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Background and Purpose: Macrovascular complication of diabetes mellitus,
characterized by increased aortic stiffness, is a major cause leading to many adverse
clinical outcomes. It has been reported that ginsenoside Rb1 (Rb1) can improve glucose
tolerance, enhance insulin activity, and restore the impaired endothelial functions in animal
models. The aim of this study was to explore whether Rb1 could alleviate the
pathophysiological process of arterial stiffening in diabetes and its potential mechanisms.

Experimental Approach: Diabetes was induced in male C57BL/6 mice by administration
of streptozotocin. These mice were randomly selected for treatment with Rb1
(10−60mg/kg, i. p.) once daily for 8 weeks. Aortic stiffness was assessed using
ultrasound and measurement of blood pressure and relaxant responses in the aortic
rings. Mechanisms of Rb1 treatment were studied in MOVAS-1 VSMCs cultured in a high-
glucose medium.

Key Results: Rb1 improved DM-induced arterial stiffening and the impaired aortic
compliance and endothelium-dependent vasodilation. Rb1 ameliorated DM-induced
aortic remodeling characterized by collagen deposition and elastic fibers disorder.
MMP2, MMP9, and TGFβ1/Smad2/3 pathways were involved in this process. In
addition, Rb1-mediated improvement of arterial stiffness was partly achieved via
inhibiting oxidative stress in DM mice, involving regulating NADPH oxidase. Finally, Rb1
could blunt the inhibition effects of DM on AMPK phosphorylation.

Conclusion and Implications:Rb1may represent a novel prevention strategy to alleviate
collagen deposition and degradation to prevent diabetic macroangiopathy and diabetes-
related complications.
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INTRODUCTION

Diabetes mellitus (DM) is one of the costliest and most burdensome chronic diseases worldwide. It
has become a pandemic health disaster, especially among the elderly. In addition to the disease,
consequent chronic vascular complications are a major cause of the increased morbidity and
mortality of diabetic patients (Delbin and Trask, 2014). Several clinical trials have confirmed that
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intensive glycemic control in people with diabetes contributes to
reducing the risk of microvascular (Holman et al., 2008).
However, there was no evidence that it has advantages in
terms of mortality or diabetic macroangiopathy (Zoungas
et al., 2014). Macrovascular complications of DM,
characterized by increased aortic stiffness, are also associated
with hypertension, aging, insulin resistance, atherosclerosis, and
hypertriglyceridemia (Mitchell et al., 2007; Dietrich et al., 2010;
Payne et al., 2010; Stacey et al., 2010). Increased aortic stiffness
independently predicts future cardiovascular disease, especially in
women (Laurent et al., 2012; Ben-Shlomo et al., 2014). It leads to
many adverse clinical outcomes, including impaired coronary
perfusion and subsequent cardiovascular mortality.

As a major active component of ginseng, ginsenoside Rb1
(Rb1) (Figure 1A) (Cho et al., 2004) is the most frequently used
and studied Chinese medicine and object. Gabriel Hoi-huen

Chan et al. have demonstrated that ginseng extract exerted a
protective effect in restoring normal endothelial functions in
models with diabetes (Chan et al., 2013). Min Liu et al. have
demonstrated that Rb1 reduced body weight, improved glucose
tolerance, enhanced insulin action, and decreased the
accumulation of cellular lipid in the livers of obese animals
induced by high-fat diet (HFD) by activating the adenosine
monophosphate (AMP)-activated protein kinase (AMPK)
signaling pathway (Xiong et al., 2010; Shen et al., 2013).
Interestingly, the effects of metformin, thiazolidinediones, and
some other antidiabetic drugs are mediated through AMPK
activation. Previous studies have supported the notion that
AMPK working as a metabolic sensor of cellular adenosine
triphosphate (ATP) levels is an important therapeutic target of
aortic stiffness in cardiovascular diseases (CVDs) (Nagata et al.,
2004; Gu et al., 2014; Lin et al., 2016).

FIGURE 1 | Rb1 improves aortic compliance and restores acetylcholine-induced endothelium-dependent vasorelaxation. (A) Chemical structure of ginsenoside
Rb1. (B) After the addition of phenylephrine, cumulative doses of acetylcholine (1 × 10–9–1 × 10–5.5 M) were added to check the endothelial functions. (C) Peterson’s
elastic modulus (Ep). (D) Arterial stiffness index (β). (E) Cross-sectional compliance (CSC), (F) cross-sectional distensibility (CSD), (G) compliance coefficient (CC), and
(H) distensibility coefficient (DC). Data are mean ± SEM. n � 5–6, *p < 0.05 vs. Control; #p < 0.05 DM + Rb1 vs. DM.
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These studies prompted us to hypothesize that Rb1 might
alleviate the pathophysiological process of arterial stiffening in
diabetes via the AMPK pathway. We used an animal model of
type 1 diabetes to verify this hypothesis.

