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Chemotherapy is the most common clinical treatment for non-small cell lung cancer
(NSCLC), but low efficiency and high toxicity of current chemotherapy drugs limit their
clinical application. Therefore, it is urgent to develop hypotoxic and efficient chemotherapy
drugs. Theophylline, a natural compound, is safe and easy to get, and it can be used as a
modified scaffold structure and hold huge potential for developing safe and efficient
antitumor drugs. Herein, we linked theophylline with different azide compounds to
synthesize a new type of 1,2,3-triazole ring-containing theophylline derivatives. We
found that some theophylline1,2,3-triazole compounds showed a good tumor-
suppressive efficacy. Especially, derivative d17 showed strong antiproliferative activity
against a variety of cancer cells in vitro, including H460, A549, A2780, LOVO, MB-231,
MCF-7, OVCAR3, SW480, and PC-9. It is worth noting that the two NSCLC cell lines
H460 H and A549 are sensitive to compound d17 particularly, with IC50 of 5.929 ±
0.97 μM and 6.76 ± 0.25 μM, respectively. Compound d17 can significantly induce cell
apoptosis by increasing the ratio of apoptotic protein Bax/Bcl-2 by downregulating the
expression of phosphorylated Akt protein, and it has little toxicity to normal hepatocyte
cells LO2 at therapeutic concentrations. These data indicate that these theophylline acetic
acid-1,2,3-triazole derivatives may be potential drug candidates for anti-NSCLC and are
worthy of further study.
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INTRODUCTION

It is reported that lung cancer is the deadliest cancer in men in developed countries (26.2%) and
developing countries (22.3%) (Bray et al., 2018; Siegel et al., 2019). In 2020, there were 2.2 million
new lung cancer cases worldwide, accounting for 11.4% of the total global new cases; the death toll
from lung cancer was 1.782 million, accounting for 18.0% of the total global cancer deaths (Sung
et al., 2021). Lung cancer falls into two categories, non-small cell lung cancer (NSCLC) and small cell
lung cancer (SCLC). NSCLC is the most common type of lung cancer, further divided into squamous
cell carcinoma (SCC), large cell carcinoma (LCC), and adenocarcinoma (AC) (Goldstraw et al.,
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2011; Travis et al., 2011). AC (accounting for 50% of total
NSCLC cases) and SCC (accounting for 30% of total NSCLC
cases) are the most common types of NSCLC (Lee and Cheah,
2019). Chemotherapy is the most commonly used treatment of
NSCLC, but both single-agent chemotherapy and combination
chemotherapy will bring a series of serious side effects, such as
hair loss, anemia, nausea, and vomiting (Miller et al., 2016).
Therefore, it is extremely urgent to design a safe, efficient, and
less side-effect chemotherapy drug.

It is estimated that methylxanthine-containing compounds,
such as pentoxifylline (Figure 1A), can improve the efficacy of
radiotherapy and chemotherapy and are used as chemotherapy
sensitivity modifiers (Misirlioglu et al., 2007); caffeine
(Figure 1B) and theophylline (Figure 1C) can enhance the
toxicity of doxorubicin to tumor cells (Motegi et al., 2013;
Yung-Lung Chang et al., 2017; David Osarieme et al., 2019;
Liu et al., 2019). When theophylline is used in combination
with gemcitabine or cisplatin, it has been found that
theophylline can induce apoptosis in a variety of tumor cells
(Hirsh et al., 2004). As a natural medicine, theophylline has a
wide range of sources and low biological toxicity. Therefore,
theophylline as a basic modified scaffold structure provides hope
for developing safe and efficient antitumor drugs (Abou-Zied
et al., 2019).

1, 2, 3-Triazole, as an important nitrogen heterocyclic
structure, plays an important role in compound design and
synthesis (Majeed et al., 2013). Compounds with the 1, 2, 3-
triazole ring generally show good inhibitory activity against
cancer, inflammation, and microorganisms (Rohrig et al.,
2012; Zhao et al., 2012; Chen et al., 2017; Al-Blewi et al.,

2018; Sakly et al., 2018). In addition, the 1, 2, 3-triazole ring
can be easily constructed by the copper-catalyzed azide and
alkyne cycloaddition reaction, which reduces the difficulty of
synthesis and further improves the application potential. In
addition, some compounds containing 1, 2, 3-triazole, such as
ceftriaxone (Figure 1D) and carboxamide triazole (Figure 1E),
have been used in clinics or are undergoing clinical trials for
cancer treatment (Xu et al., 2019; Vanaparthi et al., 2020).
Tazobactam is also used as an antibacterial agent (Karlowsky
et al., 2020; Lob et al., 2020; Los-Arcos et al., 2020). 1, 2, 3-
Triazole can hybridize with other anticancer pharmacophores
or act as a linker connecting two anticancer pharmacophores,
which make it in the design and synthesis of antitumor
compounds widely (Bozorov et al., 2019; Aouad et al., 2021;
Liang et al., 2021).

Based on the above, we combined the advantages of
theophylline and 1, 2, 3-triazole, hoping to develop a novel
series of safe and efficient theophylline-containing 1, 2, 3-
triazole ring derivatives for the treatment of NSCLC. We
expect that this combination will improve the antitumor
activity of such compounds and solve safety issues. For
example, recent studies demonstrate that a novel series of
benzimidazole derivatives have cell-cycle inhibition and
apoptotic effects against a panel of selected human cancer
cell lines (Atmaca et al., 2020; Atmaca et al., 2021). The
structural modification of this series of compounds holds
great potential that leads to the discovery of a series of
novel antitumor chemical compounds which combine the
advantages of the original molecule with the introduced
additional functional groups.

FIGURE 1 | Examples of the methylxanthine-containing compounds and the reported 1, 2, 3-triazole derivatives for treating tumors.
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RESULTS AND DISCUSSION

Chemistry
The strategy for preparing target compound d is shown in
Scheme 1. Compound 2 was obtained after reaction of
theophylline acetic acid (compound 1) and 4-
aminophenylacetylene. The target compounds d1–d29 were
gained through click reaction of compound 2 with different
azido compounds. The reaction conditions of these operations
were gentle and easy to control. The structures of the key
intermediates and all target compounds were confirmed by
nuclear magnetic resonance (1H NMR and 13C NMR) and
high-resolution mass spectrometry (HRMS) (in
Supplementary Material).

