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Background: The risk of co-epidemic between COVID-19 and influenza is very high, so it
is urgent to find a treatment strategy for the co-infection. Previous studies have shown that
phillyrin can not only inhibit the replication of the two viruses, but also has a good anti-
inflammatory effect, which is expected to become a candidate compound against COVID-
19 and influenza.

Objective: To explore the possibility of phillyrin as a candidate compound for the
treatment of COVID-19 and influenza co-infection and to speculate its potential
regulatory mechanism.

Methods: We used a series of bioinformatics network pharmacology methods to
understand and characterize the pharmacological targets, biological functions, and
therapeutic mechanisms of phillyrin in COVID-19 and influenza co-infection and
discover its therapeutic potential.

Results: We revealed potential targets, biological processes, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways, and upstream pathway activity of phillyrin against
COVID-19 and influenza co-infection. We constructed protein–protein interaction (PPI)
network and identified 50 hub genes, such as MMP9, IL-2, VEGFA, AKT, and HIF-1A.
Furthermore, our findings indicated that the treatment of phillyrin for COVID-19 and
influenza co-infection was associated with immune balance and regulation of hypoxia-
cytokine storm, including HIF-1 signaling pathway, PI3K-Akt signaling pathway, Ras
signaling pathway, and T cell receptor signaling pathway.

Conclusion: For the first time, we uncovered the potential targets and biological pathways
of phillyrin for COVID-19 and influenza co-infection. These findings should solve the urgent
problem of co-infection of COVID-19 and influenza that the world will face in the future, but
clinical drug trials are needed for verification in the future.
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INTRODUCTION

The Coronavirus disease 2019 (COVID-19), caused by SARS-
CoV-2, rapidly spread and by March 11, 2020, the World Health
Organization (WHO) declared COVID-19 a global pandemic.
COVID-19 which has caused over 3 million deaths and has
infected 140 million people since December 2019, poses a
threat to the sustainability of public health systems worldwide,
and has become the most ruinous outbreak since the H1N1
influenza in 1918 (Javelle and Raoult, 2021). Like influenza,
COVID-19 is a febrile illness, sharing the same routes and
means of transmission as influenza, which with clinical
manifestations of an influenza-like illness (ILI) yet test
negative for influenza (Lai, et al., 2020).

Influenza is an infectious disease of the respiratory tract caused
by the influenza virus. In the 20th century, there have been at least
four influenza pandemics: the Spanish pandemic in 1918, the
H2N2 Asian pandemic in 1957, the H3N2 Hong Kong pandemic
in 1968, and the H1N1 pandemic in 2009 (Morens and
Taubenberger, 2018). The worst flu pandemic was the Spanish
pandemic of 1918, which caused 5.1 billion deaths in 8 months
(Morens and Taubenberger, 2018). Seasonal influenza epidemics
and occasional pandemics are still public health concerns around
the world.

In the foreseeable future, the co-circulate of COVID-19 and
influenza is a problem that scientists cannot ignore. In fact, many
countries have adopted comprehensive and long-term public
health measures to prevent and manage the co-transmission of
the two (Solomon et al., 2020; Soo et al., 2020). Studies have
shown that co-infection of COVID-19 and influenza is fatal, and
both are characterized by pneumonia and severe acute respiratory
failure (Sockrider et al., 2020). In addition to the damage caused
by the pathogenic factors themselves, the cytokine storm caused
by the imbalance of the body’s immune function is also one of the
important factors leading to the death of patients. In fact, the
cytokine storm induced by influenza and COVID-19 has great
similarities in pathological processes and other aspects: higher
levels of cytokine and chemokine production have been found in
both diseases, and the key mediators of cytokine storms are also
highly similar, including IL-6, IL-1β, TNF-α, IL-10, and IP-10
(Jamilloux et al., 2020; Guo and Thomas, 2017); coagulation
dysfunction and diffuse intravascular coagulation are closely
related to the cytokine storm caused by the two viral
infections (Yang and Tang, 2016; Mangalmurti and Hunter,
2020); in addition, SARS-CoV-2 and influenza virus infection
can induce the activation of NLRP3 inflammasome (Chen et al.,
2019). Studies have shown that virus-derived cytokine storm
syndrome seems to have a common pathogenesis of immune
response imbalance, increased inflammation, and T cell reduction
and functional failure (Sun et al., 2020).