MATERIALS AND METHODS

Cell Culture and Treatments
Dulbecco’s modified Eagle’s medium (DMEM) supplemented
with 10% fetal bovine serum (FBS) and penicillin (100 U/ml)
or streptomycin (100 μg/ml) maintained MOVAS-1 murine
primary aortic vascular smooth muscle cells (VSMCs) (ATCC;
Cat. no CRL-2797TM) at the temperature of 37°C with 5% CO2

atmosphere in a humid incubator. Upon reaching 60–70%
confluence, cells were incubated with control medium (NC,
5.5 mmol/L) and serum-free DMEM overnight before
treatment with high-glucose medium (HG, 30 mmol/L) and
Rb1. VSMCs were stimulated with Rb1 (40 μM) 2 h before HG
(30 mM) stimulation and cultured for an additional 48 h. For the
HG + Rb1 + compound C (p-AMPK inhibitor) group, VSMCs
were pretreated with compound C (10 μM) for 2 h before Rb1
treatment. Compound C was purchased from Selleck (Houston,
Texas, the United States) and dissolved in dimethylsulfoxide
(DMSO). Cells and supernatant were harvested simultaneously.

Mice and Drug Treatment
This study followed the animal protocols approved by the Animal
Care Committee of Shandong University and the Guide for the
Care and Use of Laboratory Animals published by the National
Institutes of Health. All mouse husbandry and experiments
followed the Animal Management Rule of the Ministry of
Health of the People’s Republic of China (Document No. 55,
2001). Male C57BL/6 mice (6–8 weeks, 25–28 g, Vital River
Laboratories, Beijing, China) were classified into control and
diabetes mellitus groups (CON and DM (n � 15 and 90)). As
mentioned earlier, streptozocin (STZ) induced diabetes (Wang
et al., 2014; Zhang et al., 2016). In brief, mice (n � 75 and 15) from
DM and CON groups were randomly selected for treatment with
Rb1 dissolved in normal saline and intraperitoneally (ip) once
every day for 8 weeks in DM + Rb1 and CON + Rb1 groups. The
dose range of Rb1 (10–60 mg/kg) was based on other
experimental studies (Jiang et al., 2007; Zhao et al., 2010).

Blood Pressure Measurement
As described previously, systolic and diastolic blood pressures
(SBP and DBP) were measured using a noninvasive tail-cuff
system (Softron BP-98A; Softron, Tokyo, Japan) (Kanda et al.,
2005) and used for calculating pulse pressure (PP).

Arterial Stiffness Assessment
As previously mentioned, the Vevo2100 imaging system (Visual
Sonics, Toronto, Canada) was utilized to perform aortic
ultrasonography (Zhang et al., 2016). Isoflurane (1% in O2)
was inhaled by and anesthetized mice. Two-dimensional (2D),
M-mode, and pulsed wave (PW) Doppler was used to obtain
images. Three continuous cardiac cycles were averaged to get all

measurements conducted by an operator. Minimum and
maximum (end-diastolic, Dd; peak systolic, Ds) diameters
were obtained from M-mode. 2D ultrasonography was applied
to determine Peterson’s elastic modulus (Ep), arterial stiffness
index (β), cross-sectional distensibility and compliance (CSD and
CSC), and distensibility and compliance coefficients (DC and
CC), which were estimated automatically by the following
formulae (Pannier et al., 2002):

EP � (ΔPΔD) ×Dd � [Ps − Pd

Ds −Dd
] ×Dd(106dym

cm2
)

β � ln
Ps/Pd

([Ds −Dd]/Dd),

CSC � ΔV/L
ΔP � ΔA

ΔP � π × (2Dd × ΔD × ΔD2)
4ΔP (mm2 · kPa−1),

CSD � ΔA: [A × (Ps − Pd)] � π × [(Ds

2
)2

− (Dd

2
)

2

]: [π × (Dd

2
)

2

× (Ps − Pd) × 0.13332] � 2Dd × ΔD +Dd2

Dd2 × ΔP (kPa−1 · 10−3),

CC � 2Dd × ΔD +Dd2

4ΔP (mm2 · kPa−1),
DC � 2Δd

Dd × ΔP (kPa−1 · 10−3)
where Ps and Pd are SBP and DBP, respectively; ΔP, ΔD, and ΔA
represent the changes in BP, vascular diameter, and aortic cross-
sectional lumen area, respectively; Ds and Dd stand for systolic
and diastolic diameters, respectively; A refers to aortic cross-
sectional lumen area.

Measurement of Relaxant Responses in the
Aortic Rings
Measurement was implemented as described previously (Chan
et al., 2013). Briefly, mice were anesthetized, whose thoracic
aortas were cut from the aortic arch to the diaphragm and
immediately put into dishes containing Krebs buffer maintained
at 4°C. Adipose tissues were cut off from the aortas before being cut
into 3 mm segment rings. Then, the segments were mounted
cautiously between two platinum hooks in 10ml of organ baths,
maintaining Krebs buffer at 37°C and continuously bubbled with
95%O2 to 5% CO2. After the 60 min equilibration of resting tension
determined by normalization, each aortic ring was added with the
cumulative doses of KCL (20–80mM) to detect their activation.
After the wash-out of KCL, the addition of one-dose phenylephrine
at 1 × 10–7 M was performed until aortic rings maintained 50% of
maximum tension. Endothelial functions were checked by adding
the cumulative doses of acetylcholine (1 × 10–9–1 × 10–5.5 M). The
plateau of responses was followed by the addition of all doses.

