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Rosuvastatin is a well-known lipid-lowering agent generally used for hypercholesterolemia
treatment and coronary artery disease prevention. There is a substantial inter-individual
variability in the absorption of statins usually caused by genetic polymorphisms leading to a
variation in the corresponding pharmacokinetic parameters, whichmay affect drug therapy
safety and efficacy. Therefore, the investigation of metabolic markers associated with
rosuvastatin inter-individual variability is exceedingly relevant for drug therapy optimization
and minimizing side effects. This work describes the application of pharmacometabolomic
strategies using liquid chromatography coupled to mass spectrometry to investigate
endogenous plasma metabolites capable of predicting pharmacokinetic parameters in
predose samples. First, a targeted method for the determination of plasma concentration
levels of rosuvastatin was validated and applied to obtain the pharmacokinetic parameters
from 40 enrolled individuals; then, predose samples were analyzed using a metabolomic
approach to search for associations between endogenous metabolites and the
corresponding pharmacokinetic parameters. Data processing using machine learning
revealed some candidates including sterols and bile acids, carboxylated metabolites, and
lipids, suggesting the approach herein described as promising for personalized drug
therapy.

Keywords: personalized medicine, metabolomics, rosuvastatin, prediction, machine learning,
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INTRODUCTION

Rosuvastatin is a lipid-lowering agent extensively used to treat hypercholesterolemia and prevent
progression of coronary artery diseases. It is well known for increasing serum levels of high-density
lipoprotein (HDL) cholesterol (McTaggart and Jones, 2008) and decreasing low-density lipoprotein
(LDL) cholesterol (Betteridge and Gibson, 2007) and triglycerides (Crouse, 2008) by competitively
inhibiting the enzyme 3-hydroxy-3-methylglutaryl–coenzyme A (HMG-CoA) reductase, the rate-
limiting enzyme involved in cholesterol biosynthesis (Olsson et al., 2002). It is biotransformed to two
metabolites: rosuvastatin-5S lactone (inactive metabolite) and N-desmethyl rosuvastatin (active
metabolite) primarily by CYP2C9 (cytochrome P450) and, to a lesser extent, by CYP 2C19 and CYP
3A4 isoenzymes. Previous studies demonstrate that rosuvastatin-5S-lactone and N-desmethyl
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rosuvastatin concentrations were found to be much lower than
those of rosuvastatin. The mean maximum plasma drug
concentration (Cmax) values for rosuvastatin-5S-lactone were
12%–24% lower than those for rosuvastatin and <10% for
N-desmethyl rosuvastatin. Moreover, when considering the
sum of the parent compound and active metabolites, drug-
interaction studies suggest that rosuvastatin accounts for 87%
of circulating active HMG-CoA reductase inhibitors (Martin
et al., 2003). Although statins are usually well tolerated,
adverse effects associated with statin treatment include skeletal
muscle toxicity, myopathy (Thompson et al., 2003), or even
rhabdomyolysis in rare cases (Wooltorton, 2004), and they
decrease adherence to therapeutic regimens. There is evidence
of a substantial inter-individual variability in statin responses as
well as in their pharmacokinetics in humans (Lee et al., 2005;
Pasanen et al., 2007; Keskitalo et al., 2009). Such variability results
in drugs not reaching or not binding to their designated targets.
Moreover, an increased statin plasma concentration can affect
drug therapy safety by causing the adverse drug effects
mentioned above.

Usually, it is reasonable to associate the variations among
individual responses in drug therapy (from increased sensitivity
to tolerance to the drug) with several key factors including
epigenetic factors like genetic polymorphisms (Weinshilboum,
2003); demographic factors like age, sex, bodyweight, race, and
ethnicity; environmental factors like diet, addictions (smoking,
alcohol, etc.), previous/current single/multiple drug
administration; and individual factors like accompanying
diseases, disease status, microbiome, etc. (Li and Jia, 2013;
Alomar, 2014). For rosuvastatin, a vast amount of literature
points to a series of factors that may exert some influence on
the therapeutic response of this statin. These factors may be
divided into genetic and environmental factors. The most
described genetic factor influencing rosuvastatin
pharmacokinetics is associated with genes encoding the
hepatic organic anion transporting polypeptide 1B1
(OATP1B1) and the ATP-binding cassette transporter G2
(ABCG2) proteins. Genetic polymorphisms influence Cmax and
area under curve (AUC) parameters (Pasanen et al., 2007;
Keskitalo et al., 2009; Wan et al., 2015) in a manner
sometimes affected also by factors such as ethnicity (Choi
et al., 2008; Lee et al., 2013; Birmingham et al., 2015a;
Birmingham et al., 2015b; Liu et al., 2016) and age (Kim et al.,
2019). Multiple-drug intake also influences rosuvastatin response
and pharmacokinetics (Schneck et al., 2004; Simonson et al.,
2004; van der Lee et al., 2007; Busti et al., 2008; He et al., 2008;
Samineni et al., 2012; Martin et al., 2016; Son et al., 2016, among
others). The same influence is also observed with natural
products, such as baicalin (Fan et al., 2008); epigallocatechin-
3-gallate, the major component of green tea (Kim et al., 2017);
and theaflavins, derived from black tea (Kondo et al., 2019).
High-fat and high-calorie meals resulted in a reduction of
rosuvastatin exposure and a decrease in absorption rate of
rosuvastatin (Chen et al., 2020), showing the relevance of diet.
Sex (Nazir et al., 2015) and drug formulation (Balakumar et al.,
2013; Dudhipala and Veerabrahma, 2017) are other listed factors
that influence pharmacokinetics and/or response to rosuvastatin.

Despite the fact that, in the field of medicine, drugs are usually
described on the basis of the uniformity of the inter-individual
responses, clinicians have become increasingly aware that the
variability in drug therapy effectiveness is a direct result of the
variability of drug response among different individuals. Thus,
there is an urgent need to select the right prescription according
to the patient’s characteristics to avoid drug therapy failure and
adverse effects (Balashova et al., 2018). Personalized medicine
proposes a tailored drug treatment to achieve maximal
therapeutic effects with minimal adverse effects (Schork, 2015).
The main idea is that clinical, laboratory, and individual
characteristics like age, body weight, comorbidity, family
history, biochemical laboratory parameters, etc. may be useful
for personalizing drug therapy (Kitsios and Kent, 2012).
Nowadays, those characteristics are already being used as
predictors of inter-individual variability in drug responses and
are called covariates (Joerger, 2012). A previous research has
investigated the ability of covariates to predict inter-individual
variability in rosuvastatin concentration. Using multiple linear
regression modeling, results have revealed gender, age, body mass
index, ethnicity, dose, and time from last dose as the best clinical
predictors (DeGorter et al., 2013).

Since genetic polymorphisms are partly responsible for
individual variations in drug therapy, pharmacogenomics can
also be useful in predicting them. However, drug therapy
effectiveness relies on the efficiency of the drug’s reaching and
binding to its designated target, and those required steps are also
affected by the individual phenotype, so pharmacogenomics and
conventional covariates have a limited reach. Due to the intrinsic
difficulty to predict inter-individual variation, a research on
phenotypic markers associated with rosuvastatin inter-
individual variation would be tremendously valuable for
determining optimal drug therapy and minimizing adverse
effects.