Although the COVID-19 vaccine has begun worldwide, it will
take a long time to safely achieve herd immunity through
vaccination. Therefore, the development of small-molecule
drugs for the prevention or treatment of COVID-19 is still an
urgent matter. A recent study shows that Molnupiravir, an oral
broad-spectrum antiviral agent that is currently in phase II/III
clinical trials, exerts marked inhibitory activity to SARS-CoV-2 in

vivo, and the results of this study are undoubtedly exciting
(Malone and Campbell, 2021; Wahl et al., 2021). But for the
challenge of co-infection of influenza and SARS-CoV-2, we still
need to further discover and develop drugs, especially the
discovery of drugs that have better therapeutic effects on
COVID-19 and influenza.

Therefore, we try to find potential compounds that can
simultaneously regulate the excessive immune response caused
by SARS-COV-2 and/or IAV from the perspective of the body’s
immune balance. Surprisingly, we noticed that phillyrin has not
only been shown to inhibit the replication of SARS-COV-2 or
influenza virus, but also has anti-inflammatory effects (Wang
et al., 2010; Qu et al., 2016; Chen et al., 2017; Wang et al., 2018;
Ma et al., 2020; Zhang et al., 2021). Phillyrin exerts effective anti-
SARS-COV-2 virus activity in vivo E6 cells (IC50 � 63.90 μg/ml)
(Ma et al., 2020). Phillyrin is the main active ingredient of the
traditional Chinese medicine Forsythia Suspensa. Forsythia
Suspensa has the effects of clearing away heat, detoxifying,
and reducing swelling and congestion. In China, it is often
used to treat the “common cold” (Qu et al., 2016). Hence, in
this study, we use bioinformatics methods to explain the key
genes and biological pathways of phillyrin against co-infection of
COVID-19 and influenza from the perspective of the body’s
immune response triggered by pathogenic factors. According to
preliminary analysis results, phillyrin is expected to be a
candidate drug for the treatment of co-infection with COVID-
19 and influenza.

MATERIALS AND METHODS

Identification of COVID-19/Influenza
Related Targets
COVID-19/influenza related targets were searched from several
databases: GeneCards (https://www.genecards.org), CTD (http://
ctdbase.org), and COVID-19 DisGeNET data collection (https://
www.disgenet.org/covid/diseases/summary/). Species all selected
homo sapiens.

In addition, we also collected COVID-19/influenza related
targets from GEO database (https://www.ncbi.nlm.nih.gov/geo)
by analyzing the GSE dataset. The transcriptomic RNA-seq data
for COVID-19 including GSE147507 and GSE164805, and
GSE147507 and GSE101702 for influenza. The criteria of
differentially expressed genes (DEGs) were as follows: FDR <
0.05, and |log2FC| ≥ 2.

Identification of Potential Targets for
Phillyrin
The potential targets of phillyrin were predicted from Pharm
Mapper (http://www.lilab-ecust.cn/pharmmapper/), ETCM
(http://www.tcmip.cn/ETCM/index.php/Home/),
SwissTargetPrediction (http://www.swisstargetprediction.ch/),
and BindingDB (http://www.bindingdb.org/bind/index.jsp)
databases. In Pharm Mapper database, “Human Protein
Targets Only” was selected and the maximum generated
conformations was set as 300. The parameter settings of

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7542412

Lai et al. Phillyrin for COVID-19 and Influenza

https://www.genecards.org
http://ctdbase.org
http://ctdbase.org
https://www.disgenet.org/covid/diseases/summary/
https://www.disgenet.org/covid/diseases/summary/
https://www.ncbi.nlm.nih.gov/geo
http://www.lilab-ecust.cn/pharmmapper/
http://www.tcmip.cn/ETCM/index.php/Home/
http://www.swisstargetprediction.ch/
http://www.bindingdb.org/bind/index.jsp
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


ETCM, SwissTargetPrediction, and BindingDB databases were all
selected by default.

Then, the overlap targets between phillyrin and COVID-19/
influenza were obtained by jvenn online tools (http://jvenn.
toulouse.inra.fr/app/example.html).

Protein-Protein Interaction Network
Analysis
Protein–protein interaction (PPI) analysis was carried out by
STRING (https://www.string-db.org). The PPI network of the top

50 genes by degree ranking was constructed and visualized by
Cytoscape 3.8.2 software (https://cytoscape.org) cytoHubba tool.

