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Diabetic kidney disease (DKD) is a major cause of end-stage kidney disease (ESKD)
worldwide. Mineralocorticoid receptor (MR) plays an important role in the development of
DKD. A series of preclinical studies revealed that MR is overactivated under diabetic
conditions, resulting in promoting inflammatory and fibrotic process in the kidney. Clinical
studies demonstrated the usefulness of MR antagonists (MRAs), such as spironolactone
and eplerenone, on DKD. However, concerns regarding their selectivity for MR and
hyperkalemia have remained for these steroidal MRAs. Recently, nonsteroidal MRAs,
including finerenone, have been developed. These agents are highly selective and have
potent anti-inflammatory and anti-fibrotic properties with a low risk of hyperkalemia. We
herein review the current knowledge and future perspectives of MRAs in DKD treatment.
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INTRODUCTION

Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease (ESKD) (Tuttle et al.,
2014) and clarifying the precise mechanisms responsible for DKD is becoming an urgent problem
worldwide. Based on recent advances, sodium glucose transporter (SGLT) 2 inhibitors and glucagon-
like peptide 1 (GLP-1) receptor agonists are attracting attention (Palmer et al., 2021; Sattar et al.,
2021); however, standard care for DKD in type 1 diabetes (T1D) and type 2 diabetes (T2D) for the
past two decades has been renin-angiotensin aldosterone system (RAS) blockade using angiotensin-
converting enzyme inhibitors (ACEis) or angiotensin II receptor blockers (ARBs) (Frimodt-Moller
et al., 2020). These drugs can improve the systemic blood pressure as well as intraglomerular
pressure, thereby reducing albuminuria in DKD (Persson et al., 2016).

Aldosterone exerts its classical action of sodium absorption and potassium excretion by binding to
mineralocorticoid receptor (MR) at the distal nephron (Good, 2007). Mounting evidence indicates
the localization of MR in various cell types, with its expression regulated by an aldosterone-
independent mechanism (Frimodt-Moller et al., 2020).

In DKD, overactivation of MR has been implicated as a driver of inflammation and fibrosis. Long-
term administration of ACEis and ARBs paradoxically increases aldosterone levels. This
phenomenon is known as aldosterone breakthrough and can cause renal injury (Goenka et al.,
2019). These findings indicate that RAS blockade is ideal for DKD, but hyperkalemia remains amajor
concern associated with the combination of ACEis/ARBs and MR antagonists (MRAs) (Epstein,
2016). A previous meta-analysis demonstrated that, in CKD patients with proteinuria, the addition of
MRAs to RAS inhibitors significantly reduced the blood pressure and proteinuria but increased the
risk of hyperkalemia (Bolignano et al., 2014; Currie et al., 2016).
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Recently, the Finerenone in Reducing Kidney Failure and
Disease Progression in Diabetic Kidney Disease (FIDELIO-
DKD) (Bakris et al., 2020) and the Finerenone in Reducing
Cardiovascular Mortality and Morbidity in Diabetic Kidney
Disease (FIGARO-DKD) (Pitt et al., 2021) showed the
beneficial effects of finerenone, a selective, nonsteroidal MRA,
on DKD without an increased risk for hyperkalemia. This result
has suggested new possibilities regarding the significance of MRA
use in DKD.

We herein review the current knowledge and future
perspectives concerning the use of MRAs for DKD.

THE RENIN-ANGIOTENSIN-
ALDOSTERONE SYSTEM IN DIABETIC
KIDNEY DISEASE
Circulating RAS pathway is regulated by a form of angiotensin I
(Ang I), obtained from angiotensinogen, that is mediated by renin
(Dostal and Baker, 1999). Angiotensin II (Ang II) binds to the
AT1 receptor (AT1R) in vascular smooth muscle cells and renal
tubules and then induces vasoconstriction and sodium
absorption, leading to an increase in blood pressure (Mehta
and Griendling, 2007). Ang II also binds to the AT1R in the
adrenal gland, thereby promoting aldosterone production
(Forrester et al., 2018). Aldosterone production is mediated by
aldosterone synthase, an enzyme encoded by CYP11B2, in the
adrenal cortex, and this process is stimulated by Ang II
(Hattangady et al., 2012). Aldosterone binds to MR, and the
bound MR translocates into the nucleus and then initiate the
transcription of target genes (Gomez-Sanchez and Gomez-
Sanchez, 2014).

Classical and non-classical tissue expression of MR have been
demonstrated. Classical MR expression is observed in the
epithelium of the collecting duct, an aldosterone-sensitive
distal nephron (Shibata et al., 2013). Although aldosterone and
glucocorticoid have equal affinity to MR, the specificity of
aldosterone signaling is protected by 11β-hydroxysteroid
dehydrogenase type 2 (11β-HSD2) (Funder, 2010). However,
MR activation in non-classical tissues occur in various
glomerular cell types, including mesangial cells, podocytes, and
endothelial cells, independent of 11β-HSD2 (Brem and Gong,
2015). It is worthy to note that glucocorticoid receptor (GR) also
plays an important role in the development of DKD. Deletion of
endothelial GR has been shown to accelerate renal fibrosis in
diabetic mice by dysregulated cytokine and chemokine
reprogramming, augmented Wnt signaling and suppression of
fatty acid oxidation (Srivastava et al., 2021b). Interestingly,
deletion of podocyte GR has been shown to upregulate Wnt
signaling and disrupt fatty acid metabolism in diabetic mice,
leading to enhanced glomerulosclerosis (Srivastava et al., 2021a).
Mechanistically, endothelium derived from podocyte-specific GR
knockout mice showed features of endothelial-to-mesenchymal
transition. These findings indicate that GR plays an
important role in the pathogenesis of DKD by
mediating podocyte-endothelial cell crosstalk (Srivastava et al.,
2021a).