Given that metabolomics is the closest omics science to the
phenotype, it is extremely useful to obtain a picture of the
ongoing physiological condition of a given individual in order
to provide clinicians useful information about drug selection and
dosing predictions (Kantae et al., 2017). Metabolites are the final
products of metabolism and are the result of complex
downstream relations among genes, proteins, and
environment, being, therefore, among the current omics
sciences, the most integrative approach regarding real-time
physiological condition assessment. Its newest, emergent
branch, the so-called pharmacometabolomics, employs
metabolomic strategies for pharmacotherapy personalization
by measuring endogenous metabolites related to drug
variability, thereby obtaining insights about the interplay
between individual physiology and drug pharmacology
(Kantae et al., 2017; Balashova et al., 2018). Since it was first
applied in rat urine predose samples to establish an association
between endogenous metabolites and pharmacokinetic/
pharmacodynamic parameters of paracetamol (Clayton et al.,
2006), many research efforts have successfully employed
pharmacometabolomics for predictive purposes. The main
applications using a pharmacometabolomic strategy in
practical medicine have been with drugs like paracetamol
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(Clayton et al., 2009; Winnike et al., 2010), tacrolimus (Phapale
et al., 2010), simvastatin (Kaddurah-Daouk et al., 2011a; Trupp
et al., 2012), and atorvastatin (Huang et al., 2015). Moreover,
studies involving drug-metabolizing enzyme activity have
investigated enzymes like CYP3A4/5 (Diczfalusy et al., 2011),
CYP3A4 (Rahmioglu et al., 2011), CYP3A (Shin et al., 2013), and
CYP2D6 (Tay-Sontheimer et al., 2014) and diseases, including
colorectal cancer (Backshall et al., 2011), depression (Kaddurah-
Daouk et al., 2011b), lymphoidmalignances (Muhrez et al., 2017),
and so on.

This work focuses on applying pharmacometabolomic
strategies using ultra performance liquid
chromatography–quadrupole time-of-flight mass spectrometry
(UPLC-QTOF-MSE) in healthy human plasma samples to
predict the main pharmacokinetic parameters, AUC and the
Cmax, based on endogenous molecules in the predose baseline.
First, we validated a liquid chromatography coupled to low-
resolution mass spectrometry (LC-MS/MS) method for
rosuvastatin quantification in plasma samples from volunteers
to whom a rosuvastatin reference formulation was administered
to obtain their corresponding drug concentrations and calculate
the pharmacokinetic parameters. Then, predosing samples were
analyzed by UPLC-QTOF-MSE (where E represents collision
energy) applying an untargeted metabolomic profiling strategy.
Multivariate statistical modeling was employed to search for
associations between metabolite profiling and the investigated
pharmacokinetic parameters to find relevant metabolites
responsible for predicting individual AUC and Cmax values of
the enrolled healthy volunteers. Our results have proved the value
and effectiveness of the employed strategy in predicting
individual pharmacokinetic outcomes. So far, to the best of
our knowledge, there has been no previous report of the
application of untargeted metabolomics in predose human
plasma samples to predict AUC and Cmax of rosuvastatin,
making this a pioneering effort in the field.

EXPERIMENTAL METHOD

Chemicals and Reagents
Rosuvastatin calcium was purchased from European
Pharmacopoeia. Internal standard (IS) diazepam was
purchased from Fundação Oswaldo Cruz. Bromo-
L-phenylalanine was purchased from Sigma-Aldrich, and all
other reagents were purchased from Merck KgaA (Darmstadt,
Germany). Diazepam was chosen as IS due to the satisfactory
results regarding molecular stability, chromatographic peak
shape, molecular extraction recovery, analytical accuracy and
precision obtained during the preliminary tests, method
validation, and application.

Healthy Human Volunteers and
Pharmacokinetic Study Design
Forty adult volunteers of both sexes, aged between 18 and 50 with
a body mass index between 18.5 and 29.9 kg/m2, were selected for
the study after assessment of their health status by clinical

evaluation (physical examination and electrocardiogram) and
laboratory tests. The set of laboratory tests is listed in the
Supplementary Material. The protocol complied with the
current Brazilian legislation on clinical research in humans
and was approved by the Research Ethics Committee, duly
authorized by the National Health Council, and under the
guidelines of Good Clinical Practice (Brazil Platform CAAE:
26762719.9.0000.5514, registered on July 15, 2020—https://
plataformabrasil.saude.gov.br/login.jsf). All subjects gave their
written informed consent and were free to withdraw from the
study at any time.

The reference formulation was 20-mg rosuvastatin calcium
tablets (Crestor® 20 mg—AstraZeneca do Brasil Ltda.), with
administration of one single-dose tablet. During each period,
the volunteers were hospitalized at 7:30 p.m. and had a supper
before 9:00 p.m. After an overnight fast, they received (at ∼8:00
a.m.) a tablet of rosuvastatin calcium (20 mg). Water (200 ml)
was given immediately after the drug administration, and the
volunteers then fasted for 4 h, after which period a standard lunch
was served. No other food was allowed during the “in house”
period, but liquid consumption was permitted ad libitum 2 h after
tablet administration (with the exception of xanthine-containing
drinks, including tea, coffee, and cola). At 2 h before and 5 and
36 h after the dose administration, systolic and diastolic arterial
pressure (measured non-invasively with a sphygmomanometer),
heart rate, and temperature were recorded. The hospitalization
period was 84 h.

Blood samples (8 ml) from a suitable antecubital vein were
collected by indwelling catheter into EDTA-containing tubes at 0,
1.00, 1.50, 2.00, 2.50, 3.00, 3.33, 3.67, 4.00, 4.33, 4.67, 5.00, 5.50,
6.00, 8.0, 10.0, 12.0, 24.0, 48.0, and 72.0 h postdosing. The blood
samples were centrifuged at ∼2,000×g for 10 min at 4°C, and the
plasma was stored at −70°C until assayed.

LC-MS/MS Method Validation for Analysis
of Rosuvastatin Concentrations
Liquid Chromatography
Chromatographic separations were performed in an LC-20AD
analytical pump (Shimadzu) using a SIL-20A HT autosampler
(Shimadzu). A Luna 5-μm C18 100A 150 × 4.6 mm column
(Phenomenex) was employed as stationary phase, and
acetonitrile (B) and water with 0.1% formic acid (A) were
employed as mobile phase. The mobile phase flow rate
comprised of 65% of B was set at 1.7 ml min−1, resulting in a
total run of 2.8 min. Autosampler temperature was set at 22°C,
while the injection volume was 20 µl.

Mass Spectrometry
Mass spectrometry analyses were performed using a Quattro
Micro (Micromass) mass spectrometer equipped with an
electrospray ionization (ESI) source. Analyses were
performed in positive ionization mode using nitrogen as
desolvation gas. ESI source parameters were set as follows:
source temperature of 105°C, desolvation temperature of
480°C, desolvation flow of 800 l h−1, and capillary voltage of
3 kV. Rosuvastatin was detected by a multiple reaction
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monitoring (MRM) transition of 482.18 > 258.14 using a cone
voltage of 35 V, and diazepam was detected by a MRM
transition of 285.20 > 193.30 using a cone voltage of 30 V.
Data were acquired using MassLynx 4.1.

