulation of nucleotide
salvage in HFS2/3 was observed in the plasma metabolome
profile (Figure 3B). The development of HFS resulted in
decreased levels of free nucleotides and co-factors involved in
DNA synthesis in CRT and plasma (Figure 3D). The most
significantly enriched pathway was organic cation transport in
HFS2/3 (Figure 3A). Several organic cations, including spermine,
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serotonin, spermidine, and choline, correlated positively with
HFS susceptibility (Figure 3E).

For the plasma metabolome, two pathways, namely, those
involving fatty acids and free fatty acid receptors, were the most
significantly altered pathways, reflecting the characteristics of
HFS 1 and HFS2/3, respectively. In these two pathways,
docosapentaenoic acid (DPA) had the highest MOFA weight.

Amongst all DEFs in the plasma metabolome, deoxycholic acid
had the highest MOFA weight (Figure 3F). These findings
indicated that a significant change in lipid metabolism in
plasma correlated with HFS susceptibility.

For the urine metabolome, the most significantly altered
pathways shared between HFS1 and HFS2/3 were amino acid
conjugation and conjugation of carboxylic acids (Figure 3C).

FIGURE 2 | Multi-omics factor analysis (MOFA). MOFA captured 11 latent factors (LFs) from the multi-omics datasets. (A) MOFA overview listing the number of
samples and differentially expressed features (DEFs) from each omics dataset. (B) Explained variance (R2) by each LF (left) and the cumulative proportion of total variance
explained (right) for each omics dataset of the MOFA model. (C) Score plots for the 11 LFs. The y-axis represents the each LF score for each sample. Colors denote
sample groups. (D) The distribution of features based on the LF1 weight of the MOFA model. (E) The distributions of features with LF1 MOFA weight above the
threshold of 0.06 from each omics dataset. (F) Pathway enrichment analysis of DEFs with LF1 MOFA weight > 0.06 (in HFS2/3), including CRT metabolome and CRT
transcriptome. Cutoff: the minimum number of DEFs enriched in the pathway was set as 2, the p-value was set as 0.05, and –log10(P) was used for visualization.
Pathway weight is defined as: (Enrichment ratio) × (sum of absolute value of DEF MOFA L1 weight in the pathway), and the dot size represents pathway weight. Pathway
direction is the median fold change (FC) of DEFs for each dataset in the pathway (red, upregulated; green, downregulated). Abbreviations: LF, latent factor; MOFA, Multi-
omics Factor Analysis.
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FIGURE 3 | Metabolome changes related to HFS susceptibility. Pathway enrichment analysis of differentially expressed features (DEFs) in CRT metabolome (A),
plasmametabolome (B), and urinemetabolome (C). Cutoff: the minimum number of DEFs enriched in the pathway was set as 4 (A), 2 (B), and 2 (C), and the p-value was
set as 0.05. The dot border color represents the –log10(p) of pathway significance. Pathway weight is defined as: (Enrichment ratio) × (sum of absolute value of DEF
MOFA L1 weight in the pathway), and the dot size represents pathway weight. Pathway direction is the median log10 fold change (FC) of DEFs in the pathway (red,
upregulated; green, downregulated). Boxplots in (D), (E), (F), (G), and (H) show the relative metabolite levels of the related features enriched in the significantly important
pathways in groups HFS0, HFS1, and HFS2/3 (from left to right). Statistical significance was set as: *p < 0.05 for HFS1 vs HFS0, HFS2/3 vs HFS0; #p < 0.05 for HFS2/3
vs HFS1 by differential expression analysis using limma.
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FIGURE 4 | Changes in spermine metabolism related to HFS susceptibility. (A)Connections of correlations. The stacked bar charts show the connections between differentially
expressed features (DEFs) from all omics datasets with spermine, serotonin, and spermidine (selected based on MOFA LF1 weight and pathway enrichment analysis). (B) Correlation
network with spermine, serotonin, and spermidine, excluding DNA methylation. A spermine-spermidine-serotonin metabolite-gene correlation network was constructed. The network
included only paired DEFswith significant correlations (Spearman correlation, p < 0.05) in all omics datasets, excluding DNAmethylation. The relatively important DEFs are labeled
with feature names. Visualization was achieved with Gephi software (v0.9.2). Node colors represent the type of omics, and node sizes represent the strength of connections between
features. Red edges represent positive correlations, and green edges represent negative correlations. (C, D)Metabolism and relatedmetabolic processes of spermine (C) and serotonin
(D). Boxplots show the relative expression levels of the relevant DEFs in groups HFS0, HFS1, and HFS2/3 (from left to right). Statistical significance was set as: *p < 0.05 for HFS1 vs
HFS0, HFS2/3 vs HFS0; #p < −0.05 for HFS2/3 vs HFS1 by differential expression analysis using limma.
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From DEFs implicated in these pathways, urine salicylic acid and
its conjugation product salicyluric acid correlated positively with
HFS susceptibility (Figure 3G). Apart from this, HFS2/3 was also
characterized by increasedmelanin biosynthesis. The level of each
urine pyroglutamic acid and L-Dopa correlated positively with
HFS susceptibility (Figure 3H).