Local activation of RAS in the kidney plays an important role
in the pathogenesis of DKD. The local intrarenal RAS functions
as a paracrine hormonal system, independent from the systemic
RAS (Culver et al., 2017). It has been shown that angiotensinogen,
a substrate for renin, is expressed in the kidney and plays a key
role in producing local Ang II (Kobori et al., 2003). Although
angiotensinogen levels in renal tissue are much lower than those
in the plasma, the renal renin activity is over 1000-fold higher
than the plasma renin activity (Nishiyama and Kobori, 2018).
Therefore, angiotensinogen can be easily cleaved by renin to form
Ang I. Accordingly, Ang I is converted to Ang II by ACE, which is
abundantly expressed in the kidney (Rosivall and Navar, 1983;
Casarini et al., 1997; Komlosi et al., 2003). Ang II is thought to be
generated in the interstitium and proximal tubule of the kidney
(Seikaly et al., 1990; Braam et al., 1993; Nishiyama and Kobori,
2018). Consistent with these observations, intrarenal levels of
Ang II are 1000-fold higher than its circulating levels in plasma,
suggesting that intrarenal Ang II is mainly generated from within
the kidney as a paracrine hormone (Erdos and Skidgel, 1985;
Nishiyama et al., 2002). In addition to intrarenal Ang II
generation, circulating Ang II is internalized in the kidney
through AT1 receptor (Gonzalez-Villalobos et al., 2008).
Although angiotensinogen is predominantly expressed in the
proximal tubule (Kobori et al., 2001; Lantelme et al., 2002;
Kamiyama et al., 2014), several studies have shown that the
glomerular angiotensinogen levels are increased under
pathophysiologic conditions, including diabetes (Ohashi et al.,
2010; Eriguchi et al., 2016). Under diabetic conditions,
hyperglycemia may increase angiotensinogen generation and
Ang II production in the kidney (Nishiyama and Kobori,
2018). Increased ang II has been shown to induce oxidative
stress, inflammation, and growth factors such as TGF-β and
vascular endothelial growth factor (VEGF), leading to the
development of DKD (Bahreini et al., 2021). AT1R and AT2R
have opposite functions. AT1R mediates inflammatory response
of Ang II. In contrast, AT2R counteracts the effects of AT1R and
exerts renoprotective effects by inhibiting oxidative stress,
inflammation, and apoptosis (Kaschina et al., 2017).

In addition to classical RAS pathway, ACE2/Ang (1–7)/Mas
axis also plays an important role in the pathogenesis of DKD
(Bader, 2013). ACE2 expresses in various tissues, including
kidney, heart, liver, lung, and neurons (Padda et al., 2015; Shi
et al., 2015; Culver et al., 2017; Xiao and Burns, 2017). In the
kidney, ACE2 is highly expressed in tubular and glomerular
epithelium, vascular smooth muscle cells, the endothelium of
interlobular arteries, and glomerular mesangial cells (Lely et al.,
2004). ACE2 generally counteracts functions of the conventional
ACE/Ang II/AT1R axis. It degrades Ang II into the vasodilator
and anti-proliferative Ang 1–7. Ang 1–7 downregulates oxidative
stress, inflammation, fibrosis through its receptor, MasR (Shi
et al., 2015).

Importantly, local renal aldosterone production has been
reported. Nishikawa et al. confirmed that human mesangial
cells express both CYP11B2 and aldosterone (Nishikawa et al.,
2005). They also demonstrated that mesangial aldosterone
productions are induced by Ang II, glucose, and low-density
lipoprotein, all of which are inhibited by atorvastatin (Nishikawa
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et al., 2005; Nishikawa et al., 2010). Consistent with these
observations, Siragy, et al. showed that FAD286, an
aldosterone synthesis inhibitor, attenuated urinary albumin
excretion and downregulated the glomerular expression of
transforming growth factor (TGF)-β, tumor necrosis factor
(TNF)-α, nuclear factor (NF)-κB, and interleukin (IL)-6 in
adrenalectomized STZ-induced diabetic rats (Siragy and Xue,
2008). Furthermore, local aldosterone production activates MR in
mesangial cells, leading to TGF-β/Smad2-mediated fibronectin
production (Lai et al., 2003).

It has been shown that the binding of aldosterone to MR
results in the activation of platelet-derived growth factor receptor
and epidermal growth factor receptor and the induction of PI3K/
MAPK signaling, thereby promoting the proliferation of kidney
fibroblasts (Huang et al., 2012). Aldosterone induces epithelial-
mesenchymal transition (EMT), a key process of interstitial
fibrosis, via MR-mediated, mitochondrial-originated, reactive
oxygen species (ROS)-dependent ERK1/2 activation in renal
tubular epithelial cells (Zhang et al., 2007). Aldosterone has
been shown to stimulate fibronectin production from renal
fibroblasts by MR-dependent JNK/c-jun phosphorylation as
well as MR-independent Src-mediated IgF1-R and subsequent
ERK1/2 activation (Chen et al., 2013). These data suggest that
aldosterone induces extracellular matrix production and renal
fibrosis in MR-dependent and MR-independent fashions.

Taken together, these findings indicate that increased
intrarenal RAS activation plays a key role via the MR
signaling pathway in the development of DKD.

REGULATION OF MINERALOCORTICOID
RECEPTOR AND EXCESS
MINERALOCORTICOID RECEPTOR
ACTIVATION IN DIABETIC KIDNEY
DISEASE

Cloning of human MR was reported in 1987 (Arriza et al., 1987).
MR is a steroid nuclear receptor family member. Aldosterone,
cortisol, and progesterone bind to MR with the same affinity,
although progesterone acts as an MR antagonist (Vodosek Hojs
et al., 2021). UnboundMR is localized in the cytosol and is bound
with its chaperones, such as Hsp90. Upon binding to ligands, the
chaperones are dislocated, and dimerization of the receptor
occurs (Butterworth, 2021). Ligand-bound and activated MRs
translocate into the nucleus and initiate transcription by binding
to hormone response elements (HREs) of target genes (Cole and
Young, 2017).