Experimental Procedure
At last, mice were dissected and perfused with saline before being
anesthetized with 1% pentobarbital sodium, which was then
sacrificed, with thoracic aortas removed from the chest and
rinsed with saline. A portion of the aorta (approximately
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5 mm) underwent 72 h fixing in 4% paraformaldehyde, followed
by the dehydration of tissues by ethanol and their embedment in
paraffin, and the use of cross-sections (a thickness of 5 μm) for
histological and morphometric analyses. Liquid nitrogen was
used to freeze the rest of the aortas at once and store them at
−80°C for subsequent molecular experiments.

Histological and Morphometric Analyses
Sirius red and Verhoeff-Van Gieson (VVG) staining were used to
stain the sections so as to shape and arrange collagen and elastin
content, respectively. Sirius red slides are imaged using circularly
polarized light showing newer, thinner collagen fibers as green
and older, thicker fibers as red/orange. The VVG slides show both
collagen (pink) and elastic fibers (black). The ratio of perivascular
collagen area (PVCA) to the luminal area (LA) was utilized to
represent perivascular collagen content for normalizing PVCA
around vessels in a variety of sizes. Pictures were obtained under a
microscope (BX52, Olympus, Tokyo, Japan) and analyzed using
Image-Pro Plus 5.0 software (Media Cybernetics, US). The
positive area and total tissue area of each image were obtained
by analyzing the images. Collagen and elastic fibers content were
quantified as a percentage of total tissue area. Histological and
morphometric analyses were conducted by analyzing no less than
three fields per section.

Immunohistochemical and
Immunofluorescence Staining
Regarding immunohistochemistry, 0.05 M sodium citrate buffer
(a pH value of 6.0) was applied to perform heat-mediated antigen
retrieval after the rehydration of tissue sections (5 μm). Three
percent of hydrogen peroxide and bovine serum albumin were
used to prevent endogenous peroxidase activity and non-specific
staining, respectively. Primary antibodies against collagens Ι and
Ⅲ, 3-ni0trotyrosine (Abcam, Cambridge, the United Kingdom),
and fibronectin (Proteintech Group, Chicago, Illinois (IL), the
United States) were added and incubated at 4°C in a humidified
box for one night. A secondary antibody (Beijing Zhong Shan-
Golden Bridge Biological Technology Co., Ltd. China) was
applied to incubate the sections washed with phosphate-
buffered saline at 37°C for half an hour for
immunohistochemical staining. Diaminobenzidine (DAB)
solution (Beijing Zhong Shan-Golden Bridge Biological
Technology Co., Ltd. China) was used to incubate the sections
washed with phosphate-buffered saline. Hematoxylin was used to
counterstain nuclei. For immunofluorescence staining, the
incubation of the sections was performed by fluorescein
isothiocyanate (FITC)-conjugated antibodies (a ratio of 1:50,
ZSGB-BIO, Beijing, China). 4′6-Diamidine-2-phenylindole
dihydrochloride (DAPI) (a ratio of 1:200, Roche, Germany)
was used to stain nuclei. The observation of tissue sections
was conducted using a FV 1000 SPD laser-scanning confocal
microscope (Olympus, Japan). The software Image-Pro Plus 5.0
was used to analyze the obtained images. The area and IOD of
each image were obtained by analyzing the images, and the mean
intensity can be calculated by IOD/area. The analysis of no less
than three fields per section was carried out.

Assessment of Intracellular ROS Levels
The measurement of reactive oxygen species (ROS) production in
VSMC was conducted by 2′,7′-dichlorodihydro-fluorescein
diacetate (DCFH-DA; Biotime), Amplex Red (Molecular
Probes, Invitrogen), and dihydroethidium (DHE; Biotime)
according to the instructions of manufacturers.

Western Blot Analysis
After separation by 8–10% sodium dodecyl sulfate (SDS)-
polyacrylamide gel electrophoresis, proteins were moved to
polyvinylidene difluoride membranes (0.22 and 0.45 μm,
Millipore, Billerica, Massachusetts (MA), the
United States). Overnight incubation was performed using
antibodies against phospho-AMPK (Thr172), AMPK,
collagens Ι and Ⅲ (Proteintech Group, Chicago, IL, the
United States), phospho-Smad2 and Smad3, NOX1, NOX4
(Abcam, Cambridge, the United Kingdom), Smad2/3
(Millipore, Billerica, MA, the United States),
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
β-actin (Beijing Zhong Shan-Golden Bridge Biological
Technology Co., Ltd. China), matrix metalloprotein (MMP-
9), and transforming growth factor-β1 (TGFβ1). The
secondary antibody conjugated to horseradish peroxidase
(Beijing Zhong Shan-Golden Bridge Biological Technology
Co., Ltd. China) was used for the 1.5 h incubation of the
membranes washed with Western washing buffer (TBS-T) at
ambient temperature. The ECL kit (Millipore, Billerica, MA,
the United States) was used to visualize immunoreactive
bands, and the ChemiDoc™ Touch Imaging System (Bio-
Rad Laboratories, Hercules, California, the United States)
was utilized to obtain pictures.