In Vitro Antitumor Activity Study
IC50 values were obtained from three independent experiments.
These results are reported as the average ± SD.

Proliferative Activity of Nine Human Cancer Cell Lines
Was Inhibited by Theophylline-1,2,3-Triazole
Derivatives
In order to screen out compounds with excellent antitumor
activity from 31 theophylline acetic acid derivatives, we
selected two tumor cells lines, A549 and MCF-7, as the
treatment objects. The CCK8 assay was used to evaluate the
effect of this series of theophylline acetic acid derivatives on A549
andMCF-7 proliferative activity. As shown in Table 1, both A549
and MCF-7 are not sensitive to theophylline acetic acid [half-

maximal inhibitory concentration (IC50) >100 μM]. A549 is only
sensitive to d17 (IC50 � 6.76 ± 0.25) but not sensitive to
theophylline acetic acid and other theophylline-1, 2, 3-triazole
derivatives. For MCF−7, d1 (IC50 � 60.97 ± 9.74), d6 (IC50 �
45.24 ± 3.23), d17 (IC50 � 12.61 ± 3.48), d19 (IC50 � 59.01 ±
2.68), and d28 (IC50 � 80.69 ± 17.77) are sensitive. Although
the number of compounds sensitive toMCF-7 is more than A549,
A549 has the best sensitivity to compound d17 (IC50 � 6.76 ±
0.25), and MCF−7 also shows moderate sensitivity to
compound d17, so we chose compound d17 to carry out
the study.

To confirm the antitumor activity of compound d17 and
screen out the most sensitive cell line to compound d17, we
added seven cell lines, H460, A2780, LOVO, MB-231, OVCAR3,
SW480, and PC9, as treatment objects. As shown in Table 2,
compound d17 showed strong antiproliferative and cytotoxicity
to these nine cancer cell lines, H460 (IC50 � 5.93 ± 0.97 μM),
A549 (IC50 � 6.76 ± 0.25 μM), A2780 (IC50 � 26.84 ± 6.96 μM),
LOVO (IC50 � 37.42 ± 0.82 μM), MB-231 (IC50 � 18.78 ±
3.84 μM), MCF-7 (IC50 � 12.61 ± 1.76 μM), OVCAR3
(IC50 � 29.33 ± 6.20 μM), SW480 (IC50 � 15.66 ± 2.37 μM),
and PC9 (IC50 � 18.20 ± 14.15 μM). Among these nine cell lines,
H460 and A549 are the most sensitive cell lines to compound d17,
with IC50 of 5.93 ± 0.97 μM Figure 2A and 8.926 μM
(Figure 2B), respectively. In addition, we also measured the
cytotoxicity of compound d17 to normal liver cells LO2
(Figure 2C), and the results showed that at an effective
therapeutic concentration (8 μM), the cytotoxicity of d17 to
normal liver cells was almost 0; when the compound

SCHEME 1 | Reagents and conditions: (A) Theophylline acetic acid, 4-aminophenylacetylene, AHTU, and DIPEA were stirred in the DMF solvent 24 h at room
temperature; (B) click reaction of copper sulfate water and sodium ascorbate in a solvent (tert-butanol: tetrahydrofuran: water � 1:1:1 at 85°C).
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concentration reached 16 μM, it had a little inhibitory effect
on LO2.

To further evaluate the anti-NSCLC activity of compound d17, we
used LIVE/DEADstaining. As shown inFigure 3, the number of dead
cells increased as the concentration of compound d17 increased,
which was consistent with the results of CCK8 determination. In
short, these results indicate that compound d17 can effectively inhibit
the proliferative activity ofNSCLC andhas little cytotoxicity to normal
hepatocytes at effective therapeutic concentrations.

Theophylline1, 2, 3-Triazole Derivatives Suppress
NSCLC Cell Lines by Inducing Apoptosis
To clarify whether the antiproliferative effect is related to cell
apoptosis, H460 and A549 cells were treated with different
concentrations (5, 10, and 15 μM) of compound d17 for 48 h
and then detected by flow cytometry. As shown in Figure 4, we
observed significant apoptosis in H460 and A549 cells exposed to

different concentrations of d17. The proportions of H460
apoptotic cells treated with compound d17 were 11.19%
(5 μM), 24.89% (10 μM), and 40.09% (15 μM), while the
proportions of A549 apoptotic cells treated with compound
d17 were 8.55% (5 μM), 12.47% (10 μM), and 26.76% (15 μM).
These results suggested that compound d17 considerably
promoted the apoptosis of lung cancer cell lines H460 and
A549 in a concentration-dependent manner.

Theophylline1, 2, 3-Triazole Derivatives Trigger
Apoptosis by Suppressing Phosphorylation of Akt
Protein
In order to further explore the mechanism of d17-induced
apoptosis in NSCLC, western blot was used to detect
apoptosis-related markers Bax, Bcl-2 (Figure 5A), and Akt
(Figure 5B). As shown in Figure 5, after H460 cells were
treated with 0.1% DMSO as control or different concentrations

TABLE 2 | Antiproliferative activities of compounds d17 against nine human cancer cell lines and normal liver cell lines.

Compound no IC50 (μM)

H460 A549 A2780 LOVO MB-231 MCF-7 OVCAR3 SW480 PC-9 LO2

d17 5.93 ±
0.97

6.76 ±
0.25

26.84 ±
6.96

37.42 ±
0.82

18.78 ±
3.84

12.61 ±
1.76

29.33 ±
6.20

15.66 ±
2.37

18.20 ±
14.15

29.24 ±
3.74

IC50 values were obtained from three independent experiments. These results are reported as the average ± SD.

TABLE 1 | Antitumor activities of the designed compounds against two cancer cells lines in vitro.