Systemic MR-deletion in mice was shown to result in renal salt
wasting, hyperkalemia, and increased plasma renin and
aldosterone levels, leading to death at one to two weeks after
birth (Berger et al., 1998). Recently, a study utilizing nephron-
specific MR-deleted mice was reported. In these mice, the
epithelial Na+ channel (ENaC) activity was abolished in the
cortical collecting duct but not in the distal convoluted tubule,
indicating that MR determines ENaC activity in the cortical
collecting duct but to a lesser degree in the distal convoluted

tubule (Wu et al., 2020). Regulation of ENaC by MR activation
occurs via activation of serum and glucocorticoid regulated
kinase-1 (SGK1) (Belden et al., 2017), an effector kinase. The
TGF-β/SGK1 pathway has been shown to play a crucial role in the
fibrotic response in the kidney (Cheng et al., 2010; Miao et al.,
2019). MR activation has been shown to occur via an aldosterone-
independent mechanism. Several factors, such as PKA, the small
guanosine triphosphatase (GTPase) RAS-related C3 botulinus
toxin substrate 1 (Rac1), and ubiquitin conjugating enzymes, are
involved in MR activation (Parker et al., 2018).

Crosstalk between Rac1 and MR has been extensively
investigated, as Rac1 activates MR in a ligand-independent
fashion (Nagase and Fujita, 2011). Shibata et al. demonstrated
that Rac1 activation in podocytes resulted in proteinuria without
affecting systemic aldosterone status (Shibata et al., 2008). They

FIGURE 1 | Regulation of MR in DKD. Upon the binding of aldosterone
to MR, the bound MR translocates into the nucleus and binds to the HRE of
the target gene to initiate transcription. CYP11B2 is expressed in the kidney,
and local aldosterone production occurs in DKD, leading to MR
overactivation. MR overactivation stimulates SGK1 and induces subsequent
inflammation/oxidative stress, apoptosis, and fibrotic process. Furthermore,
ligand-independent MR activation by Rac1 has been reported. MR:
mineralocorticoid receptor, DKD: diabetic kidney disease, HRE: Hormone
responsive element, SGK1: Serum and glucocorticoid-regulated kinase 1,
TGF-β: transforming growth factor beta, NF-κB: Nuclear factor κB, ROS:
reactive oxygen species, Rac1: The small guanosine triphosphatase (GTPase)
RAS-related C3 botulinus toxin substrate 1.
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also demonstrated that Rac1 activation is essential for salt-sensitive
hypertension via a MR-dependent pathway (Shibata et al., 2011).
Oxidative stress has been shown to induceMR activation in a ligand-
independent, Rac1-depenent manner (Kawakami-Mori et al., 2012;
Nagase et al., 2012). It has been shown that Rac1 is activated by high
glucose levels in cultured mesangial cells, and MR activation is
attenuated by pharmacologic and dominant-negative-mediated
Rac1 inhibition, indicating that Rac1 plays an important role in
MR activation under diabetic conditions (Yoshida et al., 2014).
Consistent with this observation, it was confirmed that EHT
1864, a Rac1 inhibitor, attenuated albuminuria along with
reducing pathological glomerular changes in KK-Ay mice
(Yoshida et al., 2014). Rac1 activation is associated with
dysregulation of podocyte actin cytoskeleton dynamics, leading to
the development of glomerulosclerosis (Blattner et al., 2013).
Hirohama et al. reported that the Rac1 inhibitor NSC23766
attenuated high-salt-induced albuminuria in T2D db/db mice
with uninephrectomy (Hirohama et al., 2021). They observed
Rac1 activation in podocytes and SGK1 activation in the renal
cortex in these mice, all of which were downregulated by Rac1
inhibition, suggesting the involvement of the Rac1-MR signaling
pathway in DKD (Hirohama et al., 2021).

The regulation of MR in DKD is shown in Figure 1. Clinically,
the standard of care in DKD have been blockade of RAS with ACEis
or ARBs on top of glucose management (Frimodt-Moller et al.,
2020). As mentioned previously, aldosterone breakthrough is seen
during treatment with RAS inhibitors. Furthermore, MR is
overactivated as described above. Therefore, MR has been
implicated as an important therapeutic target in DKD patients
who are taking ACEi and/or ARBs (Frimodt-Moller et al., 2020).
Steroidal MRAs have been clinically used. Recently, nonsteroidal
MRAs have been developed (Al Dhaybi and Bakris, 2020; Wada
et al., 2021; Wan et al., 2021). Differences in steroidal and
nonsteroidal MRAs are shown in Table 1. Significance of MRAs
use in DKD treatment will be described in following sections.

STEROIDAL MINERALOCORTICOID
RECEPTOR ANTAGONIST

Spironolactone
Spironolactone is a first-developed MRA, and its structure is
based on progesterone, which has an antagonistic effect on MR
(Yang and Young, 2016). Spironolactone binds to MR at the same

site of aldosterone (Vodosek Hojs et al., 2021). As spironolactone
is not a selective MRA and has an agonistic effect on progesterone
receptor as well as an antagonistic effect on androgen receptor, its
use causes gynecomastia (Funder, 2019). The effects of
spironolactone on DKD have been widely investigated.

• Basic Studies

Spironolactone has been shown to attenuate aldosterone-
induced apoptosis in cultured mesangial cells by activating the
Wnt signaling pathway (Zhu et al., 2013). Spironolactone has
been shown to attenuate high-glucose-induced podocyte
apoptosis (Lee et al., 2009). Consistent with this observation,
spironolactone has been shown to prevent high-glucose-induced
podocyte injury by reducing SGK1 and NADPH oxidase activity
(Toyonaga et al., 2011).

Fujisawa et al. demonstrated that spironolactone attenuated
the MR activation-mediated plasminogen activator inhibitor
(PAI)-1 expression, TGF-β expression, macrophage infiltration,
and renal fibrosis in streptozotocin (STZ)-induced diabetic rats
(Fujisawa et al., 2004). Interestingly, Taira et al. showed that
spironolactone prevented the induction of renal CYP11B2
mRNA expression in uninephrectomized STZ-induced diabetic
rats (Taira et al., 2008), suggesting that spironolactone inhibits
local aldosterone production.