Real-Time Quantitative
Reverse-Transcriptase PCR (RT-qPCR)
A ribonucleic acid (RNA) extraction kit (Qiagen) was employed
to prepare total cellular RNA. The following primers were used
to perform real-time reverse-transcriptase quantitative
polymerase chain reaction (RT-qPCR). For the analysis of
vascular NOX1 messenger RNA (mRNA), the primer
sequences are as follows: forward and reverse: 5′GCTCCA
GACCTCCATTTGACA3′ and 5′AAGGCCAAGGCAGTT
CCGAG3′, respectively. For the analysis of vascular NOX2
mRNA, the primer sequences are as follows: forward and
reverse: 5′CACTTCACACGGCCATTCAC3′ and 5′ACC
GAGTCACAGCCACATAC3′, respectively. For the analysis
of vascular NOX4 mRNA, the primer sequences are as
follows: forward and reverse: 5′ATGTGGGCCTAGGATTGT
GT3′ and 5′CCTGCTAGGGACCTTCTGTG3′, respectively.
For the analysis of GAPDH mRNA the primer sequences are
as follows: forward and reverse: 5′GCTGTGATCCTGAGC
TCCGAGAC3′ and 5′CATGTGGGCCAGGTCCACCAC3′,
respectively. For the analysis of VSMC NOX1 mRNA, the
primer sequences are as follows: forward and reverse: 5′GGT
TGGGGCTGAACATTTTTC3′ and 5′TCGACACACAGG
AATCAGGAT3′, respectively. For the analysis of VSMC
NOX4 mRNA, the primer sequences are as follows: forward
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and reverse: 5′GAAGGGGTTAAACACCTCTGC3′ and
5′ATGCTCTGCTTAAACACAATCCT3′, respectively.
Synergy brands (SYBR) green was used as fluorescence dye
to carry out reactions on a real-time PCR system (LightCycler
96, Roche). Experiments were conducted twice. The 2-△△CT

method was adopted in relative expression analysis.

Statistical Analysis
Data were reported to be the mean ± standard error mean (SEM).
First, the homogeneity of variance and Kolmogorov–Smirnov
tests were performed. Then, the one-way analysis of variance
(ANOVA) was conducted to analyze multiple groups, and post
hoc individual comparisons were made. Finally, the least
significant difference (LSD) test was performed to compare the
means of every group and other columns in the case of
homogeneous variance, and p-value was obtained by
performing Dunnett’s T3 test in the case of inhomogeneous
variance. Differences were considered statistically significant at
p < 0.05. Statistical Product and Service Solutions (SPSS) v20.0
(SPSS Inc., Chicago, IL, the United States) was used in all
statistical analyses.

RESULTS

Characteristics of the Mice at the End of
Experiments
At baseline, these groups showed no difference in BP, blood
glucose, and body weight. In order to evaluate the relationship
between Rb1 and body weight, parameters of mice, including
blood glucose and BP, were measured after an 8-week Rb1
treatment. As shown in Table 1, the DM group had lower
DBP and higher PP and PP/MBP compared with the CON
one but saw a drop after Rb1 treatment (40 and 60 mg/kg).
Body weight showed no significant differences after Rb1
treatment (Table 1). Glucose levels presented a decreasing
trend in the high-dose group compared with those in the DM
one, whereas both groups were not statistically different (p �
0.537).

Recovery of Endothelial Function and Aortic
Compliance Following Rb1 Treatment
In the present study, we examined endothelial functions and
aortic compliance. In the DM group, endothelium-dependent
vasodilatory responses to acetylcholine were decreased compared
with those in the CON group (Emax � 56.0 ± 8.8% vs. Emax �
83.3 ± 4.7%), indicating that DM has induced endothelial
dysfunction. These defects were improved by Rb1 treatment
(Emax � 74.1 ± 8.1%) (Figure 1B).

Reflecting worse aortic compliance, the increase of Ep and
arterial stiffness index in DM mice (Figures 1C,D) was reverted
after treatment with Rb1 as well. In contrast, Rb1-treated mice
showed an increase in CSD, CSC, DC, and CC compared with DM
ones (Figures 1E–H). It was observed that Rb1 had a maximum
effect at 40mg/kg, which was thus chosen for further research.

Rb1 Alleviated DM-Induced Aortic
Remodeling
Collagen fibers were stained bright red, shown by Sirius red
staining. Evaluated by collagen fiber area and PVCA/LA ratio,
adventitial collagen accumulation showed an enhancement in DM
mice relative to CON ones and was prevented by Rb1 treatment
(Figures 2A,B). Additionally, diabetic mice exhibited higher values
of PVCA/LA compared with CON ones, whereas enhanced values
were reversed after treatment with Rb1 (Figure 2A). Elastic fibers
were black shown by VVG staining, which suggested that focal
irregularities and insufficient normal wavy contraction in the
arrangement of elastic fibers in DM mice were not found in
CON ones. Rb1 treatment contributed to improvement in the
elastic lamina, with fewer inordinate patterns in the CON group
than in the DM one (Figure 2B). Fibronectin in the adventitia was
observed in all groups, whose accumulation was higher in the
adventitia of the DM group than that of the CON one but regressed
by Rb1 (Figure 2C).Moreover, the immunohistochemical detection
of collagens I and III demonstrated that the aorta of the DM group
had stronger immunostaining than that of the CON one (Figures
2D,E). Similarly, the protein expressions of collagens I and III

TABLE 1 | Characteristics of the mice at the end of experiment.