Pathway and Gene Ontology Enrichment
Analysis
To understand the related biological processes, pathway
enrichment and gene ontology term enrichment analysis was
conducted with the database for Annotation, Visualization and
Integrated Discovery (DAVID, version 6.8) (https://david.abcc.
ncifcrf.gov). Gene ontology clusters enrichment was carried out

FIGURE 1 | Volcano plots of differentially expressed genes (DGEs) from the GEO database. The red dots represent up-regulated genes, green represent down-
regulated (FDR<0.05, |log2FC|>2). Differentially expressed genes of COVID-19 from GSE147507 (A) and GSE164805 (B). Differentially expressed genes of influenza
from GSE147507 (C) and GSE101702 (D).

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7542413

Lai et al. Phillyrin for COVID-19 and Influenza

http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
https://www.string-db.org
https://cytoscape.org
https://david.abcc.ncifcrf.gov
https://david.abcc.ncifcrf.gov
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 2 | Protein-protein interaction (PPI) network of phillyrin against influenza and COVID-19. (A) The structure of phillyrin. (B) The intersection of phillyrin targets
and disease targets. (C) 192 relevant overlapping genes. (D) The top 50 genes by degree ranking in the network.
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by Coronascape (http://coronascape.org) (Zhou et al., 2019). The
biological processes with p-value < 0.05 were selected. Species all
selected homo sapiens.

Inference of Upstream Pathway Activity
To infer the mechanism origin of abnormal transcriptome
regulation, we predict the upstream activation or inhibition of
the overlap targets between phillyrin and COVID-19/influenza
with the SPEED2 online tool (https://speed2.sys-bio.net). The
“bates test” was selected as test statistics for enrichment.

RESULTS

Potential Targets Identification of
COVID-19, Influenza, and Phillyrin
We first obtained 1688 and 69 DEGs for COVID-19 and influenza
through analyzing GSE dataset, respectively. GSE147507 contained
3 samples of human bronchial epithelial cells (NHBE) infected
SARS-CoV-2, and 3 samples of human lung adenocarcinoma cells
(A549) infected SARS-CoV-2. GSE164805 contained the whole
genome transcriptome to peripheral blood mononuclear cells
(PBMCs) taken from 5 severe and 5 mild COVID-19 patients
as well as 5 healthy controls. GSE147507 contained 3 samples of
human bronchial epithelial cells (NHBE) infected with influenza A,
and 3 samples of human lung adenocarcinoma cells (A549)
infected with influenza A. GSE101702 contained peripheral
blood samples taken from 63 moderate and 44 severe IAV
patients as well as 52 healthy controls. The distribution of
DEGs was illustrated by volcano plots as shown in Figures
1A–D. The clinical attributes including demography and blood
routine examination of GSE164805 and GSE101702 are provided
in Supplementary Table S1.

On the other side: we collected 8117 genes related to COVID-
19 from GeneCards, CTD, and COVID-19 DisGeNET data
collection databases, and 10,188 genes related to influenza
from GeneCards and CTD databases. Finally, after removal of
the duplicate genes, a total of 9186 related COVID-19 genes and
10,215 related influenza genes were collected.

By employing four available resources, namely, the Pharm
Mapper, ETCM, SwissTargetPrediction, and BindingDB
databases, we obtained 319, 4, 100, and 66 targets related to
phillyrin, respectively, after removing duplication, and we finally
collected 408 unique targets. The 2D structure of phillyrin was
shown in Figure 2A. Then, we used jvenn online tools to obtained
192 overlapping targets between phillyrin and COVID-19/
influenza (Figure 2B) (Supplementary Table S2).

Protein-Protein Interaction Interation and
Network Analysis
The 192 overlapping targets were imported into STRING database
to build the PPI network and the PPI network is shown in
Figure 2C. Then the top 50 genes by degree ranking in the PPI
network were obtained and visualized by the cytoHubba tool
(Figure 2D), including MMP9, MMP2, ALDOA, INSR, NOS3,
CDK6, GSK3B, CDK2, NCOA3, FABP4, MAPK14, CCNA2,

TYMS, AGTR1, PSAP, SYK, MTOR, PTPN1, LYZ, EDNRA,
CSK, IGF1R, AKT2, HSP90AB1, HIF1A, PRKACA, JAK2,
CDK4, CASP3, IL2, JAK3, ITGB3, PLAU, EGFR, IGF1,
VEGFA, KDR, F2, ESR1, MDM2, ABL1, RXRA, MAPK8,
AKT1, MAPK1, GRB2, CDK1, LCK, RHOA, and SRC, which
indicates that these targets might be the core targets playing a
pivotal role in the network.