Integrin β1 and β3 play important roles in maintaining
podocyte structure. Li et al. demonstrated that spironolactone
prevented podocyte structural destruction by decreasing integrin
β1 and increasing integrin β3 under high-glucose conditions (Li
et al., 2015). Furthermore, spironolactone has been shown to
ameliorate podocytic adhesive capacity by restoring the integrin
α3 expression (Lin et al., 2010). Spironolactone has also been
shown to promote autophagy by inhibiting the PI3K/AKT/
mTOR signaling pathway and reducing the mechanical stress-
induced podocyte damage (Li et al., 2016). Consistent with this
observation, spironolactone has been shown to attenuate
glomerulosclerosis and interstitial fibrosis by promoting
autophagy in diabetic rats induced by a high-fat diet and low-
dose STZ. A mechanistical analysis revealed that spironolactone
prevented podocyte loss along with increasing Beclin1 and anti-
LC3B, markers of autophagy (Dong et al., 2019).

Spironolactone has been shown to attenuate aldosterone-
mediated renal tight junction (TJ) injury in T1D rats (Molina-
Jijon et al., 2017). In that study, the administration of

TABLE 1 | Differences between steroidal and nonsteroidal MRAs. Each MRA has different half-life and tissue distribution (Lentini et al., 2016; Agarwal et al., 2021; Wan et al.,
2021). Both of those drugs can cause hyperkalemia. However, nonsteroidal MRAs are thought to have less risk of hyperkalemia because of their equal tissue distribution
in kidney and heart (Agarwal et al., 2021).

Spironolactone Eplerenone Esaxerenone Finerenone

Class Steroidal Steroidal Nonsteroidal Nonsteroidal
Half-life 14–16 h 4–6 h 18–25 h 2 h
Tissue distribution Kidney > Heart Kidney > Heart Kidney � Heart Kidney � Heart
Side effects Hyperkalemia Hyperkalemia Hyperkalemia Hyperkalemia

Hormonal (gynecomastia impotence menstrual irregularities) (Lower risk compared
to steroidal MRAs)
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spironolactone to STZ-induced diabetic rats prevented the
downregulation of TJ proteins, such as claudin-2, claudin-4,
claudin-5, and claudin-8, as well as occludin in the glomeruli
and proximal and distal tubules. These observations were
mediated by reduced oxidative stress through the
spironolactone-induced inhibition of SGK1 (Molina-Jijon
et al., 2017).

Several studies have demonstrated the beneficial synergistic
effects of spironolactone plus ARBs on DKD in diabetic animal
models (Hofni et al., 2014; Lee et al., 2011).

• Clinical Studies

Several RCTs to examine the add-on effects of spironolactone
on DKD have been reported. Spironolactone monotherapy
(25 mg daily) has been shown to reduce albuminuria in T2D
patients with DKD as effectively as combination therapy of
spironolactone 25 mg plus losartan 25 mg for 3 months
(Makhlough et al., 2014). At the end of that study, both
groups showed comparable rates of treatment success (70% in
the spironolactone group and 83.3% in the spironolactone plus
losartan group), defined as a more than 50% reduction in
albuminuria (Makhlough et al., 2014). Mehdi et al. described
albuminuria in T1D and T2D patients who all received lisinopril
(80 mg daily). In that study, participants were randomly assigned
to receive placebo, losartan (100 mg daily), or spironolactone
(25 mg daily) for 48 weeks. The UACR (urinary albumin-
creatinine ration) was decreased by 34.0% (95% confidence
interval [CI]: −51.0% to −11.2%, p � 0.007) in the
spironolactone group and by 16.8% (95% CI: −37.3% to
+10.5%, p � 0.20) in the losartan group (Mehdi et al., 2009).
Esteghamati et al. reported that 18-months administration of
spironolactone (25 mg daily) plus losartan (50–100 mg daily) was
more effective in reducing albuminuria in DKD patients than the
dual combination of ACEis and ARBs (Esteghamati et al., 2013).
Kato et al. demonstrated that 8-weeks administration of
spironolactone (25 mg daily) with conventional RAS inhibitors
significantly reduced albuminuria by 33% (95% CI: 22–54; p �
0.0002) in Japanese T2D patients, independent of blood pressure
reductions (Kato et al., 2015). A meta-analysis that investigated
the effects of spironolactone added to preexisting anti-
hypertensive treatment on DKD progression has been
reported. That study included 16 randomized control trials
(RCTs) in which spironolactone was added to existing
therapies, such as ACEis and/or ARBs. The combination of
spironolactone with RAS inhibitors resulted in a reduction in
blood pressure and proteinuria in patients with DKD (Hou et al.,
2015).

Recently, the proteomic prediction and renin angiotensin
aldosterone system inhibition prevention of early diabetic
nephropathy in type 2 diabetic patients with
normoalbuminuria (PRIORITY) study investigated whether or
not spironolactone could prevent the incidence of
microalbuminuria in T2D patients (defined as a urinary
proteomic pattern) (Tofte et al., 2020). After a median follow-
up of 2.51 years, spironolactone failed to prevent progression to
microalbuminuria in T2D patients (Tofte et al., 2020). It is worth

noting that spironolactone use has been shown to be associated
with worsening of glucose metabolism and increased HbA1c and
cortisol levels (Yamaji et al., 2010; Zhao et al., 2016).

Eplerenone
Eplerenone is a steroidal MRA that has a higher selectivity for
MRAs than spironolactone. The beneficial effects of eplerenone
have been extensively investigated in patients with hypertension
(Weinberger et al., 2002) and heart failure (Zannad et al., 2011).
In addition, eplerenone has been shown to reduce morbidity and
mortality in patients with left ventricular dysfunction after
myocardial infarction (Pitt et al., 2003) via its favorable effects
on fibrosis and cardiovascular remodeling (Agarwal et al., 2021).