Spermine, Spermidine, and Serotonin
Metabolism and Their Related Metabolic
Processes
Notably, for the CRT metabolome, a high MOFA weight was
apparent for each of spermine, spermidine, and serotonin
involved in organic cation transport (Figures 2E,F). Spermine
had the highest MOFA weight amongst all input multi-omics
features. Next, correlations between these three features and the
rest of the multi-omics features were examined, revealing the
strongest connections with methylation, followed by CRT
metabolome features, urine metabolome features, plasma
metabolome features, and transcriptome features (Figures
4A,B). The metabolomes for the three features and their
related metabolic processes were further examined in detail.

Levels of spermine and spermidine increased gradually with
the development of HFS severity (Figure 4C). However, the level
of their precursor, ornithine, was not elevated in HFS1 but was
elevated in HFS2/3 compared with HFS0. The expression level of
adenosylmethionine decarboxylase 1 (AMD1) was even
significantly suppressed in HFS1 but was recovered in HFS2/3
compared with HFS0. The rate-limiting enzyme ornithine
decarboxylase (ODC) was not significantly changed in neither
the HFS1 nor HFS2/3 group (Additional file2: Supplementary
Table S3). Moreover, the increase in the fold change (FC) of
spermine level in HFS2/3 (compared with HFS0) was greater than
that of its precursor ornithine. Therefore, the de novo synthesis
was not the reason for the elevated spermine level and it may even
be repressed as the HFS severity increased. This may lead to the
accumulation of SAM. SAM is the methyl-donor for the
subsequent methylation. An expected upregulation of SAM
may also be contributed by the activated methionine cycle.
With the elevated supply of methionine and consumption co-
factors ADP, the synthesis of enzyme methionine
adenosyltransferase (MAT) had a trend of elevation. Plus, the
decreased level of dihydrofolate (DHF) may also contribute to
SAM formation through the folate cycle.

The same pattern was also observed for serotonin biosynthesis
(Figure 4D). Levels of serotonin and its metabolite 5-
hydroxytryptophol were elevated gradually with the increased
HFS severity. However, the level of their upstream precursor 5-
hydroxytryptophan was significantly suppressed in HFS1 but was
recovered in HFS2/3 compared with HFS0 (Figure 4D). Also, the
rate-limiting enzyme dopa decarboxylase (DDC) level was not
remarkably changed. Therefore, the de novo synthesis was not the
reason for the elevated serotonin and 5-hydroxytryptophol. In
parallel with the upregulation of serotonin and spermine
metabolism, the catabolism of the immunosuppressant vitamin
B6 (VB6) was also upregulated.

Spermine, Spermidine, and
Serotonin-Related Dietary Intake
In order to find the possible origin of the difference in the HFS-
related amines (namely, spermine, spermidine, and serotonin),
we performed the correlation analysis between each amine and
each dietary intake (Figure 5A). The intake level of manufactured
meat was positively related to both spermine and spermidine in
CRT. The intake levels of seafood and zinc positively correlated
with both spermidine and serotonin in CRT. Interestingly,
although the spermidine levels in plasma were similar to that
in CRT, none of the dietary intake was associated with the plasma
spermidine levels. Subsequently, we also found that the intake
levels of the majority of these amine-related food and nutrition
factors were not significantly different amongst the three HFS
grades (Figure 5B). Taken together, these results suggested that
dietary food and nutrition intake were possible contributing
factors for the variation of the HFS-related amines in CRT;
however, they were less likely to be the main contributing factors.