Compound no n R1 R2 R3 R4 R5 IC50(μM)

A549 MCF-7

d-1 0 CH3 NO2 H H H >100 60.97 ± 9.74
d-2 1 Cl H H H H >100 >100
d-3 0 H H H H H >100 >100
d-4 1 H OCH3 H H H >100 >100
d-5 0 F H H H H >100 >100
d-6 1 H H Cl H H >100 45.24 ± 3.23
d-7 1 CF3 H H H H >100 >100
d-8 1 H H H H H >100 >100
d-9 1 Br H H H H >100 >100
d-10 1 H H CF3 H H >100 >100
d-11 0 OCF3 H H H H >100 >100
d-12 0 H CF3 CF3 H H >100 >100
d-13 0 H CH3 CH3 H H >100 >100
d-14 0 CF3 H H H H >100 >100
d-15 0 CH2CH3 H H H H >100 >100
d-16 0 CH3 H CH3 H CH3 >100 >100
d-17 0 CF3 H H CF3 H 6.76 ± 0.25 12.61 ± 3.48
d-18 0 H F H H H >100 >100
d-19 0 Cl H H H H >100 59.01 ± 2.68
d-20 0 H Br H H H >100 >100
d-21 0 H CF3 H CF3 H >100 >100
d-22 0 I H H H H >100 >100
d-23 0 H Cl H H H >100 >100
d-24 0 H H Cl H H >100 >100
d-25 0 H OCH3 H H H >100 >100
d-26 0 OCH3 H H H H >100 >100
d-27 0 H H F H H >100 >100
d-28 0 Br H H H H >100 80.69 ± 17.77
d-29 0 H H CF3 H H >100 >100
Theophylline acetic acid — — — — — — >100 >100
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of compound d17 for 24 h, total cell protein analysis showed
that the p-Akt protein level in H460 cells was lower than that in
the control group, and the ratio of p-Akt/Akt is also lower than

that in the control group, and as the drug concentration
increases, the ratio of p-Akt/Akt decreases. The levels of
apoptosis inhibitor protein Bcl-2 and apoptosis marker
protein Bax both decreased with the increase of drug
concentration, but the ratio of Bax/Bcl-2 increased with the
increase of drug concentration. Phosphorylated Akt protein
can inhibit apoptosis by inhibiting the function of Bax protein,
and various studies have reported that the overexpression of
phosphorylated AKT (p-AKT) is a key defect in many types of
solid tumors (Atmaca et al., 2017; Brown and Banerji, 2017;
Shariati and Meric-Bernstam, 2019; Song et al., 2019; Iida
et al., 2020). Compound d17 can inhibit the phosphorylation
of Akt protein, which indicates that compound d17 can
increase the ratio of apoptotic protein Bax/Bcl-2 and
promotes NSCLC cell apoptosis by inhibiting the
phosphorylation of Akt protein.

CONCLUSION

In a word, we designed and synthesized a series of
theophylline derivatives containing the 1, 2, 3-triazole ring
and evaluated their antiproliferative activity on nine kinds of
cancer cells. Some of these compounds showed significant
antitumor activity compared to theophylline acetic acid
against one or more cancer cell lines used in this study.
Among them, compound d17 showed strong
antiproliferation and cytotoxicity to all nine kinds of
cancer cells, and the two NSCLC, H460 and A549, show
the most sensitivity to compound d17 particularly. We
revealed the potential mechanism of d17-induce NSCLC
cell death is that compound d17 through inhibiting Akt
protein phosphorylation to induce mitochorylation
appotosis. Current research shows that when appropriate
substituents are introduced into the original molecule, the
structural diversity of drugs can be expanded. Future research
will focus on improving the anticancer activity and
pharmacokinetic properties of these compounds.

FIGURE 2 | Compound d17 supresses H460 and A549 cancer cells. H460 (A), A549 (B), and LO2 (C) cells were exposed to compound d17 with indicated
concentrations for 72 h, and cell viability was assessed by the CCK-8 assay, n � 3. *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001 (one-way ANOVA, followed
by Tukey’s post-test).

FIGURE 3 | Compound d17 suppresses H460 and A549 cancer cells.
Fluorescence images of (A) H460 and (B) A549 cells exposed to compound
d17 with indicated concentrations for 48 h and then stained with the red/
green kit; green indicates live cells, and red indicates dead cells.
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EXPERIMENTAL SECTION

General Experimental Procedures
The theophylline acetic acid, 4-aminophenylacetylene, and azido
compounds were purchased from Aladdin (CHINA). The RPMI-
1640 medium, Dulbecco’s modified Eagle’s medium (DMEM),
fetal bovine serum (FBS), trypsin, and phosphate-buffered saline
(PBS) were purchased from Gibco (United States). The cell
Counting Kit-8 (CCK-8) was purchased from Abmole
(United States). An Annexin V/propidium iodide (PI) staining
kit was purchased from BD Biosciences (United States). Akt,
AKT1 (phospho S473), and the secondary antibodies of antirabbit
and antimouse were purchased from Cell Signaling Technology,
Inc. (United States). NSCLC cell lines PC-9, H460, and A549 and
other cancer cell lines A2780, LOVO, MB-231, MCF-7,
OVCAR3, and SW480 were obtained from ATCC.

Chemistry
The general procedures of preparation for erlotinib and
compounds d1–d29 were described in the section of results.
The structures of all target compounds were confirmed by
nuclear magnetic resonance (1H NMR and 13C NMR) and
high-resolution mass spectrometry (HRMS) as below.

Theophylline acetic acid [compound 1 (5 g, 0.02mol)], 4-
aminophenylacetylene (3.69 g, 0.0 3mol), HATU (12.96 g,
0.03mol), and DIPEA (8.13 g, 0.06mol) were added together into
a 500ml reaction flask in DMF, stirring for 24 h at room temperature
under nitrogen protection. The reaction process was monitored by
thin-layer chromatography (TLC). After the reaction was completed,
DMF was removed with an oil pump; dichloromethane was added
and washed with saturated salt water; the organic phase was
combined, dried with anhydrous sodium sulfate, and concentrated
in vacuum to obtain solid compound 2.

Benzyl bromide and sodium azide were stirred in a solvent
(acetone: water � 4:1) for 24 h at room temperature to

produce benzyl azide 3 (n � 1). Aniline is added to the
solvent (water:hydrochloric acid � 1:1) and stirred (below
5°), and then, sodium nitrite is dissolved in water, slowly
dripping in the solvent (water:hydrochloric acid � 1:1).
Finally, sodium azide is dissolved in water, slowly dripping
in the solvent (water:hydrochloric acid � 1:1) too, reacting for
24 h to obtain phenyl azide 3 (n � 0).