• Basic Studies

The administration of eplerenone has been shown to attenuate
renal fibrosis by inhibiting the TGF-β and collagen IV expression
in hypertensive diabetic rats (Lian et al., 2012). Nagase et al.
demonstrated that eplerenone reduced proteinuria by preventing
podocyte injury and glomerulosclerosis in Dahl salt-hypertensive
rats (Nagase et al., 2006). The inhibition of oxidative stress by
eplerenone appears to be involved in this observation, as Shibata
et al. reported that eplerenone attenuates proteinuria in
uninephrectomized rats with aldosterone infusion by
downregulating SGK1 and subsequently increasing the
NADPH oxidase activity in podocytes (Shibata et al., 2006).
Nishiyama et al. showed that eplerenone enhanced the
antiproteinuric effect of an ARB by inhibiting podocyte injury
in OLETF rats, independent of blood-pressure-lowering effects
(Nishiyama et al., 2010). They also demonstrated that eplerenone
inhibits mesangial cell proliferation, which is mediated by high-
glucose-induced big mitogen-activated protein kinase 1 (BMK1)
activation (Liu et al., 2010).

These findings indicate that eplerenone exerts renoprotective
effects, independent of reductions in blood pressure.

• Clinical Studies

Epstein et al. reported that eplerenone reduced albuminuria in
T2D patients (Epstein et al., 2006). In this RCT, 286 participants
who were taking enalapril (20 mg daily) were allocated to the
placebo group, eplerenone 50 mg group, and eplerenone 100 mg
group. After 12 weeks, the UACR was reduced by 7.4, 41.0, and
48.4% in the placebo, eplerenone 50 mg, and eplerenone 100 mg
groups, respectively (Epstein et al., 2006). Importantly, there were
no significant changes in the incidences of sustained or severe
hyperkalemia among the three groups (Epstein et al., 2006).
Tsuboi et al. demonstrated that eplerenone reduced
proteinuria in non-diabetic CKD patients who were treated
with RAS inhibitors. They found that the administration of
eplerenone (25–50 mg daily) for 12 months resulted in a 38%
reduction in urinary protein excretion (Tsuboi et al., 2012).
Recently, Mokadem et al. performed a RCT to investigate the
effect of eplerenone on albuminuria in T2D patients with
hypertension. In that study, 75 patients were randomly
allocated to the ramipril group (10 mg daily) group,
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eplerenone (50 mg daily) group, and eplerenone (50 mg)/ramipril
(10 mg) combination group. After a 24-weeks follow-up period,
ramipril and eplerenone monotherapy had significantly reduced
the UACR compared with the baseline, and the eplerenone/
ramipril combination group showed an even greater reduction
in the UACR than the ramipril and eplerenone monotherapy
groups (El Mokadem et al., 2020).

NON-STEROIDAL MINERALOCORTICOID
RECEPTOR ANTAGONIST

Finerenone
Steroid hormone receptors, including MR, have been shown to
interact with cofactors that affect gene transcription, and
steroidal MRAs can interact with cofactors, leading to their
functioning as partial MR agonists (Agarwal et al., 2021).
Therefore, the actions of nonsteroidal MRAs differ from
those of steroidal MRAs, such as spironolactone and
eplerenone, as nonsteroidal MRA blocks the MR as a bulky
and passive antagonist (Amazit et al., 2015). Finerenone has
been developed as a potent and selective nonsteroidal MRA.
Finerenone inhibits cofactor recruitment to the MR in the
absence of aldosterone and functions as an inverse agonist. In
addition, the gene regulation profile by finerenone differs from
that for steroidal MRAs (Grune et al., 2016). Finerenone has
more potent antifibrotic activity than eplerenone. For instance,
differential MR cofactor modulation is proposed to be
associated with finerenone-specific amelioration of tenascin
X (TNX), an MR target gene that is a crucial regulator of
fibrosis (Grune et al., 2018).

In addition, finerenone is expected to carry a lower risk of
hyperkalemia than steroidal MRAs. One possible mechanism
involves its tissue distribution. A study using [14C]-labelled
finerenone demonstrated a balanced kidney-heart distribution,
although spironolactone and eplerenone showed a dominant
distribution in the kidney compared with the heart (Platt and
Pauli, 1972; Kolkhof et al., 2014; Agarwal et al., 2021). These
differences may affect the sodium and potassium balance
(Kolkhof et al., 2014). The pharmacokinetics of finerenone are
also different from those of spironolactone and eplerenone, as
finerenone has no active metabolites and a short half-life (2 h)
(Lentini et al., 2016). In contrast, spironolactone is a prodrug that
has multiple active metabolites with long half-lives (14–16 h), and
eplerenone has no active metabolites with a half-life of 4–6 h
(Gardiner et al., 1989; Cook et al., 2003; Veneti and Tziomalos,
2021).

• Basic Studies

Kolkhof et al. demonstrated that finerenone prevented organ
damage to the heart and kidney in deoxycorticosterone acetate-/
salt-induced hypertensive rats and rats with chronic heart failure
after coronary artery ligation (Kolkhof et al., 2014). Importantly,
they found that finerenone exerted cardiorenoprotective effects
independent of its blood pressure reduction (Kolkhof et al., 2014).
Combination therapy of empagliflozin and finerenone has also

been shown to prevent proteinuria as well as cardiac and kidney
fibrosis in hypertensive rats (Kolkhof et al., 2021).

Finerenone has been shown to prevent tubular injury in a rat
ischemic acute kidney injury model [ischemia/reperfusion (IR)].
In a previous study, the effects of finerenone on the progression of
acute kidney injury (AKI) to CKD was evaluated at 4 months
after IR (Lattenist et al., 2017). Finerenone significantly
attenuated tubulointerstitial fibrosis and the TGF-β expression
by downregulating the oxidative stress in rats receiving IR
(Lattenist et al., 2017). Finerenone has also been shown to
reduce oxidative stress by inhibiting Rac1 activation and the
subsequent MR signaling pathway in vascular smooth muscle
cells (Barrera-Chimal et al., 2017). Myeloid MR plays an
important role in IR-mediated renal fibrosis.