Control Rb1 DM DM + Rb1
(10 mg/kg)

DM + Rb1
(20 mg/kg)

DM + Rb1
(40 mg/kg)

DM + Rb1
(60 mg/kg)

HR (bpm) 626.143 ±
17.856

618.6 ± 11.717 610.6 ± 29.828 647.421 ± 16.831 591.529 ± 20.268 613.5 ± 18.853 612.632 ± 7.626

BW (g) 30.2 ± 0.961 29.575 ± 0.630 23.75 ± 1.386* 25.675 ± 0.669* 25.462 ± 0.662* 24.628 ± 0.434* 25.65 ± 0.715*
SBP (mmHg) 106.6 ± 5.653 102.3333 ±

6.386
102.25 ± 3.240 100.8 ± 7.276 106.25 ± 3.966 113.857 ± 4.295# 105.889 ± 1.867

DBP
(mmHg)

78 ± 4.868 79.333 ± 9.333 60.438 ± 2.871* 66.4 ± 3.027 77 ± 4.916# 85.5 ± 2.754# 80.778 ± 3.833#

PP (mmHg) 20.75 ± 2.955 23 ± 4.359 41.813 ± 4.078* 34.4 ± 5.609 29.25 ± 7.825 25.429 ± 3.741# 25.111 ± 2.816#

PP/MBP 0.3325 ± 0.1021 0.2751 ± 0.0668 0.4826 ±
0.0249*

0.4367 ± 0.0563 0.3439 ± 0.0992 0.2752 ± 0.0432# 0.3148 ± 0.0389#

GLU
(mmol/L)

8.488 ± 0.910 8.486 ± 1.063 25.263 ± 2.045* 24.362 ± 2.018* 22.233 ± 1.810* 23.222 ± 2.960* 21.500 ± 1.877*

Data are mean ± SEM, n � 5–8 per group. HR, heart rate; BW, body weight; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; MBP, mean blood pressure;
GLU glucose.* p < 0.05 vs. Control; # p < 0.05 DM + +Rb1 vs. DM
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exhibited higher levels in DM mice than in CON ones (Figures
2F,G). The accumulation of collagens I and III in diabetes was
regressed after treatment with Rb1 (Figures 2D–G).

AMPK Involved in the Effects of Rb1 on
Collagen Accumulation and TGFβ1-Smad2/
3 Signaling Pathway
Aorta extracts from DM mice saw a decrease in AMPK
phosphorylation and an increase in TGF β1 and phospho-Smad2/

3 expressions compared with those from control ones (Figures
3A–D). After an 8-week Rb1 treatment, the inhibition of
AMPK phosphorylation was reduced in Rb1-treated DM
mice compared with the DM ones (Figure 3A). Meanwhile,
TGFβ1 and phospho-Smad2/3 were suppressed in expression
level (Figures 3B–D).

To clarify the potential role of Rb1 treatment in this
signaling pathway in vitro, VSMCs were pretreated with
the concentration gradient of Rb1 (from 10 to 60 μM) 2 h
before high-glucose (30 mM) (HG) stimulation and were

FIGURE 2 |Rb1 reduces DM-induced aortic remodeling (A) Sirius red staining (bright field and dark field) (scale bar 50 μm). Collagen fibers were stained bright red.
Semiquantitative analysis of collagen fibers. Perivascular collagen content, shown as the perivascular collagen area/luminal area (PVCA/LA) ratio. (B) Elastic fibers shown
by Verhoeff-Van Gieson staining (scale bar 50 μm). Elastic fibers are black, VSMCs are light red, and collagen fibers are pink. Semiquantitative analysis of elastic fibers.
(C) Fibronectin accumulation (green: fibronectin, red: elastic lamina, blue: nuclei, scale bar 50 μm). Semiquantitative analysis of fibronectin expression.
Representative immunohistochemical staining (D), Western blot bands (F), and semiquantitative analysis of collagen I expression (scale bar 20 μm). Representative
immunohistochemical staining (E), Western blot bands (G), and semiquantitative analysis of collagen Ⅲ expression (scale bar 20 μm). Data are mean ± SEM. n � 5–6,
*p < 0.05 vs. Control; #p < 0.05 DM + Rb1 vs. DM.
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cultured for an additional 48 h. We detected the levels of
phospho-AMPK, TGFβ1, and phospho-Smad2/3 and
selected 40 μM as the Rb1 treatment concentration
(Figures 3E–G). Then, VSMCs were stimulated with Rb1
(40 μM) 2 h before high-glucose (30 mM) (HG) stimulation
and were cultured for an additional 48 h. For the HG +
Rb1+compound C group, VSMCs were pretreated with
compound C for 2 h before the Rb1 treatment. The results
exhibited that Rb1-mediated increase of phospho-AMPK,
reduction of TGFβ1 and phospho-Smad2/3 in DM mice, and
inhibition of collagenⅠand collagenⅢ accumulation were
partly abolished by treatment with compound C, an
inhibitor of AMPK (Figures 4A–F).