Preparation of Standards and Quality Controls
A stock solution of rosuvastatin was prepared by accurately
weighing and dissolving the standard in acetonitrile/water (80:
20 v/v) to a concentration of 100 μg ml−1. Then, the solution
was sequentially diluted to working solutions of 1, 0.152, and
0.0024 μg ml−1. IS diazepam was dissolved in acetonitrile/
water (80:20 v/v) to obtain a 100-μg ml−1 stock solution and
then diluted to obtain a 0.015-μg ml−1 working solution.
Method validation, calibration curve, and quality control
analysis were carried out using blank plasma calibration
standards including 0.2, 1, 5, 10, 20, 30, 40, and 50 ng ml−1

blanks and quality control (QC) of 0.6, 25.0, and 38 ng ml−1

samples prepared by spiking the above-described working
solutions of rosuvastatin and IS in a blank biological
matrix. Stock and working solutions were stored in a
refrigerator and allowed to equilibrate (30 min) at room
temperature before use.

Sample Extraction
Three hundred microliters of plasma were aliquoted into a
microcentrifuge tube. Then, 25 µl of IS solution were added
to the plasma. Next, 25 µl of HCl 1 M as well as 1,000 µl of a
diethyl ether/dichloromethane (70:30 v/v) were added to the
same tube. The content was shaken for 5 min and then
centrifuged for 10 min, at 132,000, at 4°C. After that, the
supernatant was transferred to another tube and dried
under nitrogen stream. An acetonitrile/water solution (80:
20 v/v) was used for resuspension of the dried content,
which was shaken and finally transferred to an insert before
injection.

Method Validation
The analytical method was validated for the following
parameters: specificity, carryover, matrix effect, calibration
curve, accuracy, precision, and stability.

Specificity was ascertained by analyzing blank human plasma
samples from six individuals and comparing the chromatograms
with chromatograms from blank human plasma spiked with
rosuvastatin in the lower limit of quantification (LLOQ)
concentration and IS.

Carryover was ascertained by analyzing three injections of the
same blank sample, one before and two after an injection of a
sample in the upper limit of quantification (ULOQ)
concentration. Results were compared with LLOQ
chromatograms.

Matrix effect was ascertained by spiking eight different
extracted blank human plasma samples with rosuvastatin at
QC concentrations and the IS. Peak areas of extracted spiked
samples were compared to those of standard solutions.

The calibration curve was prepared using six different blank
human plasma samples (three for weighting tests and three for
linearity tests) spiked with concentrations at eight levels ranging

from 0.2 to 50 ng ml−1. Analyte concentrations in samples were
calculated by linear regression equation, typically described by
equation y � ax + b where y corresponds to the analyte/IS peak-
area ratio and x corresponds to the ratio of rosuvastatin to IS
concentration. Due to the range of the calibration curve and lower
value of the sum of the relative errors of the nominal values of the
calibration versus its values obtained by the curve equation, the
weighting factor of reciprocal concentration squared (1/x2) was
applied.

Intra- and inter-batch accuracy and precision were evaluated
at three different levels (0.6, 25, and 38 ng ml−1) of QC samples in
quintuplicate in three different batches. The accuracy of the
method was expressed as relative error (RE), whereas precision
was obtained by calculating the within- and between-run
coefficient of variation (CV). The acceptance criteria for each
quality control were that CV must not exceed 15% for QC and
20% for LLOQ.

Freezing and thawing stabilities for rosuvastatin in human
plasma samples were ascertained after four cycles and the
analytical process conducted at low and high QC
concentrations. Samples were frozen at −70°C in four cycles of
12, 24, 36, and 48 h. Autosampler stability was investigated over a
24-h storage period in the autosampler tray with low and high
quality control concentrations. Long-term stability was also
evaluated over a 160-day storage period at −70°C. The
acceptance criteria for each quality control were that CV and
accuracy must not exceed 15%.

Determination of Rosuvastatin Concentrations in
Human Plasma Samples and Pharmacokinetic and
Statistical Analysis
The validated LC-MS/MS method was applied to measure
rosuvastatin concentrations to obtain additional
pharmacokinetic parameters.

Pharmacokinetic parameters were calculated from plasma
levels employing a non-compartmental statistic using WinNon-
Lin 8.3 software (Pharsight, United States). Following Food and
Drug Administration (FDA) guidelines, blood samples were
drawn up to a period of three to five times the terminal
elimination half-life (t1/2) and the mean AUC0–t/AUC0–∞
ratio was required to be higher than 80%. The area under the
concentration–time curve (AUC0–t) was calculated by the
trapezoidal method. The total area under the curve
(AUC0–∞) was obtained up to the last measurable
concentration, and extrapolations were performed using the
last measurable concentration and the terminal elimination rate
constant (Ke). The terminal elimination rate constant, Ke, was
estimated from the slope of the terminal log10 transformed
exponentially and multiplied by −2.303 phase of the plasma
of rosuvastatin concentration–time curve (by means of the
linear regression method) adjusted in the three last values.
The terminal elimination half-life, t1/2, was then obtained as
0.693/Ke. The Cmax and the time to reach maximum plasma
concentration (Tmax) values were determined by visual
inspection of the plasma rosuvastatin concentration–time
profiles. Results are presented as mean ± standard
deviation (SD).

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7529604

Silveira et al. Predicting Rosuvastatin Absorption Using Metabolomics

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


UPLC-QTOF-MSE-Based Untargeted
Metabolic Profiling for AUC and Cmax

Predictions
Liquid Chromatography
Chromatographic analyses were performed in an ACQUITY FTN
H Class (Waters) liquid chromatograph. Separations were carried
out using an ACQUITY CSH C18 column (Waters) with
dimensions 2.1 × 100 mm × 1.7 µm as stationary phase using
acetonitrile (B) and water with 0.1% formic acid (A) as mobile
phase. Flow rate was set at 0.4 ml min−1. Segmented gradient was
applied as follows: 0–2 min, 10% of B; 7 min, 90% of B kept for
2 min; and 9–11min returning to initial conditions and kept for
2 min for column re-equilibration resulting in a 13-min run.
Autosampler temperature was set at 20°C, whereas the injection
volume was 0.5 µl for positive mode and 5 µl for negative mode.

Mass Spectrometry
High-resolution mass spectrometry analyses were performed using
a XEVO-G2XSQTOF (Waters) equipped with an ESI source.
Analyses were performed in both positive and negative ionization
mode using nitrogen as the desolvation gas. ESI source parameters
were set as follows: source temperature of 140°C, desolvation
temperature of 550°C, desolvation flow of 900 l h−1, capillary
voltage of 3 kV, sampling cone of 30 kV, and cone gas flow of
10 l h−1 for positive mode and capillary voltage of 2.5 kV, sampling
cone of 40 kV, cone gas flow of 50 l h−1 for negative mode.

Spectra were acquired within an acquisition mass range of
50–1,700 Da using a data-independent MSE approach. MSE

fragmentation settings were applied using 6 V of collision
energy for low-energy scan and a 15–30-V ramp for high-
energy scan. Leucine encephalin (Tyr-Gly-Gly-Phe-Leu,
formula C28H37N5O7, molecular weight � 555.2693 g mol−1 at
200 pg μl−1 in acetonitrile/water 1:1 v/v) was used as lockmass
to ensure exact mass measurements during data acquisitions. A
0.5-mM sodium formate solution was used for instrument
calibration. MassLynx 4.1 was used for mass spectrometer
control and data acquisition management. Samples were
randomly analyzed. Pooled quality control samples were
analyzed at the beginning of the batch in order to equilibrate
the system as well as sample injections at regular intervals during
the batch to monitor instrumental drifts that may occur.
Additionally, at the end of the batch, serially diluted QC
samples were analyzed in order to verify features that follow
dilution trends and filtered.