Hand-Foot Syndrome-Related
Transcriptome in Colorectal Tissue
Overall, the HFS-related upregulated transcriptome features were
mainly enriched in pathways governing protein metabolism,
development, muscle contraction, RNA metabolism, gene
expression, and signal transduction. The most significantly
altered pathways shared between HFS1 and HFS2/3 were two
HOX-related pathways for development (Figure 6A). On the
other hand, the downregulated transcriptome features were
primarily enriched in pathways governing immunity, protein
metabolism, signal transduction, and hemostasis. Interestingly,
the number of pathways that were enriched by downregulated
transcriptome features correlated positively with the severity of
HFS. Genes with a high MOFA weight and connections to other
omics data are presented in Figure 6B. In addition, CIBERSORT
analysis based on the HFS-related transcriptome in CRT revealed
that M0 macrophages were significantly negatively associated
with HFS grade (Additional file 2: Supplementary Table S4).
For macrophages M1 and M2, which are the downstream
polarization product of M0, M1 demonstrated a negative trend
with HFS grade, while M2 showed a positive trend with
HFS grade.

Hand-Foot Syndrome-Related DNA
Methylation in Colorectal Tissue
HFS-related methylation changes were mainly enriched in the
pathway for extracellular matrix (ECM) organization
(Figure 7A). Collagen formation correlated positively with
HFS susceptibility. In HFS2/3, more pathways within the ECM
pathway were upregulated than in HFS1. A total of 15 genes that
were differentially methylated were also differentially expressed
in the CRT transcriptome (Figures 7B,C). These genes were
hypermethylated in the CpG-shore and opensea regions of their
promoter and intragenic regions, and most of these genes were
upregulated in HFS samples.
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Potential Biomarkers for Hand-Foot
Syndrome
Multiple screening steps (Figure 8A) of our datasets (except
for transcriptome data) yielded the following number of
DEFs: 4 for CRT metabolome, 5 for plasma metabolome, 4
for urine metabolome, and 3 for DNA methylation data; these
constituted potential biomarkers for HFS (Additional file 2:
Supplementary Table S5). We further combined these
features to construct a prediction model for each omics
dataset (Additional file 2: Supplementary Table S6). All
the prediction models showed reasonably good
discrimination performance, with relatively high AUROC
values ranging from 0.833 to 0.955 (Figure 8B). Other
evaluation indices in the validation set also demonstrated
relatively good predictive performance (Additional file 2:
Supplementary Table S6). In addition, the AUROC for
the DNA methylation model was 0.713 when examined by
an independent testing dataset.

DISCUSSION

Differences in Multi-Omics Profiles Predict
the Hand-Foot Syndrome Susceptibility
Our results constituted the first demonstration that variations in multi-
omics profiles could predict the HFS susceptibility (Figures 1D,E, 2).
This was consistent with our previous report that variations in the
endogenous urine metabolome correlated positively with HFS (Deng
et al., 2020). As the CRTmetabolome bears more similarities to that of
skin than of plasma and urine in terms of their chemical composition,
histologypattern, and cell developmental programs, changes in theCRT
metabolome afford the best correlation with the HFS susceptibility.

Since HFS does not occur in CRT, and CRT hadmoreHFS-related
metabolome changes compared with plasma and urine, the HFS-
related metabolomic alteration in CRT was less likely to be caused by
diffusion or transportation from the skin through plasma to CRT. The
more possible scenario was that the hazard factors inducing the
susceptibility to HFS could also trigger a profound metabolic