Rb1 Reduced the Collagen Deposition,
MMP-2, and MMP-9 Expression in VSMC
In addition to the TGFβ1-phospho-Smad2/3 pathway involved in
vascular remodeling, we also detected MMPs expression and
activity in diabetes and HG-treated VSMC. The results showed
that the levels of MMP-2 and MMP-9 were increased (Figures
5A,B). However, the above alterations were partly reversed by
Rb1. Meanwhile, Rb1 treatment (40 μM) inhibited the protein
expression of MMP-2 and MMP-9 compared with high glucose
(HG) without Rb1 treatment (Figures 5C,D). These effects were
eliminated by treatment with compound C, an inhibitor of
AMPK. Thus, Rb1 suppressed HG-induced collagen deposition
and MMPs expression via the AMPK pathway.

FIGURE 3 | AMPK pathway is involved in the effect of Rb1 on DM- and HG-mediated TGFβ1, Smad2/3, and collagen expression. Representative Western blot
bands and semiquantitative analysis of (A) phosphorylated AMPK (p-AMPK), (B) TGFβ1, (C) phosphorylated Smad2 (p-Smad2), and (D) phosphorylated Smad3
(p-Smad3) in aorta extracts. (E–G) VSMCs were treated with Rb1 at doses of 10, 20, 40, and 60 μM in a high-glucose medium. Representative Western blot bands and
semiquantitative analysis of phosphorylated AMPK (p-AMPK), TGFβ1, phosphorylated Smad2 (p-Smad2), and phosphorylated Smad3 (p-Smad3).
Semiquantitative analysis of above proteins expressions. Data are mean ± SEM. n � 5–6, *p < 0.05 vs. Control; #p < 0.05 DM + Rb1 vs. DM and HG + Rb1 vs. HG.
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Rb1 ImprovedDM-InducedOxidative Stress
To gain further insights into the potential protective mechanism of
Rb1 in aortic remodeling, we assessed oxidative stress using 3-NT
staining, an oxidative stress-induced lipid peroxidation marker. It was
demonstrated that 3-NT staining was more evident in diabetic mice
than in controls (Figure 6A). Staining was most intense in the
endothelium, which is less in the adventitia and relatively minimal
in the medial layer. Rb1 treatment prevented 3-NT accumulation in
the endothelium and adventitiamarkedly. To further confirmwhether
Rb1 could decrease the production of ROS in vitro. ROS was assessed
by three different methods, DCFH-DA, Amplex Red, and DHE in

VSMCs (Figures 6B–F). Cells pretreated with Rb1 or compound C
were exposed to high glucose (HG) for 48 h. Rb1 attenuated the HG-
induced ROS level in cells. The protective effect of Rb1 was eliminated
by treatment with compound C (Figures 6B–F), indicating that the
inhibitory effect of Rb1 on ROS was AMPK-dependent.

NOX Isoforms Involved in Effects of Rb1 on
DM-Induced Oxidative Stress
To clarify the potential effect of Rb1 treatment on the
inhibition of oxidative stress, the mRNA levels of NOX1,

FIGURE 4 |Rb1-mediated reduction of TGFβ1 and phospho-Smad2/3 and collagen accumulation are partly abolished by treatment with compound C, an inhibitor
of AMPK. VSMCs were treated with Rb1 at doses of 40 μM in a high-glucose medium and pretreated with compound C. Representative Western blot bands and
semiquantitative analysis of (A) phosphorylated AMPK (p-AMPK), (B) TGFβ1, and (C) phosphorylated Smad2 (p-Smad2). (D) Phosphorylated Smad3 (p-Smad3). (E)
Collagen I and (F) collagen III. Data are mean ± SEM. n � 5–6, *p < 0.05 vs. Control; #p < 0.05 HG + Rb1 vs. HG.
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NOX2, NOX4, and other NOX isoforms in aorta extracts were
detected, indicating the inhibiting effect of Rb1 treatment on
the mRNA expression levels of NOX1 and NOX4, which
exhibited a rise in DM mice (Figures 7A–C). However, the
DM group was not significantly different from the DM + Rb1
one in NOX2 (Figure 7B). Furthermore, the mRNA levels of
NOX1, NOX2, and NOX4 in VSMCs were detected. The
results showed that Rb1 had the same effect as aorta
extracts (Figures 7D–F), and the changes of NOX1, NOX2,
and NOX4 were confirmed in protein expression level
(Figures 7G–I). In addition, these effects on the inhibition
of NOX1 and NOX4 were partly eliminated by treatment with
compound C, an inhibitor of AMPK.

DISCUSSION

In the present study, we found that Rb1 could alleviate arterial
stiffness by reducing aortic remodeling. The beneficial effects of
Rb1 on vascular stiffness were achieved by suppressing oxidative
stress and inhibiting the expression of collagenⅠ, collagen Ⅲ,
MMPs, and TGFβ1/Smad2/3, which were, at least partially,
AMPK-dependent.