Sample Extraction
A 50-µl aliquot of each sample was taken, and 100 µl of methanol
containing the IS p-bromo-phenylalanine (200 µM) were added,
both in the same centrifuge tube. Then, samples were shaken for
10 min for protein precipitation and centrifuged at 14,000 rpm
for 1 min at 8°C. Finally, 100 µl of supernatant was transferred to
a vial for instrumental analysis. Samples were randomly prepared.
A pooled QC sample was prepared by mixing equal small aliquots
of each study sample, distributed equally in regular intervals
across the sample preparation batch, and extracted as such. In
addition, five-level serially diluted QC samples were prepared.

Data Processing, Statistical Analysis, and Metabolite
Identification
Raw data acquired by UPLC-QTOF-MSE were directly imported
to Progenesis QI (Nonlinear Dynamics) for peak detection and
deconvolution, alignment, retention time correction, data
filtering, and MSE-based ion annotation and identification to
generate a suitable data matrix table for statistical analysis. For the
feature-identification step, MassBank of North America
(MoNA)-containing metabolomics libraries such as HMDB,
LipidMaps, LipidBlast, and MassBank were used.

QC sample acquisition allowed for quality data checking and
cleaning, and molecular features that showed relative standard
deviation (RSD) > 25% after data cleaning and normalization
were stripped out from the multivariate data modeling.

Machine learning modeling was performed by means of
Elastic Net (sklearn.linear_model.ElasticNet), with the linear
regression with combined L1 and L2 penalty priors as a
regularizer, which penalizes models based on their complexity
favoring simpler and more generalizing models. This algorithm
was applied as estimator for AUC and Cmax predictions using
Python 3.7.10 with scikit-learn (Pedregosa et al., 2012) version
0.22.2. Other Python programing standard packages for data
manipulation, such as Pandas (McKinney, 2010) and Numpy
(Kristensen and Vinter, 2010), and data visualization, such as
Matplotlib (Hunter, 2007), Seaborn (Waskom, 2021) and ScyPy
(Virtanen et al., 2020), were also employed.

Results were mainly assessed in terms of explained variance R2

(sklearn.metrics.explained_variance_score), main absolute
percentage error (MAPE) (sklearn.metrics.mean_absolute_
percentage_error), and root mean squared error (RMSE)
(sklearn.metrics.mean_squared_error, squared � False). For
overfitting, checking, and model validation, the same metrics
were employed obtained by leave-one-out cross-validation
(LOOCv) predicted data for each validation sample
[sklearn.model_selection.cross_val_predict, cv � LeaveOneOut()].
Models were refined based on selection of features with non-zero
coefficients where, among all initially selected features, different
number of features starting from themost significant, and by steps of
one, each feature was evaluated so that in the end all significant
features were evaluated. For each iteration, the corresponding quality
metrics were collected for further evaluation. The optimal numbers
of significant features were further used in the process of model
hyperparameter tuning (sklearn.model_selection.GridSearchCV).
The code is available in the following Github repository: https://
github.com/GustavoHBDuarte/Metabolomics_PK_proj.

RESULTS

LC-MS/MS Method Validation
Specificity
Specificity assessment results show that the developed method for
the analysis of rosuvastatin using the selected mass transitions for
MRM function was selective enough for quantitative purposes,
with no apparent interferences either from endogenous
compounds or from matrix effects around the analyte and IS
retention times. Figure 1 portrays the chromatograms obtained
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from blank plasma samples and blank plasma samples spiked
with rosuvastatin (0.2 ng ml−1) and IS.

Carryover
To evaluate the presence of carryover effects, three injections
of blank samples were analyzed, one before and two after
ULOQ. No signal of analyte was detected in any of the blank
injections.

Matrix Effect
For matrix effect evaluation, the mean values obtained for QCs
and IS were 108.4% (SD � 10.9%) and 104.4% (SD � 8.6%),
respectively, demonstrating that no apparent matrix effect
affects the rosuvastatin determination in human plasma
samples employing the developed method.

Calibration Curve and LLOQ
The calibration curves were plotted as the peak area
(rosuvastatin/IS)/drug concentration ratio. Linearity was
achieved over the concentration range of 0.2–50 ng ml−1 with
the correlation coefficient (R2) greater than 0.99 for all the curves.
The RE of the mean concentrationmeasured ranged from −6.17%
to 9.50%, and the RSD ranged from 3.02% to 14.46%. Table 1
portrays the overall results for linearity evaluation.

Accuracy and Precision
Accuracy and precision were calculated in terms of intra- and
inter-batch variation at QC levels, and the corresponding results
are shown in Table 2. Intra- and inter-batch precision (RSD)
ranged from 5.87 to 14.16 and 5.84 to 10.59, respectively, whereas
intra- and inter-batch accuracy ranged from −0.31% to 5.83% and

−3.04% to 1.88%, respectively, indicating that the method is
reliable and reproducible within its analytical range.

Stability
The four-cycle freezing and thawing stability (−70°C to room
temperature) evaluations have shown that the analyte is stable
in human plasma at QC levels for all cycles. Additionally, no
analyte degradation was detected in an autosampler tray
stability assessment over a 24-h storage period, with the
measured analyte values ranging from 83.17% to 111.58%
of their corresponding nominal values. Moreover, for long-
term evaluation, results have shown that rosuvastatin was
stable over a 160-day storage period at −70°C, with measured
analyte values ranging from 90.42% to 97.17% of the nominal
values.

Application in a Pharmacokinetic Study and Statistical
Evaluation of Pharmacokinetic Parameters
The validated analytical method was then applied to measure
rosuvastatin concentration in healthy volunteers in order to
obtain the main pharmacokinetic parameters. This study was
conducted with 40 volunteers after a single oral dose (20 mg)
of the drug. Figure 2 portrays the typical plasma
concentration versus time profiles. Plasmatic
concentrations of rosuvastatin ranged within the standard
curve and remained above the LLOQ of 0.2 ng ml−1 for the
entire sampling period.

The observed AUC value from time 0 to the last sampling time
(AUC0–t) was 154.13 ± 63.06 ng h/ml, whereas the AUC from 0 to
∞ (AUC0–∞) was 162.85 ± 64.96 ng h/ml. The elimination half-
life (t1/2) was 15.10 ± 7.91 h.

FIGURE 1 | Representative multiple reaction monitoring (MRM) chromatograms of rosuvastatin in human plasma: (A) rosuvastatin and (B) diazepam blank human
plasma; (C) rosuvastatin and (D) diazepam-spiked human plasma containing 0.2 ng ml−1 rosuvastatin and internal standard.
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The observed Cmax was 19.53 ± 8.64 ng ml−1, whereas the Tmax

was 4.18 ± 0.72 h. Moreover, the AUC0–t/AUC0–∞ mean ratio
was higher than 80%.