Pathway and Gene Ontology Enrichment
Analysis of Overlapping Targets
To explore the biological functions of phillyrin in COVID-19/
influenza, KEGG enrichment and GO enrichment analysis were
performed on the 192 candidate targets by DAVID. The pathway
enrichment bubble chart is shown in Figure 3A, which contained
37 terms. The top 15 pathways ranked by FDR were: HIF-1
signaling pathway, PI3K-Akt signaling pathway, Rap1 signaling
pathway, thyroid hormone signaling pathway, estrogen signaling
pathway, Ras signaling pathway, FoxO signaling pathway, focal
adhesion, prolactin signaling pathway, T cell receptor signaling
pathway, Epstein-Barr virus infection, Adheren junction, TNF
signaling pathway, Hepatitis B, and VEGF signaling pathway
(Supplementary Table S3).

The top 15 (with the FDR) enriched GO terms of the biological
process category are shown in Figure 3B. The most abundant GO
terms were steroid hormone mediated signaling pathway (GO:
0043401), cytosol (GO:0005829), and protein kinase activity (GO:
0004672), for biological process (BP), CC (cellular component),
and MF (molecular function), respectively (Supplementary
Table S4).

Gene Ontology Clusters Enrichment
Analysis of Overlapping Targets
To investigate gene functions in each gene cluster, we used
Metascape to carry out GO enrichment and GO clusters
analysis with the following ontology sources: KEGG Pathway,
GO Biological Processes, Reactome Gene Sets, Canonical
Pathways, CORUM, TRRUST, DisGeNET, PaGenBase, and
COVID. Heatmap of the top 20 (with the p-values) enriched
GO terms of the biological process category is shown in
Figure 4A, including cytokine signaling in the immune system,
inflammatory response, response to molecules of bacterial origin,
regulation of cell adhesion, regulation of MAPK cascade, and so on
(Supplementary Table S5). To further capture the relationships
between the terms, we used Metascape to perform GO clusters
analysis. A subset of enriched terms has been selected and rendered
as a network plot, where terms with a similarity >0.3 are connected
by edges. The network was visualized using Cytoscape 3.8.2, where
each node represents an enriched term and was colored first by its
cluster ID (Figure 4B) and then by its p-value (Figure 4C).

Quality Control and Association Analysis of
Overlapping Targets
To further study the association between 192 overlapping targets,
genes enrichments were identified in the following ontology
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categories: COVID, DisGeNET, PaGenBase, and TRRUST
(Figures 5A–D) (Supplementary Table S6). Terms were
collected and grouped into clusters based on their membership

similarities (p-value < 0.01, a minimum count of 3, and an
enrichment factor >1.5). As shown in Figure 5A, there were
157 terms identified in COVID database, including

FIGURE 3 | KEGG and GO enrichment analysis. (A) KEGG enrichment analysis bubble chart by DAVID. (B) GO enrichment analysis by DAVID.
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RNA_Wilk_CD16 +Monocytes_patient-C6_Up, RNA_Wilk_CD4+
T-cells_patient-C1B-severe_Up, RNA_Wilk_CD8+T-cells_patient-
C1B-severe_Up, RNA_Wilk_CD14 + Monocytes_patient-C3_Up,
RNA_Wilk_CD4+T-cells_patient-C6_Up, and so on. The top 20
terms identified in DisGeNET database are shown in Figure 5B,
and the top 5 terms are as follows: pneumonitis, lymphoma (non-
Hodgkin), mesothelioma, middle cerebral artery occlusion, and
malignant neoplasm of the mouth. GO analysis heatmap of 192
targets in PaGenBase is shown in Figure 5C, containing colon
(tissue-specific), bronchial epithelial cells (cell-specific), HEPG2
(cell-specific), adipocyte (cell-specific), DRG (cell-specific), and
so on. Transcription factors related to 192 targets were analyzed
in the TRRUST database (Figure 5D), the top 5 terms, namely,
HIF1A, ETS1, EGR1, TFAP2A, and STAT3.