Rb1 is a major active component of Panax ginseng, whose
protective action against a few CVDs (Bai et al., 2018; Zhou et al.,
2019), including abdominal aortic aneurysm (Zhang et al., 2015),
hypertension-induced carotid arterial remodeling (Lin et al.,
2015), myocardial ischemia/reperfusion injury (Wu et al.,

FIGURE 5 | Rb1 suppresses MMP-2 and MMP-9 expression. Representative Western blot bands and semiquantitative analysis of (A) MMP-2 and (B) MMP-9
protein expression in aorta. Representative Western blot bands and semiquantitative analysis of (C) MMP-2 and (D) MMP-9 protein expression in VSMCs. Data are
mean ± SEM. n � 5–6, *p < 0.05 vs. Control; #p < 0.05 DM + Rb1 vs. DM and HG + Rb1 vs. HG.
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2011; Xia et al., 2011), and hypertrophy (Kanda et al., 2005; Jiang
et al., 2007), has been recently proved by in vivo and in vitro
studies. Previous research discovered that Rb1 led to a decline in
the accumulation of lipid and the area of atherosclerotic plaques
through the skew of macrophages to the M2 phenotype and the
improvement of lipid metabolism and autophagy in macrophage
foam cells (Qiao et al., 2017; Zhang et al., 2018). Nevertheless, the
effect of Rb1 on vascular diseases under hyperglycemia is unclear,
whose contributing molecular mechanisms remain to be
elucidated. This study found that treatment with Rb1 could
alleviate DM-induced arterial stiffness.

As a key pathway linking diabetes to CVDs, arterial stiffness
can decrease diastolic pressure and increase PP. Philips, J C et al.
have demonstrated that PP increased and concomitantly
decreased in DBP according to T1DM duration, in agreement
with accelerated arterial stiffening due to chronic hyperglycemia.
They have confirmed the validity of using the index PP/MBP
previously proposed as a surrogate marker of arterial stiffness
(Philips et al., 2009). It is a complex phenomenon that arises from
the qualitative and quantitative variations in arterial wall
components, giving rise to the redistribution of mechanical
loads towards elastic materials, endothelial dysfunction,

FIGURE 6 | Rb1 improves DM and HG-induced oxidative stress. (A) Immunohistochemical staining and semiquantitative analysis of 3-nitrotyrosine (3-NT). ROS
was assessed by three different methods: (B) DCFH-DA, (C) Amplex Red, and (F) DHE in VSMCs (D) ROS levels. in each group. Original magnification× 200. (E)
Semiquantitative analysis of ROS levels in each group. The positive control is the active oxygen donor from the DCFH-DA kit, which contains H2O2. Data are mean ±
SEM. n � 5–6, *p < 0.05 vs. Control; #p < 0.05 DM + Rb1 vs. DM and HG + Rb1 vs. HG.
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increased smooth muscle tone, the phenotypic modulation of
adventitial fibroblasts to myofibroblasts, and chronic
inflammation (Zhou et al., 2012). Research has shown that
Rb1 treatment could decrease PP and PP/MBP, restore DBP,
endothelial function, and aortic compliance, and suppress aortic
remodeling. Endothelial-independent relaxation (e.g., SNP-
induced relaxation) should be analyzed to confirm the possible
effects of Rb1 on smooth muscle cells in further study. Rb1
treatment failed to decrease glucose levels. Based on previous
studies, no consensus reports evaluated the effect of Rb1 on serum
glucose. In this study, glucose levels showed a decreasing trend in
the high-dose group compared with those in the DM one,
whereas both groups were not statistically different (p �
0.537). Rb1 protected arteries from stiffening, which was
independent of decreased glucose levels.

Previous studies have supported the notion that AMPKwas an
important therapeutic target of diabetes (Lin et al., 2016; Luo
et al., 2016), including DM-induced macrovascular complications
(Gu et al., 2014; Nagata et al., 2004). AMPK played a key role in
protecting vascular dysfunction from hyperglycemia involving
reversing oxidant damage (Sambuceti et al., 2009), reducing
inflammation (Ha et al., 2014), and attenuating endothelial
dysfunction (Tang et al., 2016). Of interest, multiple molecular
mechanisms of Rb1 treatment have been proposed, including
reduction of oxidative stress, apoptosis, and protein synthesis, via
AMPK-dependent pathway and some other pathways (Cho et al.,
2004; Zhao et al., 2010; Xia et al., 2011; Shen et al., 2013; Zhang
et al., 2015). In our study, we found that Rb1 could reduce the
suppression of AMPK caused by hyperglycemia. Diabetes is
accompanied by oxidative stress characterized by elevated ROS

FIGURE 7 |NOX isoforms involved in the effects of Rb1onDM-inducedoxidative stress.Quantitative analysis of (A)NOX1 (B)NOX2and (C)NOX4mRNAexpression in the
aorta. Quantitative analysis of (D) NOX1 (E) NOX2 and (F) NOX4mRNA expression in VSMCs. Representative Western blot bands and semiquantitative analysis of (H) NOX1 (I)
NOX2 and (G) NOX4 protein expression in VSMCs. Data are mean ± SEM. n � 5–6, *p < 0.05 vs. Control; #p < 0.05 DM + Rb1 vs. DM and HG + Rb1 vs. HG.
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levels in the cardiovascular system (Jay et al., 2006). We found
oxidative stress in aortic sections from diabetic mice and
abundant ROS production in VSMCs, consistent with other
reports (San Martín et al., 2007).