FIGURE 5 | Contribution of dietary intake to the levels of HFS-related amines in CRT. (A) Heatmap showing the correlations between HFS-related amine
metabolites and dietary intake. Statistical significance was set as: *p < 0.05, **p < −0.01 (Spearman correlation). Red boxes represent positive correlations, and blue
boxes represent negative correlations. (B) Boxplots show the relative levels of amine-related dietary intake. The Student’s t-test was used to examine the relationship
between dietary intake for groups HFS0, HFS1, and HFS2/3, and significance was set as: *p < 0.05, **p < −0.01.
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FIGURE 6 | Transcriptome changes related to HFS susceptibility. (A) Pathway enrichment analysis of upregulated differentially expressed features (DEFs) (the
upper left) and downregulated DEFs (the bottom left) on differential transcriptome. Cutoff: the minimum number of DEFs enriched in the pathway was set as 2, and the
p-value was set as 0.05. The dot border color represents the –log10(p) of pathway significance. Pathway weight is defined as: (Enrichment ratio) × (sum of absolute value
of DEFMOFA L1weight in the pathway), and the dot size represents pathway weight. Pathway direction is the median log2 fold change (FC) of DEFs in the pathway
(red, upregulated; green, downregulated). (B)Heatmaps (z-score) and boxplots show the expression profiles for representative transcriptome features for groups HFS0,
HFS1, and HFS2/3. Statistical significance was set as: *p < 0.05 for HFS1 vs HFS0, HFS2/3 vs HFS0; #p < −0.05 for HFS2/3 vs HFS1 by differential expression analysis
using limma.
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FIGURE 7 |HFS-relatedDNAmethylation changes and aproposedmechanismof chemotherapy-inducedHFS. (A)Pathway enrichment analysis of differentiallymethylated
genes (containing differentially methylated probes, DMPs). DMPs in opensea or shore regions were selected for the pathway enrichment analysis. Cutoff: the minimum number of
DMPs enriched in the pathwaywas set as 5, and thep-valuewas set as 0.05. The dot border color represents the –log10(P) of pathway significance. Pathwayweight is defined as:
(Enrichment ratio) × (sum of absolute value of DMPMOFA LF1 weight in the pathway), and the dot size represents pathway weight. Pathway direction is the median Δβ of
DMPs in the pathway (red, hypermethylated; green, hypomethylated). Notes: As for pathwaydirection, in the caseofDMPsmapped tomultiple regions (nine typesofGDMR, gene-
function-DMR: three gene-function, and three CpG-island-based regions), pathway direction is based on the direction of the region with the highest sum of absolute DMPMOFA
L1weight in the pathway. (B, C)Differentialmethylation–related transcriptional changes. Number of DMPs associatedwith significantly altered gene expression (B) and heatmapof
significantly altered gene expression that associated with DMP (HFS 2/3 vs 0) (C). (D) Proposedmechanism of HFS. Abbreviation: DMPs, differentially methylated probes. Notes:
The nine types of GDMR were: 1) promoter-island regions, 2) promoter-shore/shelf regions, 3) promoter-opensea regions, 4) intragenic-island regions, 5) intragenic-shore/shelf
regions, 6) intragenic-opensea regions, 7) intergenic-island regions, 8) intergenic-shore/shelf regions, and 9) intergenic-opensea regions.
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change in CRT. In another word, the HFS-related metabolic changes
in CRT may infer the biomolecular mechanism of HFS susceptibility.
The HFS-related changes in the CRT metabolome may provide clues
to the biomolecular mechanism of HFS. Consistently, the barrier
surface tissues, including the gut and skin, share similarmechanisms in
regulating neuro-immune response (Veiga-Fernandes and Mucida,
2016) to potential hazards (Lou et al., 2016).

Hand-Foot Syndrome-Related Alterations
in the Metabolomes of Colorectal Tissue,
Plasma, and Urine Indicate Potential
Chronic Tissue Damage
The reduced metabolite levels in pathways (metabolism of
nucleotides, nucleotide salvage, and nucleotide catabolism) in
CRT and plasma of CRC patients indicated an imbalance or

depletion of the nucleotide pool (Figures 3A,B,D), which can
cause DNA replication stress (Forrer Charlier andMartins, 2020).
These factors can cause damage to cells such as neurons that
regenerate continuously (Fasullo and Endres, 2015), and cells that
mediate the neuro-immune response. These cells are one of the
main cell types of the barrier tissues such as skin and gut.
Consistently, capecitabine-based chemotherapy can induce
chronic peripheral-nerve damage and hence cause increased
sensitivity to pain sensation (Banach et al., 2018). In response
to inflammatory stimuli, injured cells release spermine into the
extracellular space, which is a sign of upregulated tissue repair
along with the consequent increase in cell proliferation (Zhang
et al., 1999).

Consistent with the signs of HFS-associated damages to CRT,
the HFS-related plasma (Figures 3B,D,E) and urine (Figures
3C,H) metabolomes were also characterized with signs of