The azide compound (1.2 mmol) and compound 2 (1.0 mmol)
were added to 15 ml of a mixed solvent (tetrahydrofuran:water:
tert-butanol � 1:1:1). Anhydrous copper sulfate (0.1 mmol) and
sodium ascorbate (0.2 mmol) were added, and the mixture was
stirred at 80°C for 8 h. Upon completion of the reaction
(monitored by TLC), the mixture was extracted with
dichloromethane (15 ml × 3). All the organic phases were
continuously washed with water and brine, dried with
anhydrous sodium sulfate, and concentrated in vacuum. The
residue was purified by column chromatography
(dichloromethane:methanol � 20:1) to obtain the target
compounds d1–d29 in the white powder form.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-
N-(4-(1-(2-methyl-3-nitrophenyl)-1H-1,2,3-triazol-4-yl)phenyl)
acetamide (d1). 1H NMR (400 MHz, DMSO-d6): δ 10.58 (s, 1H),
8.97 (s, 1H), 8.19 (d, J � 7.3, 1H), 8.09 (s, 1H), 7.94–7.89 (m, 3H),
7.74–7.69 (m, 3H), 5.24 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H), 2.24
(s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 165.50, 155.00,
151.49, 151.26, 148.44, 147.00, 144.26, 139.11, 138.17, 131.46,
128.74, 128.50, 126.51, 126.09, 125.80, 123.66, 119.89, 106.95,
49.25, 29.95, 27.94, 14.45. HR MS (ESI) m/z: calcd for C24H22

N9O5 [M + H]+ 516.1744, found 516.1741.
N-(4-(1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-

(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetamide
(d2). 1H NMR (400 MHz, DMSO) δ 10.53 (s, 1H), 8.53 (s, 1H),
8.08 (s, 1H), 7.82 (d, J � 8.3, 2H), 7.65 (d, J � 8.3, 2H), 7.54 (d, J �
7.6, 1H), 7.43–7.37 (m, 2H), 7.28 (d, J � 7.0, 1H), 5.75 (d, J � 7.5,
2H), 5.22 (s, 2H), 3.46 (s, 3H), 3.20 (s, 3H). 13C NMR (100 MHz,

FIGURE 4 | Compound d17 induced apoptosis of H460 and A549. Flow cytometry analysis data from three independent experiments were summarized and
shown. NC, negative control. *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001 (one-way ANOVA, followed by Tukey’s post-test).

Frontiers in Pharmacology | www.frontiersin.org October 2021 | Volume 12 | Article 7536766

Ye et al. Theophylline Derivatives Demonstrate Anti-tumor Activity

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


DMSO-d6) δ 165.41, 154.98, 151.49, 148.43, 146.69, 144.25,
138.75, 133.64, 133.09, 130.99, 130.73, 130.10, 128.25, 126.36,
126.29, 121.85, 119.80, 106.93, 51.23, 49.22, 29.94, 27.92. HRMS
(ESI) m/z: calcd for C24H22 ClN8O3 [M + H]+ 505.1503, found
505.1501.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl)acetamide (d3).

1H NMR (400 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.23 (s, 1H), 8.09
(s, 1H), 7.93 (dd, J1 � 14.5, J2 � 8.2, 4H), 7.71 (d, J � 8.4, 2H), 7.64
(t, J � 7.7, 2H), 7.52 (t, J � 7.3, 1H), 5.24 (s, 2H), 3.47 (s, 3H), 3.21
(s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 165.50, 155.00, 151.50,
148.45, 147.54, 144.27, 139.05, 137.14, 129.16, 126.46, 126.01,
120.44, 119.90, 106.96, 49.26, 29.96, 27.95. HR MS (ESI) m/z:
calcd for C23H21N8O3 [M + H]+ 457.1737, found 457.1737.

FIGURE 5 | Compound d17 suppressed Akt phosphorylation and its transduction of downstream signaling Bax and Bcl-2 in NSCLC cells. Western blot was used
to detect apoptosis-related markers Bax, Bcl-2 (A), and Akt (B). Protein bands (left images) and quantification (right images and tables below) are presented. NC,
negative control. *p-value < 0.05, **p-value < 0.01, and ***p-value < 0.001 (one-way ANOVA, followed by Tukey’s post-test).
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2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(3-methoxybenzyl)-1H-1,2,3-triazol-4-yl)phenyl)
acetamide (d4). 1H NMR (400 MHz, DMSO-d6) δ 10.53 (s, 1H),
8.55 (s, 1H), 8.08 (s, 1H), 7.81 (d, J � 8.3, 2H), 7.65 (d, J � 8.3, 2H),
7.30 (t, J � 7.8, 1H), 6.91 (dd, J1 � 16.6, J2 � 8.0, 3H), 5.60 (s, 2H),
5.22 (s, 2H), 3.75 (s, 3H), 3.46 (s, 3H), 3.20 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 165.40, 159.94, 154.98, 151.49, 148.43,
146.86, 144.25, 138.71, 137.89, 130.43, 126.46, 126.24, 121.51,
120.45, 119.81, 114.20, 113.95, 106.94, 55.59, 53.40, 29.94, 27.93.
HR MS (ESI) m/z: calcd for C25H25N8O4 [M + H]+ 501.1999,
found 501.2004.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-
N-(4-(1-(2-fluorophenyl)-1H-1,2,3-triazol-4-yl)phenyl)acetamide
(d5). 1H NMR (400MHz, DMSO-d6) δ 10.59 (s, 1H), 9.01 (s, 1H),
8.10 (s, 1H), 7.92 (s, 3H), 7.67 (d, J � 31.5, 4H), 7.48 (s, 1H), 5.24
(s, 2H), 3.46 (d, J � 4.5, 3H), 3.21 (s, 3H). 13C NMR (100MHz,
DMSO-d6) δ 144.26, 139.10, 126.55, 126.46, 126.10, 119.88, 49.25,
40.40, 40.19, 29.95, 27.94. HR MS (ESI) m/z: calcd for
C23H20FN8O3 [M + H]+ 475.1642, found 475.1651.

N-(4-(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-(1,3-
dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetamide
(d6). 1HNMR (400 MHz, DMSO-d6) δ 10.51 (s, 1H), 8.54 (s, 1H),
8.08 (s, 1H), 7.80 (d, J � 8.7, 2H), 7.64 (d, J � 8.7, 2H), 7.48–7.43
(m, 2H), 7.37 (d, J � 8.5, 2H), 5.64 (s, 2H), 5.22 (s, 2H), 3.46
(s, 3H), 3.20 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 165.40,
154.99, 151.50, 148.45, 146.92, 144.26, 138.74, 135.45, 133.34,
129.26, 126.26, 121.56, 119.84, 106.95, 52.67, 49.22, 29.94, 27.93.
HR MS (ESI) m/z: calcd for C24H22ClN8O3 [M + H]+ 505.1503,
found 505.1504.