M2-antiinflamatory markers are reportedly increased in
macrophages from finerenone-treated and myeloid MR-
deficient mice. Furthermore, the inflammatory population of
CD11b+, F4/80+, Ly6Chigh macrophages was also reduced upon
myeloid MR inhibition by finerenone. From a mechanistic
standpoint, finerenone promoted IL-4 receptor-dependent
signaling, thereby facilitating M2 polarization in macrophages
(Barrera-Chimal et al., 2018).

Le Billan et al. investigated the effects of spironolactone and
finerenone on the aldosterone-induced transcriptome of a human
renal cell line stably expressing MR. They found similar gene
expression profiles in both MRAs, but finerenone exerted more
efficient antagonism on some aldosterone-induced genes (Le
Billan et al., 2021).

• Clinical Studies

Phase 2 trials of finerenone have been reported, including the
mineralocorticoid receptor antagonist tolerability study (ARTS),
ARTS-Heart Failure (ARTS-HF), and ARTS-Diabetic
Nephropathy (ARTS-DN).

ARTS is an RCT that assessed changes in the serum potassium
levels by finerenone as a primary endpoint in patients with HFrEF
andmild ormoderate CKD (Pitt et al., 2013). This study consisted
of two parts. In part A, the safety and tolerability of finerenone at
2.5, 5, or 10 mg once daily was assessed in 65 patients with HFrEF
and mild CKD [estimated glomerular filtration rate (eGFR)
60–90 ml/min/1.73 m2]. In part B, the effects of finerenone at
2.5, 5, or 10 mg once daily or 5 mg twice daily were compared
with those of placebo and open-label spironolactone (25 or
50 mg/day) in 392 patients with HFrEF and moderate CKD
(eGFR 30–60 ml/min/1.73 m2) (Pitt et al., 2013). After a
follow-up period of 28 days, finerenone at all doses was
associated with significantly smaller increases in serum
potassium levels and lower incidences of hyperkaliemia and
eGFR decline than spironolactone 50 mg daily. Finerenone
also decreased the levels of B-type natriuretic peptide (BNP),
amino-terminal proBNP, and albuminuria at least as much as
spironolactone (Pitt et al., 2013). Taken together, these findings
suggest that finerenone (5 or 10 mg/day) was as efficient at
lowering albuminuria and cardiac biomarkers as
spironolactone (25 or 50 mg/day) with a smaller risk of
hyperkalemia.
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The primary endpoint of ARTS-HF was the proportion of
patients with a >30% decline in NT-proBNP from baseline
(Filippatos et al., 2016). In that study, 1,066 patients with
HFrEF who have T2D and/or CKD (eGFR > 30 ml/min/
1.73 m2 among patients with T2D and 30–60 ml/min/1.73 m2

among those without T2D) were randomly assigned to once-daily
finerenone (2.5, 5, 7.5, 10, or 15 mg, uptitrated to 5, 10, 15, 20, or
20 mg, respectively, on day 30) or eplerenone (25 mg every other
day, increased to 25 mg once daily on day 30, and to 50 mg once
daily on day 60) and were followed for 90 days (Filippatos et al.,
2016). Finerenone was well tolerated and induced a ≥30%
decrease in NT-proBNP levels in a similar proportion of
patients to eplerenone (Filippatos et al., 2016).

In ARTS-DN, a total of 823 T2D patients with albuminuria
(UACR ≥ 30 mg/g), and eGFR >30 ml/min/1.73 m2 who were
treated with RAS inhibitors were enrolled (Bakris et al., 2015).
Patients were randomly allocated to receive either finerenone
(1.25, 2.5, 5, 7.5, 10, 15, and 25 mg daily) or a placebo and were
followed for 90 days. The primary endpoint of this study was the
change in the UACR from baseline. Finerenone reduced the
UACR in a dose-dependent fashion compared to placebo as
follows: 0.79 (90% CI: 0.68–0.91; p � 0.004) in the 7.5 mg
group, 0.76 (90% CI: 0.65–0.88; p � 0.001) in the 10 mg
group, 0.67 (90% CI: 0.58–0.77; p < 0.001) in the 15 mg
group, and 0.62 (90% CI, 0.54–0.72; p < 0.001) in the 20 mg
group (Bakris et al., 2015). The reduction in albuminuria was not
associated with changes in the blood pressure or eGFR, suggesting
that renoprotection by finerenone was independent of the
hemodynamic effects (Bakris et al., 2015).

FIDELIO-DKD was performed to assess whether or not
finerenone slows CKD progression and reduces cardiovascular
morbidity and mortality in patients with advanced CKD and T2D
(Bakris et al., 2020). A total of 5,734 individuals with a UACR of
30–300 mg/g, eGFR 25–60 ml/min/1.73 m2, and a history of
diabetic retinopathy or a UACR of 300–5,000 mg/g and an
eGFR of 25–75 ml/min/1.73 m2 were enrolled. All participants
were taking RAS inhibitors. Participants were randomly assigned
in a 1:1 ratio to receive finerenone or placebo. Doses of finerenone
were determined based on the renal function of patients.
Participants with an eGFR 25–60 ml/min/1.73 m2 at the
screening visit received an initial dose of 10 mg once daily,
and those with an eGFR of ≥60 ml/min/1.73 m2 at the
screening visit received an initial dose of 20 mg once daily.
The primary outcome was a composite of kidney failure, a
sustained decrease of at least 40% in the eGFR from baseline
over a period of at least 4 weeks, or death from renal causes.
Kidney failure was defined as ESKD or an eGFR <15 ml/min/
1.73 m2. The key secondary composite outcome was death from
cardiovascular causes, nonfatal myocardial infarction, nonfatal
stroke, or hospitalization for heart failure (Bakris et al., 2020).
After a median follow-up period of 2.6 years, a primary
composite outcome occurred in 17.8% of the finerenone group
and 21.1% of the placebo group [hazard ratio (HR) 0.82, 95% CI:
0.73–0.93, p � 0.001]. A key secondary outcome event occurred in
13.0% in the finerenone group and 14.8% in placebo group (HR
0.86; 95% CI: 0.75–0.99, p � 0.03). The frequency of adverse
events was similar in both groups (Bakris et al., 2020). The

incidence of hyperkalemia-related discontinuation of the trial
regimen was higher with finerenone than with placebo (2.3 and
0.9%, respectively).