FIGURE 8 | Construction of potential marker systems for HFS prediction. (A) Flow chart for model construction. The entire set was used to identify differentially
expressed features (DEFs) in each omics dataset. During model development, we randomly divided the samples into training and validation sets (7:3). Models were
developed to discriminate CRC patients who did not experience HFS (HFS0) from those with HFS (HFS:HFS1, HFS2/3). Models were constructed based on CRT
metabolome, plasma metabolome, urine metabolome, and CRT methylation, respectively. (B) Respective ROC (receiver operating characteristic) curves for the
developed models in the training set, validation set, and entire set. Note: Independent validation was performed for CRT methylation only. Abbreviation: Sper, spermine.
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elevated cytotoxicity. In plasma, DPA is an essential omega-3
fatty acid, which is a component of phospholipids found in all
animal cell membranes. DPA deficiency can lead to lesions of skin
and connective tissues, causing atherosclerosis, coronary
thrombosis, and multiple sclerosis (Kaur et al., 2011). DPA is
a precursor of anti-inflammatory mediators, and it can also
inhibit COX2 activity. Choline and deoxycholic acid are bile
acids that facilitate the uptake of dietary fats and excretion of
cholesterol. Chronic exposure to elevated levels of bile acids can
induce the generation of reactive oxygen species and reactive
nitrogen species, resulting in damages to cellular membrane and
DNA (Ghonem et al., 2015). In urine, salicylic acid is a cytotoxic
microbial metabolite (Madan and Levitt, 2014). We found that
the levels of both salicylic acid and its conjugation product
correlated positively with HFS susceptibility. Pyroglutamic
acid, which is found in substantial amounts in the skin, can
act as another metabotoxin that causes acidosis (Emmett, 2014).
L-Dopa is the precursor of dopamine, the accelerated excretion of
which through urine is an indicator of potential neuronal damage
(Lane, 2019).

Overall, our observed changes in metabolome datasets
indicate that patients who are susceptible to HFS are likely to
suffer from chronic tissue damage. We expect that this damage
probably exists in their hands as well, contributing to HFS
susceptibility. However, we could not identify the origin of
this damage yet. Therefore, we focused on discussing the HFS-
related metabolites from the enriched pathway with the highest
MOFA weight, namely, spermine, serotonin, and spermidine,
which were engaged in the organic cation transportation
pathway. We then moved on to discuss the multi-omics
changes that might be caused by these damages. We believe
that features with a high MOFA weight can point to the most
fundamental biomolecular changes of HFS susceptibility. The
potential molecular pathological mechanism of HFS development
can be refined by carefully interpreting these biomolecular
changes in the background of the current understanding of
these biomolecules.

Chronic Tissue Damage Increases the
Cellular Level of Spermine Which can Alter
Immune Function and the Cellular DNA
Methylation Profile
The elevated level of spermine that we observed in HFS
susceptible patients was a consequence of leakage from
damaged tissues as well as upregulated spermine biosynthesis
as the damage persisted. The de novo biosynthesis of spermine
and spermidine was not upregulated in the HFS1 group
(Figure 4C). Ongoing tissue damage requires additional
spermine, and therefore the HFS2/3 group exhibited increased
de novo biosynthesis of both spermine and spermidine
(Figure 4C). Was this caused by increased uptakes of these
two metabolites? In healthy adults, polyamines are mainly
derived from foods or are synthesized by the intestinal
microbiota. It is known that polyamines in the intestinal tract
are absorbed quickly, thereby rapidly increasing their levels in the
portal vein, after which they are distributed to all organs and

tissues (Soda, 2018). Based on our data for dietary intake of study
participants, spermine level correlated positively with high
intakes of manufactured meat and seafood; however, no
significant association between excessive intake of either
product type and HFS susceptibility was found (Figure 5B).
Therefore, dietary habits were not the main reason for the
observed differences in spermine levels among the various
HFS groups.

Upregulated spermine can lead to a series of metabolic
changes which were associated with substantial changes in the
transcriptome. Spermine itself can be converted to spermidine
(Hesterberg et al., 2018). Because the expression of the rate-
limiting enzyme in this conversion (SAT1) did not correlate with
HFS susceptibility (Additional file 2: Supplementary Table S3),
increased spermidine level may be a consequence of increased
spermine level. Spermine also stimulated the release of serotonin
from mast cell granules (Figure 4D), which was in line with its
function (Kanerva et al., 2009; García-Faroldi et al., 2010). All
these amine molecules (spermine, spermidine, and serotonin)
themselves serve as important immune function regulators in
activating M2 macrophage polarization (Coates et al., 2017;
Latour et al., 2020).

Spermine can also induce DNA methylation by suppressing
the expression of AMD1 (Soda, 2018). Since the substrate of
AMD1 is SAM, its level may be elevated subsequently. SAM is
the methyl-donor for the DNA methyltransferase DNMT1.
DNA methylation is controlled by the relative expression of
genes encoding pro-methylation and demethylation enzymes
(Greenberg and Bourc’his, 2019). Because the transcriptional
expression of DNMT1 and most of the other genes controlling
DNA methylation correlated negatively with HFS
susceptibility (Figure 4C and Additional file 2:
Supplementary Table S7), the observed upregulation of
DNA methylation could be mainly ascribed to an increase
in available SAM brought about by suppression of AMD1
expression. On the other hand, since the elevated supply of
methionine and consumption co-factors ADP as the HFS
grade increased, plus MAT had a trend of increase in HFS2/
3, it was likely that the methionine cycle also contributed to an
increased SAM level. This process might contribute more to
the overall DNA hypermethylation profile.