UPLC-QTOF-MSE-Based Untargeted
Profiling for AUC andCmax Predictions From
Predose Endogenous Plasma Metabolites
After the successful application of the validated method, the main
pharmacokinetic parameters such as AUC and Cmax were
obtained for the rosuvastatin formulation administered to the
study volunteers. As result, despite all the controlling for
physiological and environmental conditions, it was possible to
note a seven-fold difference between the lowest and the highest
AUC values as well as an eight-fold difference between the lowest
and the highest Cmax values. The extent of inter-individual
variation can be clearly seen in Figure 2. Thereafter, plasma

predose endogenous metabolite profiling was acquired using
liquid chromatography-high-resolution mass spectrometry.
Typical ESI (+) and ESI (−) chromatograms for QC samples
of the applied method for metabolite profiling are displayed in
Supplementary Figure 1.

The corresponding acquired data was assessed to investigate
the presence of metabolites that can be helpful as predictors of
individual AUC and Cmax variation. To do so, an Elastic Net
linear regression machine learning model was built using
acquired data from predose endogenous metabolite profiling as
independent X variables and the pharmacokinetic parameters as
dependent Y variables. Initially, four different models were built
corresponding to the two different ionization modes employed to
acquire data [ESI (+) and ESI (−)], each of them was used to
predict their corresponding pharmacokinetic parameters (AUC
or Cmax) using all detected molecular features to both evaluate the
performance of the corresponding models and screen for the best

TABLE 1 | Calibration curves from one batch of the validation section.

Nominal
concentration (ng ml−1)

Mean concentration (ng ml−1) RSD (%) (n = 3) RE (%)

0.2 0.188 10.94 −6.17
1 0.921 6.66 −7.87
5 4.698 3.79 −6.05
10 10.623 14.46 6.23
20 19.950 3.02 −0.25
30 28.805 6.36 −3.98
40 40.173 6.19 0.43
50 54.749 4.02 9.50

TABLE 2 | Precision and accuracy (analysis, spiking plasma samples at three different concentrations).

Nominal
concentration
(ng ml−1)

Intra-batch Inter-batch

Mean concentration
measured
(ng ml−1)

SD RSD
(%) (n = 5)

Relative
error (%)

Mean concentration
measured
(ng ml−1)

SD RSD
(%) (n = 5)

Relative
error (%)

0.6 0.64 0.09 14.16 5.83 0.61 0.06 10.59 1.26
25 24.92 1.18 4.74 −0.31 24.24 1.42 5.84 −3.04
38 37.57 2.21 5.87 −1.13 38.72 2.76 7.12 1.88

FIGURE 2 | Plasma concentration–time curves of rosuvastatin reference formulation administered to 40 volunteers.
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features. Raw data processing, cleaning, and filtering of ESI (+)
data resulted in 2,609 molecular features available for machine
learning modeling, whereas 2,446 molecular features remained
available after processing and filtering ESI (−) data.

Initial evaluation pointed to poor performance of models
using all molecular features available for all models assessed,
in part probably due to the large dimensional data space typically
obtained by metabolite profiling experiments and the unbalanced
tradeoff between the number of variables and the available
number of samples. Thus, in order to improve model
performance as well as to screen for helpful predictors, the
most promising molecular features in the initial evaluation
were selected to build further refined models, decreasing the
number of variables and making data simpler and easier for
Elastic Net to perform regression and data interpretation.
Variables were selected on the basis of their corresponding
model coefficients, excluding variables with zero coefficient
values. Additionally, after initial variable selection by
coefficient values, the model performances using the selected
variables were evaluated by increasing the number of significant
features starting from the most significant feature and adding
more features, increasing by steps of one towards the least
significant selected feature. Information about model metrics
from each iteration was collected for both the training set and
the LOOCv testing set in order to select the optimal number of
significant features. Metrics resulting from the LOOCv testing set
were prioritized for this selection. After this step, 69 and 27
molecular features remained for AUC and Cmax models for ESI
(+) datasets, respectively, whereas 49 and 17 molecular features
remained for AUC and Cmax models for ESI (−) datasets,
respectively. It is important to mention that LOOCv was
chosen as the cross-validation method due to its accurate,
reliable, robust, and unbiased estimate of model performance
and due to the reduced number of samples available for both
model training and testing. Before running the algorithm itself for
these models, data were initially normalized by the area of the
internal standard in order to minimize the effect of any eventual
poor injection that may have occurred. Then, using
MetaboAnalyst 5.0 (Pang et al., 2021), data were also
normalized using the option “Normalization by a pooled
sample from group,” the group QC was selected, and data
were cubic root transformed. Finally, data were scaled using
the robust scaler method (sklearn.preprocessing.RobustScaler).

The next step of model refinement was to adjust algorithm
hyperparameters. These parameters are applied to configure
either the characteristics of the learning procedure or the
structure of the underlying model. For that purpose, the
exhaustive grid search method was employed. This method
exhaustively generates candidates from previously specified
parameter values. Then, after selecting a dataset for fitting, all
combinations of parameter values are evaluated and the
corresponding best combination is retained. The set of
parameters and their corresponding ranges of values chosen
for evaluation resulted in 4,800 experiments for each model
after the tuning had been selected. The final optimized values
for each dataset are shown on Supplementary Table S1 in the
Supplementary Material data file.

Alternatively, we also built an Elastic Net model to predict
AUC and Cmax values for rosuvastatin using volunteers’ clinical
features (the results from the set of laboratory tests) as X variables
in order to further compare their performance with the
corresponding model using metabolomics data as predictors
and evaluate the best predictors of pharmacokinetic
parameters. Finally, an integrated model using both volunteers’
clinical features and metabolomics data was also built and
evaluated. The 44 applied volunteers’ clinical features are listed
in the Supplementary Table 1.

AUC Predictions
The refined Elastic Net model was then applied to predict AUC
values of study volunteers from predose endogenous metabolite
profiling acquisition. Figure 3 portrays the predicted-against-
experimental AUC values for ESI (+) and ESI (−) data where
both training and LOOCv testing datasets are evaluated
simultaneously. Ideally, in a good prediction model, all the
samples should fall as close as possible to the regression line.
The R2 coefficient scales the extension of variance in AUC values
that can be explained by the model. For ESI (+) data, R2 achieved
1.00, whereas for ESI (−) data, R2 achieved 0.98 for the training set.
Although trainingR2 results were close to 1.0, it is crucial to consider
the results of the LOOCv external set in order to evaluate themodel’s
ability to predict unseen data so that it can be properly validated. The
LOOCv R2 Cv was 0.93 for ESI (+) and 0.86 for ESI (−). The
closeness between training and Cv for R2 indicates both models’
good ability to predict AUC values for external sets of samples.

Furthermore, root mean square error of cross-validations
(RMSE Cv) and mean absolute percentage error of cross-
validations (MAPE Cv) were also calculated. These parameters
specify error measurements for fitted model observations. For ESI
(+), RMSE Cv reached 19.03 ng h/ml and MAPE Cv reached
10.12%, while for ESI (−), RMSE Cv reached 27.92 ng h/ml and
MAPE reached Cv 14.28%.