The anti-oxidative stress mechanisms of Rb1may involve both
direct ROS scavenging (Lü et al., 2012) and indirect signaling
effects. Recent studies have demonstrated that activating AMPK
contributed to reversing oxidant damage (Sambuceti et al., 2009)
partly by reducing ROS generation and increasing nitric oxide
(NO) production (An et al., 2016). The NADPH oxidases protein
family was a major source of ROS in vascular cells (Brown and
Griendling, 2009; Lassègue and Griendling, 2010; Amanso and
Griendling, 2012). Our findings have supported that Rb1
treatment inhibited DM-induced overexpression of NOX1 and
NOX4, but not NOX2. These benefits in suppressing NADPH
oxidase and ROS production were partly eliminated by treatment
with compound C, an inhibitor of AMPK. It seemed that Rb1
treatment took part in inhibiting ROS production, at least
partially, via the AMPK pathway. As for why Rb1 did not
suppress NOX2, the relative study needs to be performed in
the future.

Previous studies have demonstrated that the activation of
matrix metalloproteinase (MMP)-2/9 was strongly correlated
with the disorganization, stiffness, and calcification of elastic
fibers and the dysfunction of vasomotion in the arterial
vasculature (Longo et al., 2002; Yasmin et al., 2005; Chung
et al., 2009). The lack of elastin fibers or collagen deposition
in the arterial wall resulted in aortic remodeling and increased
stiffness (Sangartit et al., 2014; Herrmann et al., 2015; Li et al.,
2015). It was found that DM mice exhibited increased 3-
nitrotyrosine (NT) staining, MMP2/9 expressions and
perivascular fibrosis/lumen area, disorganized elastic, and
collagen fibers. Besides, the increased expressions of collagens
I and III indicated an increase in the deposition of collagen in the
DM group. Concomitant Rb1 treatment prevented the above-
mentioned changes and retained the normal morphology of
aortic specimens, which confirmed the anti-arterial stiffness
effect of Rb1.

Another important factor regulating collagen production in
aortic remodeling is the TGFβ1/Smad2/3 pathway, which is
closely related to oxidative stress. The data of this study
supported that TGF signaling got involved in the production
of HG-induced collagens and the accumulation of extracellular
matrices, which are in line with previous reports (Kubota et al.,
2003; Ha et al., 2016). Cytoplasmic signals are transmitted into
the intracellular domain by TGF-β via its type I and II receptors.
After direct phosphorylation by the TGF-β receptor I kinase,
Smad2 and Smad3 regulate target gene expression by shuttling
from the cytoplasm into the nucleus (Shi and Massagué, 2003). It
was interesting to notice that Rb1 was shown to eliminate the
HG-induced overexpressions of TGFβ1 and phospho-Smad2/
3 in vitro, which suggested that the inhibitory effect of Rb1 on
the production of HG-mediated collagens may also be involved in
TGFβ1. Furthermore, this effect of Rb1 on collagen production
could be reversed by compound C, indicating that the effect of
Rb1 on the TGFβ1/Smad2/3 pathway was AMPK-dependent.

The findings supported that Rb1 had therapeutic potential
in preventing cardiovascular complications in patients with
diabetes mellitus, which was independent of decreased
glucose levels. Rb1 can reverse the inhibition of AMPK,
which, however, may not explain all of its therapeutic
effects. Notably, Rb1 was reported to have pleiotropic
cardiovascular protection effects on multiple molecular
targets independently, mainly including AMPK, PI3K/Akt,
NF-κB, and mitogen-activated protein kinase (MAPK)
pathways and endoplasmic reticulum stress. AMPK
participates in the cardiovascular protection effect of Rb1
against reperfusion injury/myocardial ischemia, coronary
atherosclerotic, heart failure, cardiac hypertrophy, and
fibrosis by mediating apoptosis (Kong et al., 2010),
autophagy (Qiao et al., 2017; Dai et al., 2019),
mitochondrial fission (Li et al., 2016), fatty acid
β-oxidation (Kong et al., 2018), and aging (Zheng et al.,
2020). In the meantime, the changes in Akt signaling are of
importance in atherosclerosis, cardiac hypertrophy, vascular
remodeling, and many other cardiovascular pathological
processes. Rb1 has a cardioprotective effect partly by
mediating PI3K pathway activation and Akt
phosphorylation and regulating inflammatory response
(Yang et al., 2019), oxidative stress (Chen et al., 2019),
apoptosis (Nanao-Hamai et al., 2019), autophagy (Yang
et al., 2018), and mitochondrial function (Zheng et al.,
2017). It was demonstrated that Akt and AMPK pathways
in the cardiovascular protection effect of Rb1 were cross and
independent of each other. Further studies are necessary to
elucidate its integration with other signaling pathways that are
predicted to account for this effect.

CONCLUSION

Ginsenoside Rb1 ameliorates DM-related vascular
remodeling, at least partially, via reducing the inhibition of
AMPK caused by hyperglycemia. This effect is obtained by
alleviating oxidative stress and suppressing TGFβ1/Smad2/3
pathway, leading to regulating collagen production and
degradation. Our findings have shown the effect and
possible mechanism of Rb1 in treatment for diabetic
macroangiopathy and diabetes-related complications
prevention.
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