Variations in the Colorectal Tissue
Transcriptome Correlate With Relative
Proliferation or Suppression of Immune
Cells
In line with the well-established function of spermine (Latour
et al., 2020), the overall downregulation of immune function and
induction of some immune-cell proliferation in patients with HFS
was noticed. Depending on environmental factors, macrophages
generally can be stimulated to develop into either pro-
inflammatory M1 or M2 macrophages (Murray and Wynn,
2011). M2 macrophages with the immunosuppressive function
are involved in tissue repair. Spermine suppresses the polarization
of M1 macrophages yet activates the polarization of M2
macrophages.
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Upregulated genes in CRT of HFS susceptible patients (HFS1 or
HFS2/3 groups) indicated an induced proliferation phenotype.
HOXA4 belongs to the HOX (homeobox) family of transcription
factors (Li et al., 2020). Serotonin plays multiple important roles in
the immune system such as the activation of M2 macrophages (Wu
et al., 2019). Consistently, HOXA4 also induces the IL-6/STAT3
signaling pathway (Yang et al., 2011), which further activates M2
macrophage polarization (Yin et al., 2018). M2 macrophages are
profibrotic, and their abundance are increased in the skin and
plasma of patients afflicted with systemic sclerosis (Higashi-
Kuwata et al., 2010). HOXA4 deficiency is related to the
downregulation of muscle contraction-related genes such as
MYH11 that are expressed only in smooth muscle (Kimura et al.,
2020). Elevated levels of HOXA4 may activate the expression of the
genes encoding MYH11 (Gomez and Owens, 2012) and MYLK
(Yang et al., 2016), which are critical in transforming cells from a
contractile phenotype to a proliferative state for ECM production
(Kimura et al., 2020). Elevated ECM production is a risk factor for
developing fibrosis-related tissue damage (Karsdal et al., 2017;
Asano, 2018; Weiskirchen et al., 2019).

Downregulated genes in CRT of HFS susceptible patients
(HFS1 or HFS2/3 groups) indicated an overall suppressed
immune response. HLA-F can bind to ILT2, ILT4, resulting in
the presentation of antigens to the T cells; the HLA-F/ILT2/ILT4
trimer also serves as a ligand for receptors expressed on natural
killer (NK) cells (Lin and Yan, 2019). In parallel, downregulated
IL-17A (Additional file 2: Supplementary Table S8) can reduce
CXCL1 expression (Figure 6B), thereby preventing neutrophils
recruitment (Furue et al., 2020). CXCL1 is a secreted growth
factor that signals through the G-protein coupled receptor, CXC
receptor 2. In HFS2/3, the decreased levels of immune cytokines
caused profound suppression of the immune system (Figure 6A).
Consistently, downregulated SLAMF6 suppresses NK-cell
activation (Ma et al., 2007), and downregulated ZAP70
suppresses TCR signaling response (Gaud et al., 2018).
SLAMF6 belongs to the CD2 subfamily of the
immunoglobulin superfamily, which is expressed on NK, T,
and B lymphocytes. ZAP70 belongs to the protein tyrosine
kinase family, and it plays roles in T-cell development and
lymphocyte activation. The overall suppressed immune
response was not expected, as the most widely accepted
mechanism of HFS is the COX2 overexpression-mediated
inflammation (Lou et al., 2016). We did find evidence
suggesting that COX2 was activated, such as the reduced level
of DPA in plasma (DPA is a potent COX2 inhibitor) (Kaur et al.,
2011) and the elevated level of prostaglandin F3α (PGF3α). In our
study, COX2 was not expressed in CRT (Additional file 2:
Supplementary Table S9). Therefore, HFS treatments that
focus on the suppression of the immune response may not
have the expected benefits.