2-(1,3-dimethyl-2-oxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-
(4-(1-(2-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)phenyl)
acetamide (d7). 1H NMR (400 MHz, DMSO-d6) δ 10.55 (s, 1H),
8.55 (s, 1H), 8.08 (s, 1H), 7.82 (s, 3H), 7.65 (d, J � 44.0, 4H), 7.24
(d, J � 4.4, 1H), 5.83 (s, 2H), 5.23 (s, 2H), 3.46 (s, 3H), 3.20 (s, 3H).
13C NMR (100 MHz, DMSO-d6) δ 165.42, 154.98, 148.43, 146.83,
144.26, 138.81, 133.73, 130.70, 129.39, 126.73, 126.67, 126.30,
122.09, 119.80, 106.94, 52.47, 50.16, 49.23, 39.99.29.95, 27.93,
7.64. HR MS (ESI) m/z: calcd for C25H22F3N8O3 [M + H]+

539.1767, found 539.1766.
N-(4-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl)-2-(1,3-dimethyl-

2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetamide (d8). 1H
NMR (400 MHz, DMSO-d6) δ 10.53 (s, 1H), 8.56 (s, 1H), 8.09
(s, 1H), 7.80 (s, 2H), 7.68–7.62 (m, 2H), 7.42–7.31 (m, 5H), 5.64
(s, 2H), 5.22 (s, 2H), 3.46 (s, 3H), 3.20 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 165.41, 146.87, 144.25, 136.47, 129.26,
128.62, 128.36, 126.24, 121.52, 119.81, 53.48, 49.23, 40.16, 29.94,
27.93. HR MS (ESI) m/z: calcd for C24H23N8O3 [M + H]+

471.1893, found 471.1903.
N-(4-(1-(2-bromobenzyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-

(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)
acetamide (d9). 1H NMR (400 MHz, DMSO-d6) δ 10.51 (s, 1H),
8.51 (s, 1H), 8.08 (s, 1H), 7.82 (d, J � 8.6, 2H), 7.68 (dd, J1 � 21.2, J2
� 8.3, 3H), 7.45–7.40 (m, 1H), 7.33 (d, J � 16.8, 1H), 7.22 (d, J �
8.9, 1H), 5.72 (s, 2H), 5.22 (s, 2H), 3.46 (s, 3H), 3.20 (s, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 165.40, 154.99, 151.50, 148.44,
146.70, 144.26, 138.76, 135.26, 133.38, 128.80, 126.39, 126.30,
123.34, 121.88, 119.84, 106.95, 53.57, 49.23, 29.94, 27.92. HR MS

(ESI) m/z: calcd for C24H22BrN8O3 [M + H]+ 549.0998, found
549.1008.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)
phenyl)acetamide (d10). 1H NMR (400 MHz, DMSO-d6) δ 10.53
(s, 1H), 8.60 (s, 1H), 8.08 (s, 1H), 7.79 (dd, J1 � 16.5, J1 � 8.4, 4H),
7.66 (d, J � 8.7, 2H), 7.54 (d, J � 8.1, 2H), 5.77 (s, 2H), 5.23 (s, 2H),
3.46 (s, 3H), 3.20 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
165.42, 154.99, 151.49, 148.44, 146.99, 144.26, 141.15, 138.79,
129.07, 126.35, 126.28, 126.22, 126.18, 121.81, 119.82, 106.94,
52.81, 49.23, 29.95, 27.93. HR MS (ESI) m/z: calcd for
C25H22F3N8O3 [M + H]+ 539.1767, found 539.1776.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-
N-(4-(1-(2-(trifluoromethoxy)phenyl)-1H-1,2,3-triazol-4-yl)
phenyl)acetamide(d11). 1H NMR (400 MHz, DMSO-d6) δ 10.58
(s, 1H), 8.98 (s, 1H), 8.10 (s, 1H), 7.91 (t, J � 7.5, 3H), 7.76– 8 (m,
5H), 5.25 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C NMR (100 MHz,
DMSO-d6) δ 165.49, 155.00, 151.50, 148.45, 146.97, 144.26,
141.61, 139.11, 132.10, 130.20, 129.30, 128.02, 126.50, 125.76,
123.04, 119.94, 106.95, 49.25, 40.23, 29.94, 27.92. HRMS (ESI)m/
z: calcd for C24H20F3N8O4 [M + H]+ 541.1560, found 541.1568.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(3-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)
phenyl)acetamide (d12). 1H NMR (400 MHz, DMSO-d6) δ 10.60
(s, 1H), 9.41 (s, 1H), 8.32 (s, 2H), 8.09 (s, 1H), 7.91 (d, J � 9.1, 4H),
7.73 (d, J � 8.4, 2H), 5.25 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 165.52, 155.00, 151.50, 148.45,
147.79, 144.26, 139.18, 137.58, 131.88, 126.48, 125.74,
124.28, 119.94, 116.98, 106.96, 49.26, 29.96, 27.94. HR MS
(ESI) m/z: calcd for C24H20F3N8O3 [M + H]+ 525.1610,
found 525.1623.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(m-tolyl)-1H-1,2,3-triazol-4-yl)phenyl)acetamide
(d13). 1H NMR (400 MHz, DMSO-d6) δ 10.58 (s, 1H), 9.20 (s,
1H), 8.09 (s, 1H), 7.91 (d, J � 6.8, 2H), 7.79 (s, 1H), 7.72 (s, 3H),
7.50 (t, J � 6.5, 1H), 7.33 (s, 1H), 5.76 (s, 2H), 5.24 (s, 2H), 3.47 (s,
3H), 3.21 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 165.48,
154.99, 151.49, 148.44, 147.45, 144.25, 140.13, 139.01, 137.09,
130.18, 129.70, 126.41, 126.05, 120.82, 119.89, 117.49, 106.95,
55.37, 49.25, 29.94, 27.92, 21.42. HR MS (ESI) m/z: calcd for
C24H23N8O3 [M + H]+ 471.1893, found 471.1906.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(2-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)
phenyl)acetamide (d14). 1H NMR (400 MHz, DMSO-d6) δ 10.59
(s, 1H), 9.28 (s, 1H), 8.09 (s, 1H), 7.87 (dd, J1 � 19.7, J2 � 7.2, 4H),
7.78–7.64 (m, 3H), 7.37 (s, 1H), 5.25 (s, 2H), 3.47 (s, 3H), 3.21 (s,
3H). 13C NMR (100 MHz, DMSO-d6) δ 154.99, 151.50, 144.26,
132.41, 132.32, 126.47, 119.93, 119.72, 116.31, 55.36, 49.25, 40.21,
29.94, 27.92. HRMS (ESI)m/z: calcd for C24H20F3N8O3 [M +H]+