From predicted and true AUC values, it is possible to obtain a
residual plot. In the dispersion diagram, it is possible to note both
training and LOOCv testing set samples similarly distributed
around the ordinal least squares (OLS) R2 regression line.
Moreover, samples with higher AUC values had higher
residuals. Considering that the frequency of observations with
higher AUC values was substantially lower than the frequency of
observations with lower AUC values, the selected machine
learning algorithm possibly turned out to be trained differently
across this AUC range, and apparently, this difference reflected
on the calculated residuals. The OLS R2 regression line value for
LOOCv residuals was 0.25 for ESI (+), meaning that 25% of the
variation in AUC-predicted values is explained by variation in
residuals shown in the dispersion diagram, whereas for ESI (−),
the OLS R2 achieved 0.19. Furthermore, shared Y-axis reveals
higher residuals for the ESI (−) model compared to the ESI (+)
model. Figure 4 portrays the residual evaluation in the form of a
dispersion diagram.

Similarly, the information provided by residuals was used to
generate both histograms and probability plots to evaluate the
distribution of frequencies for residuals and obtain a more in-
depth visualization. Figure 5 portrays the results. A histogram
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inspection suggests residuals around zero as being the most
frequent values for both the ESI (+) and ESI (−) models,
whereas the probability plot reveals that, although not falling
straight to the normality Gaussian fit line, the distribution of
residuals against theoretical quantiles follows a similar trend for
both ESI (+) and ESI (−), showing the consistency of the
obtained data.

Regarding machine learning modeling, applying exclusively
clinical features, unlike the performance of Elastic Net model
using metabolomics data as predictors, it was not possible to

achieve similar results using volunteers’ clinical features as
pharmacokinetic parameter predictors for AUC. RMSE Cv
reached 63.92 ng h/ml, whereas MAPE Cv reached 33.00%.
The LOOCv R2 coefficient was 0.24. Predicted AUC values
from the ESI (+), ESI (−), and volunteers’ clinical feature
modeling were also compared to each other from the
perspective of the frequencies of their corresponding predicted
values. Figure 6 demonstrates a clear representation of the
extension of the lesser predictability of the clinical feature
model compared to the ESI (+) and ESI (−) models by using

FIGURE 4 | Residual plots of ESI (+) (A) and ESI (−) (B) area under curve (AUC) models for both training (black dots) and leave-one-out cross-validation (LOOCv)
testing samples (gray dots) as a dispersion diagram.

FIGURE 3 | Area under curve (AUC) predictions for ESI (+) (A) and ESI (−) (B) datasets comparing training samples (black dots) with leave-one-out cross-validation
(LOOCv) testing samples (gray dots). X-axis represents model-predicted values and Y-axis the true values.
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frequency plots. Results demonstrate that the clinical featuremodel
generates an evidently higher difference in the distance of both
training and LOOCv testing frequencies of predicted values from
true values compared to the same measure of both the ESI (+) and
ESI (−) models, showing its considerably lower predictive ability
compared to information provided by metabolomics.

The final evaluation of AUC modeling included an integrated
model applying both metabolomics [ESI (+) and ESI (−)] and
clinical features. The information provided by the combination of
both sources did not substantially improve the performance of
predictions for ESI (+). Instead, for ESI (−), a slight decrease was
observed in the quality metrics of the model. LOOCv R2 reached

FIGURE 5 | A histogram of residuals (left panels) of ESI (+) (A) and ESI (−) (B) data and probability plot of residuals (right panels) of ESI (+) (C) and ESI (−) (D) data for
area under curve (AUC) predictions.

FIGURE 6 | Distribution plots showing the frequency of area under curve (AUC) values of true (orange), training set (black) predicted, and leave-one-out cross-
validation (LOOCv) testing (gray) predicted from ESI (+) (A), ESI (−) (B), and clinical features (C) models.
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0.94 and RMSE Cv and MAPE Cv reached 18.32 ng h/ml and
10.21%, respectively, for ESI (+), whereas LOOCv R2 reached 0.85
and RMSE Cv and MAPE Cv reached 28.21 ng h/ml and 14.39%,
respectively, for ESI (−).

Cmax Predictions
Refined ESI (+) and ESI (−) datasets were also employed to
predict Cmax values of the same study volunteers from predose
endogenous metabolite profiling experiments, and their
corresponding performance was assessed using the same
metrics used for AUC predictions. The same trend observed
for AUC predictions, whereby the ESI (+) model performed
better than the ESI (−) model, was also observed for Cmax

models. Figure 7 portrays predicted-against-experimental Cmax

values for ESI (+) and ESI (−) for each observation. For ESI (+),
training R2 achieved 0.99 and LOOCv testing R2 was 0.94,
whereas for ESI (−), training R2 achieved 0.9 and LOOCv
testing R2 achieved 0.79. RMSE Cv and MAPE Cv for ESI (+)
were 2.54 ng ml−1 and 11.56%, respectively, whereas ESI (−)
RMSE Cv and MAPE Cv were 4.55 ng ml−1 and 23.24%,
respectively.

Figure 8 displays the residual analysis forCmax predictions as a
dispersion diagram. The same trend seen for AUC predictions is
also seen for Cmax predictions in the corresponding plot where
residuals for the ESI (−) model were higher compared to the ESI
(+) ones. Although it can be observed that unlike the AUC
predictions, there was a sample with a higher residual value
[close to −10 in the ESI (−) model]. The sample in question was
not the sample with the highest Cmax value. For ESI (+), the
samples with higher residuals were not necessarily the samples
with higher Cmax values either. The observations with higher Cmax

values were also less frequent than with the AUC model. The fact
that, for the Cmax model, the range of numerical values to predict
is lower and samples are closer to each other could allow the Cmax

model to train better than the AUC model for predicting the
numerical value of samples and spreading the residuals more
evenly throughout the samples. Besides, the OLS R2 regression
line value for LOOCv residuals shown in the dispersion diagram
was 0.02 for ESI (+) and 0.01 for ESI (−). Furthermore, for the
distribution analysis of residuals, shown in Figure 9, the residuals
with values close to zero were mainly the most frequent values.
The shared X-axis of histograms also allowed for the visualization
of the lesser spreading of residuals of the ESI (+) model compared
to the ESI (−). Similarly, the shared X-axis of the probability plots
shows, as in the AUC models, the similar distribution of data
regarding residuals against theoretical quantiles, regardless of
ionization mode, confirming the consistency of obtained data as
the data points apparently seem to fall closer to the Gaussian
regression line compared to the AUC model and, therefore, a
more normal-like distribution of residuals around zero.

Regarding Cmax predictions using volunteer’s clinical features,
a similar trend observed for AUC models was also seen for Cmax

modeling with poorer prediction ability when comparing to the
model applying only metabolomics data. The LOOCv R2

coefficient reached 0.08, whereas RMSE Cv and MAPE Cv
reached 9.77 ng ml−1 and 34.77%, respectively, showing
substantially lower correspondence between clinical features
and Cmax values. Figure 10 shows a similar trend for AUC
predictions using volunteer’s clinical features, where
predictions for both training and LOOCv testing demonstrated
a considerably lower ability to predict pharmacokinetic values
with a clear distortion in the frequencies of predictions for both

FIGURE 7 |Maximum plasma drug concentration (Cmax) predictions for ESI (+) (A) and ESI (−) (B) datasets comparing training samples (black dots) with leave-one-
out cross-validation (LOOCv) testing samples (gray dots). X-axis represents model-predicted values and Y-axis the true values.
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FIGURE 8 | Residual plots of ESI (+) (A) and ESI (−) (B)maximum plasma drug concentration (Cmax) models for both training (black dots) with leave-one-out cross-
validation (LOOCv) testing samples (gray dots) as dispersion diagrams.