Previous studies have demonstrated that aldosterone
upregulation and MR overactivation are involved in structural
cardiac remodeling and the pathophysiology of atrial fibrillation
(Reil et al., 2012; Lavall et al., 2014). A sub-analysis of FIDERIO-
DKD investigated the effect of finerenone on new-onset atrial
fibrillation or flutter (AFF) and cardiorenal effects by the history
of AFF. In FIDERIO-DKD, 461 (8.1%) of 5,674 participants had a
history of AFF. The incidence rate of AFF was significantly lower
in the finerenone group than in the placebo group (HR: 0.71, 95%
CI: 0.53–0.94, p � 0.016) (Filippatos et al., 2021). Finerenone
reduced the primary and key secondary kidney and
cardiovascular outcomes, irrespective of the history of AFF
(Filippatos et al., 2021).

Finerenone in Reducing CV Mortality and Morbidity in
Diabetic Kidney Disease (FIGARO-DKD) was a trial that
assessed the efficacy of finerenone on cardiovascular and renal
outcomes and its safety in T2D patients with CKD (Ruilope et al.,
2019). The primary endpoint was the composite of cardiovascular
death, nonfatal myocardial infarction, nonfatal stroke or
hospitalization for heart failure. The key prespecified
secondary endpoint was the same as the primary composite
endpoint of FIDELIO-DKD (Ruilope et al., 2019). Patients
included in FIGARO-DKD were T2D patients on RAS
inhibitors with CKD, defined as those with a UACR of
30–300 mg/g and an eGFR 25–90 ml/min/1.73 m2 (CKD stage
2–4) or a UACR of ≥300 mg/g and an eGFR ≥60 ml/min/1.73 m2

(CKD stage 1–2) (Pitt et al., 2021), indicating that FIGARO-DKD
included more patients with earlier-stage CKD and T2D than
FIDELIO-DKD. In FIGARO-DKD, a total of 7,437 patients were
allocated to placebo or finerenone group and followed-up for
3.4 years, a primary outcome event was significantly reduced in
finerenone group (HR 0.87, 95%CI: 0.76 to 0.98, p � 0.03), with
the benefit driven primarily by a lower incidence of
hospitalization for heart failure (HR 0.71, 95% CI: 0.56–0.90).
The secondary composite outcome occurred in 9.5% in the
finerenone group and in 10.8% in the placebo group (HR 0.87,
95% CI, 0.76–1.01) (Pitt et al., 2021). These findings demonstrate
that finerenone has cardiorenal protective effects in T2D patients
with DKD.

Apararenone
Apararenone is a highly selective and long-acting MRA. To our
knowledge, no preclinical studies have investigated the
cardiorenal benefits of aprarenone. A previous RCT
investigating the effects of apararenone on albuminuria in
T2D patients with UACR ≥50 mg/g Cr showed the renal
benefit (Wada et al., 2021). In that study, 293 patients were
randomly assigned to the placebo group or 2.5, 5, or 10 mg
apararenone groups. More than 60% of participants were taking
ACEis or ARBs. After 24 weeks, apararenone significantly
decreased the UACR by 62.9% (95% CI: 54.6–72.5) (2.5 mg),
50.8% (95%CI: 44.1–58.4) (5 mg), and 46.5% (95% CI: 40.4–53.5)
(10 mg) compared to the placebo. The UACR remission rates at
week 24 were 0.0% (placebo), 7.8% (apararenone 2.5 mg), 29.0%
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(apararenone 5 mg), and 28.1% (apararenone 10 mg) (Wada
et al., 2021).

Another RCT investigated whether or not apararenone had
beneficial effects on nonalcoholic steatohepatitis (NASH). In that
study, 48 patients with NASH were randomly assigned to receive
placebo or apararenone 10 mg daily and followed for 72 weeks
(Okanoue et al., 2021). The percent changes in serum alanine
aminotransferase (ALT) from baseline to 24 weeks, which is the
primary endpoint, were −3.0% (placebo) and −13.7%
(apararenone), showing no significance (p � 0.308) (Okanoue
et al., 2021). Apararenone showed a greater reduction in fibrosis
markers and better liver fibrosis scores and fibrosis-4 indices at all
time points than placebo (Okanoue et al., 2021).

Esaxerenone
Esaxerenone was developed as a potent and selective non-
steroidal MRA. The Esaxerenone and Eplerenone in Patients
With Essential Hypertension (ESAX-HTN) Study was performed
as a phase 3 clinical trial. In this study, 1,001 Japanese
hypertensive patients were randomly assigned to either
esaxerenone at 2.5 or 5 mg daily or eplerenone at 50 mg and
were followed for 12 weeks (Ito et al., 2020a). Esaxerenone was
effective and well-tolerated with a BP-lowering activity equivalent
to or better than that of eplerenone (Ito et al., 2020a).
Esaxerenone has been shown to bind to MR through the MR
ligand binding domain and large side chains, thereby
demonstrating a high affinity and selectivity for MR
(Takahashi et al., 2020). In addition, it has long a half-life of
18.6–25.1 h (Wan et al., 2021).