525.1610, found 525.1619.
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-

N-(4-(1-(2-ethylphenyl)-1H-1,2,3-triazol-4-yl)phenyl)acetamide
(d15). 1HNMR (400MHz, DMSO-d6) δ 10.58 (s, 1H), 8.87 (s, 1H),
8.10 (s, 1H), 7.92 (d, J � 8.5, 2H), 7.71 (d, J � 8.6, 2H), 7.58 (s, 2H),
7.42 (s, 2H), 5.25 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H), 2.52 (s, 2H), 1.06
(t, J � 7.5, 3H). 13C NMR (100MHz, DMSO-d6) δ 144.25, 130.69,
130.35, 127.45, 126.87, 126.40, 123.28, 119.83, 49.24, 29.94, 27.93,
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24.27, 15.36. HR MS (ESI) m/z: calcd for C25H25N8O3 [M + H]+

485.2050, found 485.2060.
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-

N-(4-(1-mesityl-1H-1,2,3-triazol-4-yl)phenyl)acetamide (d16).
1H NMR (400MHz, DMSO-d6) δ 10.57 (s, 1H), 8.72 (s, 1H),
8.09 (s, 1H), 7.90 (d, J � 8.5, 2H), 7.70 (d, J � 8.5, 2H), 7.12 (s, 2H),
5.24 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H), 2.34 (s, 3H), 1.94 (s, 6H).
13C NMR (100MHz, DMSO-d6) δ 165.45, 155.01, 151.50, 148.44,
144.28, 140.03, 138.88, 134.95, 126.37, 126.29, 123.33, 119.82,
49.23, 40.41, 29.95, 27.94, 17.36. HR MS (ESI) m/z: calcd for
C26H27N8O3 [M + H]+ 499.2206, found 499.2216.

N-(4-(1-(2,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-
yl)phenyl)-2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-
purin-7-yl)acetamide (d17). 1H NMR (400 MHz, DMSO-d6) δ
10.57 (s, 1H), 9.02 (s, 1H), 8.40 (s, 1H), 8.30 (q, J � 8.4, 2H),
8.10–8.07 (m, 1H), 7.91 (d, J � 7.4, 2H), 7.72 (d, J � 7.5, 2H), 5.24
(s, 2H), 3.49–3.46 (m, 3H), 3.23–3.20 (m, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 165.52, 155.01, 151.51, 148.45, 146.87,
144.27, 139.18, 129.79, 127.10, 126.52, 125.55, 119.93, 106.95,
49.25, 29.96, 27.94. HR MS (ESI) m/z: calcd for C25H19F6N8O3

[M + H]+ 593.1484, found 593.1491.
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-

N-(4-(1-(3-fluorophenyl)-1H-1,2,3-triazol-4-yl)phenyl)acetamide
(d18). 1H NMR (400MHz, DMSO-d6) δ 10.59 (s, 1H), 9.28
(s, 1H), 8.09 (s, 1H), 7.87 (d, J � 12.5, 4H), 7.72 (s, 3H), 7.37
(s, 1H), 5.25 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C NMR
(100MHz, DMSO-d6) δ 165.52, 155.00, 151.50, 148.45, 147.65,
144.27, 139.15, 132.43, 132.34, 126.48, 125.78, 119.94, 119.74,
116.33, 115.75, 108.03, 107.76, 106.95, 49.25, 29.95, 27.93. HR
MS (ESI) m/z: calcd for C23H20FN8O3 [M + H]+ 475.1642, found
475.1641.

N-(4-(1-(2-chlorophenyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)
acetamide (d19). 1H NMR (400 MHz, DMSO-d6) δ 10.58 (s, 1H),
8.97 (s, 1H), 8.09 (s, 1H), 7.91 (d, J � 8.4, 2H), 7.79 (dd, J � 15.4,
7.6, 2H), 7.71 (d, J � 8.4, 2H), 7.67–7.59 (m, 2H), 5.24 (s, 2H), 3.47
(s, 3H), 3.21 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 151.52,
144.27, 126.45, 122.85, 122.77, 119.94, 119.86, 117.37, 117.14,
49.25, 40.44, 29.95, 27.94. HR MS (ESI) m/z: calcd for
C23H20ClN8O3 [M + H]+ 491.1347, found 491.1354.

N-(4-(1-(3-bromophenyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)acetamide
(d20). 1H NMR (400 MHz, DMSO-d6) δ 10.59 (s, 1H), 9.31
(s, 1H), 8.20 (s, 1H), 8.09 (d, J � 4.1, 1H), 8.00 (t, J � 5.5,
1H), 7.89 (t, J � 6.1, 2H), 7.72 (dd, J1 � 8.3, J2 � 3.8, 3H), 7.59 (s,
1H), 5.24 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C NMR (100 MHz,
DMSO-d6) δ 165.51, 154.99, 151.49, 148.44, 147.65, 144.25,
139.14, 138.23, 132.36, 131.83, 126.45, 125.79, 122.95, 119.93,
119.72, 119.34, 106.95, 49.25, 40.21, 29.95, 27.93. HRMS (ESI)m/
z: calcd for C23H20BrN8O3 [M + H]+ 535.0842, found 535.0840.