FIGURE 9 | A histogram of residuals (left panels) of ESI (+) (A) and ESI (−) (B) data and probability plot of residuals (right panels) of ESI (+) (C) and ESI (−) (D) data for
maximum plasma drug concentration (Cmax) predictions.
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training and LOOCv testing models. A more detailed
visualization in the distribution plot of predictions for the
Cmax ESI (+) model reveals a closer overlapping between the
frequencies of training and LOOCv testing predictions compared
to the frequencies of the Cmax ESI (−) and even closer if compared
to the AUC ESI (+) and AUC ESI (−) training and LOOCv
predictions. Though there is no apparent overfitting for any of
these models, this described observation is consistent with the
lower distance between R2 and LOOCv R2 for the Cmax ESI (+)
model compared to the same measurement of the Cmax ESI (−),
AUC ESI (+), and AUC ESI (−) models.

In addition, regarding the integrated model, the same behavior
observed for AUC predictions was observed for Cmax predictions
with the application of both clinical and metabolomic information
in the same dataset not providing significant improvements over
the model using only metabolomic information. Supplementary
Table S2 in the Supplementary Material data file provides an
overall visualization of the performance metrics for all the
evaluations carried out in this work.

DISCUSSION

The metabolomic approach used in this work was based on the
hypothesis that the metabolic profile of plasma may contain
molecular information useful for predicting the
pharmacokinetic response of a drug even if no genetic
information is known at first. Thus, we used the plasma
predose endogenous metabolite profiling of volunteers in
predose, acquired from the UPLC-QTOF-MSE platform, to
build the Elastic Net linear regression machine learning model
for prediction of the pharmacokinetic parameters of AUC and

Cmax. Although profiles were acquired in both ESI (−) and ESI (+)
acquisition modes, the latter was the one that provided the best
models according to MAPE and RMSE errors. Likewise, it is
important to add that, in isolation, no single metabolite was able
to present a good correlation with Cmax and AUC values, only
when they were evaluated together.

From these models, we were able to prepare a list (Table 3) of
16 compounds most relevant for the prediction of the
pharmacokinetic values and for which it was possible to
suggest at least one chemical identity. Identification
suggestions were made automatically by the Progenesis QI
software based on parameters such as the following: mass
error, that is, the difference, in parts per million (ppm),
between the measured molecular mass and the theoretical
mass for the proposed molecular formula; isotopic similarity
between the experimental and theoretical spectra; and the
match between fragments of theoretical compared to
experimental masses (Mecatti et al., 2020). The table also
includes the codes (identifiers) that link the suggested identities
to public databases of metabolites and the coefficients of these
features in the prediction models (see Supplementary Tables 2
and 3 for a complete list of molecular features that contributed to
the prediction models and their respective coefficients). A pathway
analysis diagram was built with the MetaboAnalyst 5.0 free
platform (Supplementary Figure S2 in the Supplementary
Material data file).

Metabolites were grouped into four groups: steroids and bile
acids, carboxylates, lipids, and salts. The key factors to
understand the potential role of these metabolites for the
prediction of rosuvastatin pharmacokinetic parameters rely on
their potential role in the transport mechanism of this substance.
The pharmacokinetic parameter of Cmax is related to the

FIGURE 10 | Distribution plots showing the frequency of maximum plasma drug concentration (Cmax) values of true (orange), training set (black) predicted, and
leave-one-out cross-validation (LOOCv) testing (gray) predicted from ESI (+) (A), ESI (−) (B), and clinical features (C) models.
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variability in gastrointestinal transport. AUC, in turn, reflects the
variability in the extent of absorption and elimination and may
thus involve hepatic clearance. These processes involve the
participation of transporters, which has been implicated as one
of the factors responsible for the variation in the absorption,
distribution, metabolism, and excretion (ADME) of several drugs
(Soars et al., 2009; Harwood et al., 2013). Interactions between
these transporters and circulating metabolites may underlie how
this predose metabolic information can influence the
pharmacokinetic parameters of rosuvastatin (Luvai et al., 2012).

Rosuvastatin, among other statins, is transported by the
OATP1B1, an influx transporter expressed in the basolateral
membrane of human hepatocytes and encoded by the
SLCO1B1 gene (Hua et al., 2012). The relationship between
this transporter and the pharmacokinetics of statins is so
relevant that it has been established that SLCO1B1 is one of
the risk predictors of myopathy caused by statins (Kisor et al.,
2019). Specifically for rosuvastatin, several studies show that
SLCO1B1 c.521CC, a single-nucleotide polymorphism capable

of decreasing the transporter activity, causes an increase in
plasma concentrations of rosuvastatin (Pasanen et al., 2007;
Choi et al., 2008; Lee et al., 2013; Birmingham et al., 2015a;
Birmingham et al., 2015b; Wan et al., 2015; Liu et al., 2016; Kim
et al., 2019). This transporter also acts on many other substrates,
including bile salts, hormones, and steroid conjugates (Ho and
Kim, 2005; DeGorter et al., 2012). Genetic variants of SLCO1B1,
including c.521CC, are associated with an increase in plasma
concentrations of bile acids (Xiang et al., 2009).

Given these data, it has been suggested that competitive
interactions with this transporter may contribute to a decrease
in the hepatic absorption of statins, impacting the
pharmacokinetic parameters of these drugs. It has been
reported that intravenous administration of rifampicin, an
inhibitor of the hepatic transporter OATP1B1, substantially
increased the plasma concentrations of atorvastatin and its
metabolites (Lau et al., 2007). The same can occur with respect
to circulating endogenous metabolites. It has been described that
pretreatment concentrations of some primary and secondary bile

TABLE 3 | Most relevant and putatively identified metabolites selected by the Elastic Net regression model for pharmacokinetic parameters prediction.

Feature codea

(RT_m/z)
IMb Molecular

formula
Putative assignment Mass

error (ppm)
Diagnostic

fragments (m/z)c
Identifiersd Coefficiente

(AUC/Cmax)

Sterols and bile acids
8.31_329.2476 m/z − C22H36O3 Dinorlithocholic acid −3.02 319.264 LMST04050010 1.1/0.1*
6.45_403.2840 m/z − C25H42O5 Homoavicholic acid −3.32 277.217 LMST04070041 1.6/0.1*
7.36_452.3121 m/z + C8H11N3O3 1α-hydroxy-21-nor-20-

oxavitamin D3
+3.92 131.049

110.041
107.050
79.039

LMST03020026 1.1/0.0*

6.45_447.2739 m/z − C25H38O4 3-oxochenodeoxycholic acid −3.27 403.285
227.217

HMDB0000541 2.1/0.1*

Carboxylated metabolites
0.33_180.0628 n − C6H12O6 Fuconic acid −3.51 225.062

179.0561
161.046

LMFA01050532 −2.3/−0.9*

4.31_439.1598 m/z − C8H11N3O3 N-acetylhistidine +3.92 NA C02997 −2.0/−07*
0.36_217.0297 m/z − C7H12N2O5S Cysteinyl aspartate +3.41 167.021