Hand-Foot Syndrome-Related DNA
Methylation in Colorectal Tissue Favors a
Profibrotic Phenotype
The human genome contains 42 different collagen genes for 28
different types of collagens. Here we found that 25 collagen genes

for 20 types of collagens were all hypermethylated in CRT of
patients susceptible to HFS (Karsdal et al., 2017). It is noteworthy
that, in our study, changes in the expression of genes that govern
the methylation pattern did not correlate well with the overall
DNA hypermethylation. Therefore, other mechanisms may
account for the observed dynamics of DNA methylation in
response to the increased spermine level and the consequent
hypermethylation of targeted genes. Our results support the
notion that the effects of DMPs on gene expression are
dependent on functional gene regions (gene body, promoter),
and intergenic regions (Greenberg and Bourc’his, 2019) as well as
the relative distance between CpG islands (Klett et al., 2018). The
hypermethylated promoter-shore and intragenic opensea regions
may elicit positive effects on gene expression. The upregulated
collagen genes, such as PCOLCE2 (Ulmasov et al., 2013),
ADAMST4 (Lu et al., 2018), DES (Torricelli et al., 2016), and
TPM1 (Huang et al., 2020), participate in ECM organization and
collagen formation. Prolonged remodeling of the ECM and
collagen formation can further lead to a profibrotic
phenotype—and even fibrosis-related tissue damage (Asano,
2018).

Proposed Mechanism for the
Chemotherapy-Induced Hand-Foot
Syndrome
On the basis of our multi-omics data and published information
on HFS, we proposed a mechanism for chemotherapy-induced
HFS (Figure 7D). Specifically, damage to tissues, including
those harboring neurons and mast cells with essential neuro-
immune functions, can initially cause localized changes to the
metabolome including a decrease in the nucleotide pool and an
increase in spermine release. An acceleration of changes to the
metabolome may lead to a profibrotic phenotype characterized
by the suppressed immune function, elevated cellular
proliferation, and tissue fibrosis. Once Capecitabine-based
chemotherapy is administrated, it adds to the existing hazard
factors and causes severe tissue damage (Tsai et al., 2020).
Finally, the accumulated molecular changes lead to severe
cellular proliferation and fibrosis of tissues, and ultimately
to HFS.

The resident profibrotic cells in organs can develop to
myofibroblasts, which are the key players in the damage
progression related to fibrosis. The resident profibrotic cells
include epithelial cells from the skin and CRT (Weiskirchen
et al., 2019). Fibrosis is also the main characteristic of systemic
sclerosis, damaging the skin and various internal organs (Asano,
2018). This partially explained why the multi-omics variation in
CRT was closely related to HFS susceptibility. Based on the
similarity between skin where the HFS happened and CRT from
where the experimental tissue was acquired and screened, the
HFS-related metabolome in CRT was more likely a reflection or
an indicator of what was happening in the skin at a biomolecular
level. With the current data and knowledge, we could not further
tell how the HFS-related metabolome affects skin. However,
spermine, which was recognized as the most important HFS-
related metabolite in CRT, can cause overall DNA
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hypermethylation, especially on genes from collogen formation.
Spermine can also cause overall downregulated genes related to
M2 macrophage activation and suppressed immune response.
These biomolecular changes were important signs of systematic
fibrosis. Therefore, suppression of systematic fibrosis may
provide an alternative treatment target in the prevention of HFS.

Prediction Models for
Chemotherapy-Induced Hand-Foot
Syndrome
To assist clinical practice for CRC patients undergoing
capecitabine chemotherapy, we additionally developed
prediction models for HFS. Samples of cellular mRNA are
relatively difficult to preserve, and the use of mRNA for
routine screening is relatively costly; moreover,
models using biomarkers from other omics data also
show good enough predictive abilities. Therefore, we
developed a set of prediction models only using
metabolome and DNA methylation data (Figure 8 and
Additional file 2: Supplementary Table S5 and
Supplementary Table S6).

Considering the significance of spermine, we combined it with
the three biomarkers, including N-octanoyl-d-sphingosine (C8-
ceramide), O-phosphoethanolamine, adenylosuccinic acid into
the CRT metabolome model, and a slight increase in AUROC in
the validation set was shown (Figure 8B and Additional file 2:
Supplementary Table S6). Both C8-ceramide and
O-phosphoethanolamine are implicated in sphingolipid
metabolism, the alternation of which plays different regulatory
functions in multiple cell events. Ceramides serve as a localized
cytokines milieu to regulate inflammatory function at barrier
organs such as skin and their levels are directly related to disease
severity (Toncic et al., 2020). Ceramides can also modulate the
serotonin release from mast cells (Ji et al., 2011).