N-(4-(1-(3,5-bis(trifluoromethyl)phenyl)-1H-1,2,3-triazol-
4-yl)phenyl)-2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-
purin-7-yl)acetamide (d21). 1H NMR (400 MHz, DMSO-d6) δ
10.60 (s, 1H), 9.55 (s, 1H), 8.67 (s, 2H), 8.28 (s, 1H), 8.09 (s, 1H),
7.90 (d, J � 7.4, 2H), 7.74 (d, J � 7.6, 2H), 5.25 (s, 2H), 3.47 (s, 3H),
3.21 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 165.54, 155.00,

151.50, 148.46, 147.99, 144.25, 139.31, 132.55, 132.21, 126.49,
125.48, 124.63, 120.95, 120.18, 119.99, 106.96, 55.34, 49.26, 29.93,
27.91. HR MS (ESI) m/z: calcd for C25H19F6N8O3 [M + H]+

593.1484, found 593.1487.
2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-

N-(4-(1-(2-iodophenyl)-1H-1,2,3-triazol-4-yl)phenyl)acetamide
(d22). 1H NMR (400 MHz, DMSO-d6) δ 10.58 (s, 1H), 8.90
(s, 1H), 8.13–8.09 (m, 2H), 7.91 (d, J � 8.5, 2H), 7.71 (d, J � 8.6,
2H), 7.64 (d, J � 4.2, 2H), 7.39 (dt, J1 � 8.6, J2 � 4.5, 1H), 5.24
(s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C NMR (100MHz, DMSO-d6)
δ 165.47, 155.00, 151.50, 148.45, 146.68, 144.27, 140.33, 140.23,
138.99, 132.46, 129.92, 128.50, 126.40, 126.03, 123.38, 119.88,
106.95, 96.39, 49.25, 49.07, 40.20, 29.96, 27.95. HR MS (ESI) m/
z: calcd for C23H20IN8O3 [M + H]+ 583.0703, found 583.0704.

N-(4-(1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)
acetamide (d23). 1H NMR (400 MHz, DMSO-d6) δ 10.59 (s, 1H),
9.31 (s, 1H), 8.09 (d, J � 5.7, 2H), 7.97 (d, J � 8.2, 1H), 7.90 (d,
J � 8.4, 2H), 7.69 (dd, J1 � 24.6, J2 � 8.2, 3H), 7.59 (d, J � 8.0, 1H),
5.24 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C NMR (100 MHz,
DMSO-d6) δ 165.51, 154.99, 151.50, 148.45, 147.66, 144.26,
139.15, 138.16, 134.71, 132.16, 128.93, 126.46, 125.78, 120.19,
119.93, 119.75, 118.98, 106.95, 49.25, 29.95, 27.94. HR MS (ESI)
m/z: calcd for C23H20ClN8O3 [M + H]+ 491.1347, found
491.1348.

N-(4-(1-(4-chlorophenyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-
(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)
acetamide (d24). 1H NMR (400 MHz, DMSO-d6) δ 10.56 (s, 1H),
9.25 (s, 1H), 8.09 (s, 1H), 7.98 (d, J � 8.8, 2H), 7.89 (d, J � 8.6, 2H),
7.71 (d, J � 8.8, 4H), 5.24 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C
NMR (100 MHz, DMSO-d6) δ 165.51, 155.00, 151.50, 148.45,
147.67, 144.27, 139.12, 135.92, 133.39, 130.40, 126.47, 125.84,
122.09, 119.91, 119.66, 106.95, 49.25, 29.96, 27.94. HR MS (ESI)
m/z: calcd for C23H20ClN8O3 [M + H]+ 491.1347, found
491.1351.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(3-methoxyphenyl)-1H-1,2,3-triazol-4-yl)phenyl)
acetamide (d25). 1H NMR (400 MHz, DMSO-d6) δ 10.50 (s, 1H),
8.54 (s, 1H), 8.08 (s, 1H), 7.80 (d, J � 8.7, 2H), 7.64 (d, J � 8.7, 2H),
7.30 (t, J � 7.9, 1H), 6.91 (d, J � 23.8, 3H), 5.22 (s, 2H), 3.75
(s, 3H), 3.46 (s, 3H), 3.20 (s, 3H). 13C NMR (100 MHz, DMSO-
d6) δ 165.40, 154.99, 130.43, 126.25, 121.51, 120.46, 119.84,
114.22, 113.98, 55.60, 53.42, 40.24, 29.94. HR MS (ESI) m/z:
calcd for C24H23N8O4 [M + H]+ 487.1842, found 487.1771.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-
yl)-N-(4-(1-(2-methoxyphenyl)-1H-1,2,3-triazol-4-yl)phenyl)
acetamide (d26). 1H NMR (400 MHz, DMSO-d6) δ 10.56 (s, 1H),
8.84 (s, 1H), 8.09 (s, 1H), 7.91 (d, J � 7.1, 2H), 7.74–7.64 (m, 3H),
7.55 (s, 1H), 7.34 (d, J � 7.8, 1H), 7.17 (s, 1H), 5.24 (s, 2H), 3.88 (s,
3H), 3.47 (s, 3H), 3.21 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ
131.28, 126.41, 126.33, 126.23, 123.29, 121.33, 119.85, 113.46,
56.60, 49.24, 40.22, 29.93, 27.92. HR MS (ESI) m/z: calcd for
C24H23N8O4 [M + H]+ 487.1842, found 487.1854.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-
N-(4-(1-(4-fluorophenyl)-1H-1,2,3-triazol-4-yl)phenyl)acetamide
(d27). 1H NMR (400 MHz, DMSO-d6) δ 10.56 (s, 1H), 9.20 (s,
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1H), 8.09 (s, 1H), 7.99 (d, J � 12.4, 2H), 7.89 (d, J � 8.1, 2H), 7.71
(d, J � 8.2, 2H), 7.49 (t, J � 8.5, 2H), 5.24 (s, 2H), 3.47 (s, 3H), 3.21
(s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 151.52, 144.27, 126.45,
122.85, 122.77, 119.94, 119.86, 117.37, 117.14, 49.25, 40.44, 29.95,
27.94. HR MS (ESI) m/z: calcd for C23H20FN8O3 [M + H]+

475.1642, found 475.1648.
N-(4-(1-(2-bromophenyl)-1H-1,2,3-triazol-4-yl)phenyl)-2-

(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)
acetamide (d28). 1H NMR (400 MHz, DMSO-d6) δ 10.56 (s, 1H),
8.94 (s, 1H), 8.09 (s, 1H), 7.93 (d, J � 20.7, 3H), 7.77–7.56 (m, 5H),
5.24 (s, 2H), 3.47 (d, J � 3.0, 3H), 3.21 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 165.47, 155.00, 151.50, 148.45, 146.66,
144.26, 139.02, 136.72, 134.13, 132.50, 129.46, 129.17, 126.44,
125.95, 123.52, 119.92, 119.38, 49.25, 40.23, 29.95, 27.93. HR MS
(ESI) m/z: calcd for C23H20BrN8O3 [M + H]+ 535.0842, found
535.0848.