• Basic Study

Esaxerenone has been shown to attenuate the development of
albuminuria, glomerular injury, and tubulointerstitial fibrosis
more potently than losartan in Dahl salt-sensitive hypertensive
rats by reducing renal oxidative stress (Li et al., 2019).
Renoprotective effects of esaxerenone have been also
demonstrated in KK-Ay mice. In a previous study, the
administration of esaxerenone ameliorated albuminuria and
glomerular injury, tubulointerstitial fibrosis, renal
inflammation, and oxidative stress in KK-Ay mice with or
without a high-salt diet (Bhuiyan et al., 2019). Furthermore,
the combination of esaxerenone with olmesartan
synergistically attenuated albuminuria in KK-Ay mice
accompanied by reductions in the urinary excretion of
podocalyxin and monocyte chemoattractant protein 1 (Arai
et al., 2020). Importantly, this combination therapy did not
affect the blood pressure, indicating that esaxerenone exerted
renoprotective effects independent of its blood-pressure-lowering
effects (Arai et al., 2020).

• Clinical Study

Esaxerenone has been shown to improve both
microalbuminuria and macroalbuminuria in patients with
T2D. In a short-term study, 365 hypertensive or
normotensive T2D patients with microalbuminuria who are

receiving RAS inhibitors were randomized to receive
esaxerenone or placebo for 12 weeks. At the end of the
study, esaxerenone (1.25, 2.5, and 5 mg daily) significantly
reduced albuminuria in a dose-dependent manner (Ito et al.,
2019).

The Esaxerenone in Patients with Type 2 Diabetes and
Microalbuminuria (ESAX-DN) Study investigated the effects of
esaxerenone on microalbuminuria in T2D patients who were
receiving RAS inhibitors (Ito et al., 2020b). The primary endpoint
was UACR remission (<30 mg/g creatinine and a ≥30% reduction
from baseline on 2 consecutive occasions). In that study, 455 T2D
patients with microalbuminuria were randomly assigned to the
placebo or esaxerenone group (initiated at 1.25 mg and titrated to
2.5 mg daily). After a follow-up period of 52 weeks, esaxerenone
showed a significantly higher rate of UACR remission than the
placebo groups (22 vs 4%). The changes in UACR from baseline
were -58% in the esaxerenone group and 8% in the placebo group
(Ito et al., 2020b). Hyperkalemia was observed in 9% of subjects in
the esaxerenone group and 2% of subjects in the placebo group
(Ito et al., 2020b).

A multicenter, single-arm, open label phase III study was
performed to evaluate the renoprotective effects of esaxerenone
(Ito et al., 2021). A total of 56 T2D patients with
macroalbuminuria (≥UACR 300 mg/g) were administrated
esaxerenone (initiated at 1.25 mg and titrated to 2.5 mg daily)
for 28 weeks. At the end of the study, the UACR had decreased by
54.6% (95% CI: 46.9–61.3%), and 51.8% of participants achieved
a transition to microalbuminuria (<UACR 300 mg/g).
Hyperkalemia occurred in 5.4% of participants. In addition,
8.9% of participants discontinued esaxerenone because of a
≥30% decrease in the eGFR (Ito et al., 2021).

Key clinical studies of nonsteroidal MRAs are summarized in
Table 2.

FUTURE DIRECTIONS AND
PERSPECTIVES

Even with widespread use of SGLT2 inhibitors and GLP-1
receptor agonists, a substantial residual risk of DKD
progression remains. Nonsteroidal MRAs potentially
complement this risk. However, some clinical questions need
to be addressed. First, it needs to be clarified at which stage of
DKDMRA should be started. Second, it remains unclear whether
monotherapy of nonsteroidal MRAs is effective on DKD. Third, it
will be necessary to elucidate what kind of anti-diabetic drugs and
nonsteroidal MRAs are effective in combination because a
subgroup analysis of FIDELIO-DKD demonstrated that a
reduction in UACR with finerenone was observed with or
without baseline GLP-1 receptor agonists use (Rossing et al.,
2021). To clarify these points will determine the position of
nonsteroidal MRAs in DKD treatment. Currently, the
development of novel therapeutic agents for DKD that target
inflammation and fibrosis is in progress (Yamazaki et al., 2021).
Among them, JAK/STAT inhibitors have been shown to exert
renoprotective effects in patients with DKD (Brosius et al., 2016).
It is important that finerenone have both renal and cardiovascular
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protective effects clinically that have not yet been clarified with these
developing drugs. Combined effect of these drugs and nonsteroidal
MRA can also be expected. Unlike SGLT2 inhibitors and incretin-
based drugs, the dose of nonsteroidal MRAs can be adjusted for
renoprotection without considering glucose-lowering effects in
patients with DKD, which may be advantage of nonsteroidal
MRAs. Furthermore, expectations for nonsteroidal MRAs go
beyond cardiorenal protection. It has been shown that endothelial
cell MR mediates hypertensive remodeling in cerebral arteries,
leading to reduced cerebral perfusion, which can cause stroke and
dementia (Diaz-Otero et al., 2017). In addition, cortical thickness of
brain has been shown to be correlated negatively with the expression
of MR in human (Parker et al., 2020). Finally, MR has been shown to
be involved in the development of sarcopenia (Burton et al., 2011; Lee
et al., 2021). These findings demonstrate potential usefulness of
nonsteroidal MRAs for geriatric syndromes in patients with
diabetes by their potent anti-inflammatory properties. Future
studies to elucidate comprehensive effects of nonsteroidal MRAs
on diabetic complications and related disorders will be interesting.

CONCLUSION

As described, the advent of nonsteroidal MRAs has revolutionized
the treatment for DKD. The usefulness of steroidal MRAs on DKD
has been proven by experimental studies; however, the adverse

effects of hyperkalemia tend to prevent its use. Potent anti-
inflammatory and anti-fibrotic responses with a reduced risk for
hyperkalemia can be expected by using the nonsteroidal MRA
finerenone, given its high selectivity for MRA and actions as an
inverse agonist. DKD is closely associated with CVD in patients with
diabetes. MR overactivation is an important factor that connects
these cardiorenal complications. Appropriate interventions for MR
will reduce the residual risk and bring us one step closer to
overcoming DKD.
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