166.015
HMDB0028771 −2.0/−0.3*

0.38_97.0286 m/z + C5H8O4 Glutaric acid −3.73 85.029 C00489 −0.8/−0.1*
Lipids
6.60_796.4764 m/z − C42H72NO11P OxPS 36:5+1O −0.76 255.232 LipidBlast458932 1.3/0.1*
6.20_446.2288 m/z − C19H40NO7P LysoPE(14:0) −0.18 415.211

413.915
245.990

HMDB0011470 1.7/0.0*

0.58_1191.1731m/z − C80H155NO5 Cer-EODS d80:2/Cer-EOS
d80:2

+0.31 – LipidBlast197294 −1.7/−0.3*

10.22_529.4246m/z − C34H60O5 DG(31:3) −3.03 293.212
271.228

LMGL02010362 1.2/0.2*

0.31_830.7578 m/z − C52H99NO3 Cer-NS d52:3d −3.63 NA LipidBlast013435 −1.3/−0.4
6.86_1547.9838m/z − C38H73NO11S 3-O-Sulfogalactosylceramide

(32:1)
+3.18 266.233 C06125 1.6/0.0*

3.26_916.5829 m/z + C51H81O8P PA 40:8 −0.31 NA LipidBlast460837 4.3/0.7*

aRT, retention time; m/z, mass-to-charge ratio.
bIM, ionization mode.
cFragments that are matching between experimental data and database.
dIdentifiers: LMXX, metabolites described in the LipidMaps (https://www.lipidmaps.org/data/structure/); HMDBXXXXXXX, metabolites described in the Human Metabolome Database
(HMDB—https://hmdb.ca/); CXXXXX, described in the Kyoto Encyclopedia of Genes and Genomes database (KEGG—https://www.genome.jp/kegg/); and LipidBlastXXXXX, described
in the MassBank of North America (MoNA—https://mona.fiehnlab.ucdavis.edu/).
eCoefficients in the refined AUC and Cmax models (in that order). Coefficients highlighted with an asterisk (*) corresponds to initial model.
NA, not applicable. All listed compounds met Metabolomics Standards Initiative (MSI) level 2 identification requirements, except for b, d, i, and m, which met level 3 requirements
(Schrimpe-Rutledge et al., 2016).
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acids were correlated with the response to simvastatin treatment
(Krauss et al., 2013), suggesting a direct relationship between the
presence of these basal metabolites and the drug’s bioavailability.
Similarly, cholesteryl ester predose levels were well correlated with
the simvastatin response (Kaddurah-Daouk et al., 2010; Krauss
et al., 2013). It was also demonstrated that free cholesterol was
among the metabolites detected in the predose of individuals to
whom a single dose of atorvastatin was administered, and there was
a correlation between Cmax and AUC and the basal levels of this
metabolite (Huang et al., 2015). Aligned with these reports, the bile
acids dinorlithocholic, homoavicholic, and 3-
oxochenodeoxycholic acids and the steroidal lipid 1β-hydroxy-
21-nor-20-oxavitamin D3 are among the listed metabolites that
most contributed to the prediction of pharmacokinetic parameters,
especially AUC. We observed that the positive values of the
coefficients in the model’s features point to a direct association,
that is, the higher the plasma levels of those metabolites, the greater
the competition for OATP1B1 transporters, the lower the liver
transport, and the slower the hepatic abortion of rosuvastatin. It is
important to mention that, as specified before, other transporters
influence the ADME of rosuvastatin, in particular, ABCG2, which
may present polymorphisms that can be of special relevance for
some populations (Lee et al., 2013). However, predose metabolites
that could potentially influence these transporters were not
accessed in this study.

The pharmacophoric group of statins is the 3,5-
dihydroxypentanoic acid monocarboxylated nucleus (Figure 11).
Whether in the closed configuration of lovastatin and simvastatin or
in the open configuration of atorvastatin and rosuvastatin, when this

group is anchored in the enzyme HMGR (Istvan and Deisenhofer,
2001), they become unavailable for binding with HMG-CoA, which
blocks a key step in cholesterol biosynthesis. Additionally, the
transport of monocarboxylate compounds in the gastrointestinal
tract has been demonstrated to be catalyzed by the proton-linked
monocarboxylate 10 transporters (MCT 10). Previous studies have
shown that atorvastatin is transported by monocarboxylate
transporters (MCTs) (Wu et al., 2000; Goto et al., 2005). Thus,
anMCT-mediated inhibition of intestinal absorption of rosuvastatin
can substantially decrease the bioavailability of the drug. The
negative values of the coefficients of the monocarboxylic
compounds fuconic acid, n-acetylhistidine, cysteinyl aspartate,
and glutaric acid in Table 3, the latter three notable amino acids,
demonstrate the negative correlation between these metabolites and
the pharmacokinetic parameters of rosuvastatin. The potential
effects that these metabolites exert on rosuvastatin
pharmacokinetics may occur through competitive interactions
with MCT intestinal transporters. In agreement with our
observations, it has previously been shown that lower levels of
the monocarboxylated amino acids 2-hydroxybutyric acid,
tryptophan, tyrosine, phenylalanine, leucine, isoleucine, and
others were correlated with higher values of Cmax and AUC
(Huang et al., 2015). Likewise, lower baseline levels of 2-
hydroxyvaleric, succinic, and stearic acids demonstrated a
significant correlation with the decrease in low-density cholesterol
caused by simvastatin (Trupp et al., 2012).

Regarding the lipids described in Table 3, we highlight
lysophosphatidylethanolamine (14:0), which is consistent with the
observation that the basal concentration of phosphoethanolamines
was positively related to the response to treatment with simvastatin.
Likewise, diacylglycerols, such as DG(31:3), demonstrated a strong
correlation, both positive and negative, with the response to
simvastatin (Kaddurah-Daouk et al., 2010).

In light of the results herein presented, the designed
experiment has demonstrated the potential of the applied
strategy in finding associations between endogenous
metabolites and pharmacokinetic parameters useful in
predicting inter-individual variability in drug absorption,
hopefully assisting in driving personalized drug therapy
strategies, with the aim of reducing adverse effects and
maximizing efficacy. In fact, since the anticholesterolemic
activity of statins fundamentally occurs in the liver, the
systemic presence of these molecules is potentially more
correlated with the myotoxic effects of this class of drugs than
with therapeutic ones. Thus, an individual predose prediction of
plasma Cmax and AUC values would find relevant clinical
application in potentially predicting which individuals would
be more susceptible to presenting undesirable side effects.
Data acquisition and processing strategies were able to reveal
valuable information initially hidden in the huge amount of data
typically provided by untargeted metabolomics experiments.
Complementally, the rich set of findings of the refined
approach also include some putatively identified main key
metabolites belonging to classes that play important roles in
plasmatic concentrations of rosuvastatin and could potentially
be associated with inter-individual variability in drug response.
The overall results achieved in this work clearly indicate the

FIGURE 11 | Pharmacophore group of statins. The 3,5-
dihydroxypentanoic acid is the common core among all statins and is
responsible for inhibiting the enzyme 3-hydroxy-3-methylglutaryl–coenzyme A
reductase (HMGR). These monocarboxylated portions (highlighted in
red) mimic the anchorage site of 3-hydroxy-3-methylglutaryl-coenzyme A
(HMG-CoA) in the reductase enzyme, during the reductive deacylation step in
cholesterol synthesis.
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valuable information carried by endogenous metabolites and the
vast research that can be explored in this field.
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