2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-
(4-(1-(4-(trifluoromethyl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl)
acetamide (d29). 1H NMR (400MHz, DMSO-d6) δ 10.57 (s, 1H),
9.38 (s, 1H), 8.21 (d, J � 7.7, 2H), 8.10–8.00 (m, 3H), 7.92 (d, J � 7.9,
2H), 7.72 (d, J � 7.8, 2H), 5.24 (s, 2H), 3.47 (s, 3H), 3.21 (s, 3H). 13C
NMR (100MHz, DMSO-d6) δ 165.53, 155.00, 151.50, 148.45,
144.27, 139.89, 139.22, 127.79, 127.75, 126.53, 125.67,120.80,
119.93, 119.77, 106.96, 49.26, 29.96, 27.94. HR MS (ESI) m/z:
calcd for C24H20F3N8O3 [M + H]+ 525.1610, found 25.1621.

Bioexperiment
Cell Culture and Treatment
Human non-small cell lung cancer cell lines PC-9, H460, and A549
were cultured with the RIPM-1640 complete medium containing
10% FBS and 1% penicillin–streptomycin at 37°C in a 5% CO2

humidification environment. Other tumor cell lines A2780, LOVO,
MB-231, MCF-7, OVCAR-3, and SW480 were cultured with the
DMEM complete medium containing 10% FBS and 1%
penicillin–streptomycin at 37°C in 5% CO2 humidification
environment too. All compounds were dissolved in DMSO to
prepare 100mM mother liquor and then used complete the
medium to prepare different working concentrations.

Cell Counting Kit-8 (CCK-8) for Cell Proliferation and
Cytotoxicity Assays
Cells in the logarithmic growth phasewere seeded into 96-well plates
(2000–4,000 cells/well). 24 h after cell implantation, the cells were
treatedwith different concentrations of the compound (1, 2, 8, 16 μM)
for 72 h, and 0.1% DMSO was used as a negative control. Finally, the
CCK8 reagent was added and incubated for 1–4 h at 37°C. The
absorbance of each well was detected at a 450 nm wavelength by a
multifunctional microplate reader (Thermo Fisher Varioskan Luk).
The cell survival rate of the negative control group was regarded as
100%, and the half-maximal inhibitory concentration (IC50) of the
compounds was calculated by Graph Pad Prism 8.0 software.

Live/Dead Cell Imaging
LIVE/DEAD cell analysis was carried out using a laser confocal
fluorescence microscope using the LIVE/DEAD kit. In brief, H460

and A549 (3 × 103–5 × 103 cells/well) cells were seeded in 96-well
plates incubating for 24 h, and then, cells were treated with various
concentrations of compound d17 (5, 10, 15 μM) for 48 h and 0.1%
DMSO was used as a control. After various concentrations,
compound d17 cells were stained with the LIVE/DEAD Cell
Imaging Kit for 15–20min and then observed and photographed
using a fluorescence microscope (LSM880 with Fast Airyscan).

Flow Cytometry Detection for Cell Apoptosis
The cell apoptosis assay was carried out using the Annexin V/PI
apoptosis kit and flow cytometry (BD LSRFortessaTM Flow
Cytometer). Briefly, H460 and A549 cells in the logarithmic
growth phase were seeded into 6-well plates (4.0×105∼6.0×105
cells/well). 24 h after cell implantation, the cells were treated with
different concentrations of compound d17 (5, 10, 15 μM) for 48 h,
and 0.1%DMSO was used as a negative control. All cells (including
those in the supernatant) were collected after trypsin digestion and
washed with PBS; then, the cells were gently resuspended with
100 μL Annexin V-FITC binding solution and then incubated with
2.5 μLAnnexinV-FITC and 5 μL of propidium iodide (PI) staining
solution in dark at room temperature for 20–30min. Finally, cell
apoptosis of each well was detected by flow cytometry. The
percentage of apoptosis was analyzed by Flowjo software.

Western Blot Analysis
H460 and A549 cells in the logarithmic growth phase were seeded
into 6-well plates (4.0 × 105∼6.0 × 105 cells/well). 24 h after cell
implantation, the cells were treated with different concentrations of
compound d17 (5, 10, 15 μM) for 24 h, and 0.1% DMSO was used
as a negative control. The supernatant was discarded, and the cells
were collected by trypsin digestion and washed once with PBS.
Then, the cells were lysed on ice with 100 μL of RIPA lysis buffer
containing protease and the phosphatase inhibitor for 30 min.
Finally, the total protein extract was obtained by centrifugation
at 12,000 RPM at 4 degrees for 10min. The proteins were isolated
by electrophoresis with 12.5% sodium dodecyl sulfate
polyacrylamide gel. After electrophoresis, the proteins were
transferred to the NC membrane and then sealed with 5% skim
milk prepared by TBS-T [150mMNaCl, 10 mM Tris (pH 7.4), and
0.1% Tween20] at room temperature for 1 h. After sealing, 1:1,000
diluted solution of anti-Bax (D2E11), anti-Bcl-2 (124), anti-Akt
(PAN) (C67E7), anti-Akt1 (PhosphoS473) (EP2109Y), and the
anti-β-actin (8H10D10) primary antibody was incubated
overnight at 4°Cand then washed with TBS-T for 5 min
(three times). Incubation was carried out with 1:2000 diluted
solution of the antirabbit or antimouse secondary antibody for
1 h at room temperature, and finally, washing was carried out with
TBS-T for 5 min (three times) to obtain protein strips through
chemiluminescence. The protein expression level and proportion
were quantitatively analyzed by ImageJ software.

Statistical Analysis
All values are presented as means ± SD. The significant
differences are determined using GraphPad Prism 8 software.
The significant differences between the two groups are confirmed
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using Student’s t-test. All experiments are considered to be
statistically significant using one-way ANOVA, followed by
Tukey’s post test (significant difference at p < 0.05).
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