Adenylosuccinic acid participates in purine metabolism. In
line with biomarkers in the CRT metabolome, most of the plasma
metabolite biomarkers, including PC[14:1(9Z)/24:1(15Z)],
PC(35:2), PC(34:2), and cis-8,11,14,17-eicosatetraenoic acid are
lipid metabolism-related, which suggested that patients
susceptible to HFS had a remarkable disturbed lipid
metabolism. In addition, an elevated level of dodecanoic acid
plays roles in fatty acid biosynthesis.

For the urine prediction model, 4 potential biomarkers,
including 4-pyridoxolactone, PA(27:6), glycodeoxycholic acid,
and 5,6-dihydrothymine generally reflected different alterations
of VB6 metabolism, fatty acid and lipid metabolism, pyrimidine
metabolism.

All of the three DNA methylation biomarkers were associated
with the profibrotic phenotype. SMIM24 (previously termed
C19orf77) is a member of the small integral membrane
protein family, the downregulation of which is related to
steatosis, glucose intolerance, inflammation, and fibrosis in
high-fat diet-, high-fat-high-cholesterol diet-, and methionine-
choline-deficient diet feed mice (Song et al., 2021). SMIM24 has
an important paralog PDZK1, the downregulation of which can

cause myocardial infarction-related fibrosis (Yesilaltay et al.,
2009). On the other hand, MIR130A promotes collagen
secretion, myofibroblast transformation through CYLD,
enhancing Akt activity (Zhang et al., 2019). The level of
MIR130A positively correlated with both skin and cardiac
fibrosis (Li et al., 2017). At last, mutation in PLEKHA7 is
negatively related to perivascular fibrosis in the heart and
kidney (Endres et al., 2014).

The major strengths of this study include the first use of
metabolome and DNA methylation markers to predict HFS
susceptibility, various datasets, and the adjustments for
potential confounding factors. However, our models also had
limitations. First, the sample size was relatively small. Second, the
prediction model for HFS2/3 patients is also of greater
importance. Owing to the limited number of HFS2/3 patients
who were enrolled in our study; however, we were unable to
produce a specific prediction model for HFS2/3 alone. Therefore,
further validation promises better applicable results.

CONCLUSION

In summary, our results demonstrated that a multi-omics
profibrotic phenotype was closely associated with
chemotherapy-induced HFS. On top of this, the
metabolome variation in CRT showed a tighter correlation
with HFS susceptibility than in plasma and urine. The
metabolome changes for each of matched plasma, urine,
and CRT in relation to HFS were characterized by chronic
tissue damage, which was indicated by reduced nucleotide
salvage, elevated spermine release, and increased production
of endogenous cytotoxic metabolites. HFS-related
transcriptome changes of CRT showed an overall
suppressed inflammation profile but increased M2
macrophage polarization. HFS-related DNA methylation of
CRT presented gene-specific hypermethylation on genes
mainly for collagen formation. The hypermethylation was
accumulated in the opensea and shore regions, which elicited
a positive effect on gene expression. Additionally, we
developed and validated models combining multiple
biomarkers to predict HFS, with reasonably good
discrimination. Our findings provide novel insights into
the susceptible factors contributing to HFS, and advance a
better understanding of the molecular mechanism underlying
HFS, which can promote the implementation of
individualized treatment against HFS. Nonetheless, further
studies based on large cohorts to verify our findings are
warranted.
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GLOSSARY

AMD1: adenosylmethionine decarboxylase 1

AUROC: area under the receiver operating characteristic curve

BMI: body mass index

C8-ceramide: N-octanoyl-d-sphingosine

CRAE: chemotherapy-related adverse event

CTCAE: Common Terminology Criteria for Adverse Events

CRC: colorectal cancer

CRT: normal colorectal tissue

DDC: dopa decarboxylase

DEF: differentially expressed feature

DHF: dihydrofolate

DMP: differentially methylated probe

DPA: docosapentaenoic acid

ECM: extracellular matrix

FC: fold of change

FFQ: food-frequency questionnaire

FPKM: fragments per kilobase of transcript per million fragments mapped

HFS: hand-foot syndrome

LASSO: least absolute shrinkage, and selection operator

LF: latent factor

MAT: methionine adenosyltransferase

MOFA: multi-omics factor analysis

NK: natural killer

ODC: ornithine decarboxylase

PCA: principal component analysis

PGF3α: prostaglandin F3α

PVCA: principal variance component analysis

SD: standard deviation

VB6: vitamin B6

XELOX: capecitabine plus oxaliplatin
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