Upstream Pathway Analysis of Overlapping
Targets
To explore the upstream pathway of the overlapping targets, the
SPEED2 tool was used to perform. As shown in Figures 6A,B,
there were 12 upstream pathways up-regulated related to the
overlapping targets, while only 4 upstream pathways down-
regulated (Supplementary Table S7). TNFα, IL-1, VEGF,
MAPK + PI3K, insulin, TGFb, estrogen, notch, H2O2, TLR,
hypoxia, and P53 pathways were inferred up-regulated with
overlapping targets, and Hippo, Wnt, PPAR, and JAK-STAT

pathways were inferred down-regulated in upstream (Figure 6B).
Colors indicated the adjusted p-value, and the ranked lists about
activity were determined by the absolute p-value, the brighter the
color, the higher the ranking.

DISCUSSION

The annual influenza epidemic has a significant impact on the
health care system worldwide. With the COVID-19 pandemic in
2019, clinicians are faced with a second respiratory virus whose
morbidity and mortality are several-fold higher than that of
influenza. Therefore, the imminent threat of concurrent
influenza and COVID-19 pandemics is a major concern for
public health officials and clinicians.

Although there are antiviral drugs and influenza vaccines for
influenza viruses in clinical practice, the mutation of the virus and
the emergence of drug resistance have made the original
treatments limited. At present, there is no anti-SARS-COV-2
drug that can be used, and the population coverage of vaccines for
herd immunity will still take some time. Therefore, for the host
immune target, the development of drugs that can simultaneously
treat COVID-19 and influenza co-infection is a potential
treatment strategy. In this study, we explored whether
phillyrin has a potential protective effect against SARS-COV-2
and influenza virus co-infection; to clarify this issue, we predicted

FIGURE 4 | (A) Heatmap of the top 20 enriched GO terms for 192 genes by Metascape, colored by p-values. The darker the color, the higher the ranking. (B)
Network of enriched terms colored by cluster ID, where nodes that share the same cluster ID are typically close to each other. (C) Network of enriched terms colored by
p-value, where terms containing more genes tend to have a more significant p-value.
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FIGURE 5 |Heatmap of 192 genes enrichments are identified in the following ontology categories: COVID, DisGeNET, PaGenBase, TRRUST, colored by p-values.
The darker the color, the higher the ranking. (A) Enrichment analysis result in COVID. (B) Enrichment analysis result in DisGeNet. (C) Enrichment analysis result in
PaGenBase. (D) Enrichment analysis result in TRRUST.
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the potential targets and biological pathways for co-infection with
SARS-COV-2 and influenza virus through integrated
bioinformatics. Preliminary studies have shown that phillyrin
is expected to be a candidate drug for the treatment of SARS-
COV-2 and influenza virus co-infection.

Our research showed that phillyrin might target 192 common
targets of COVID-19 and influenza, which means that these
targets were potential targets for phillyrin to function. Targets
in the PPI network were extracted and analyzed, and the results
suggested that 50 genes, including MMP9, MMP2, ALDOA,
INSR, NOS3, CDK6, GSK3B, CDK2, NCOA3, FABP4,
MAPK14, CCNA2, TYMS, AGTR1, PSAP, SYK, MTOR,
PTPN1, LYZ, EDNRA, CSK, IGF1R, AKT2, HSP90AB1,
HIF1A, PRKACA, JAK2, CDK4, CASP3, IL2, JAK3, ITGB3,
PLAU, EGFR, IGF1, VEGFA, KDR, F2, ESR1, MDM2, ABL1,
RXRA, MAPK8, AKT1, MAPK1, GRB2, CDK1, LCK, RHOA,
and SRCA, were the core genes in the network. Previous research
indicated that the core genes may be crucial to the treatment
mechanism. For example, the increase in IL-2, MMP9, and
VEGFA is related to the mortality of COVID-19 patients

(Young et al., 2020; Abers et al., 2021). It has been reported
that circulating MMP-9 increases significantly and early in
patients with COVID-19 respiratory failure (Ueland et al.,
2020). In acute lung injury, MMP-9 released from neutrophils
will promote the inflammation and degradation of the alveolar
capillary barrier, and further stimulate the migration and final
structure of the alveoli (Davey et al., 2011). In influenza, the
virulent influenza virus infection is characterized by a large
number of cell infiltration and severe lung pathology, which is
related to the production of oxidative stress and MMP-9 (Rojas-
Quintero et al., 2018). MMP-9 can cleave various proteins to
regulate inflammation and injury responses (Bradley et al., 2012).
MMP-9 can mediate the migration of neutrophils into the airway
in response to Toll-like receptor signals induced by influenza
viruses (Callahan et al., 2021). The main characteristics of SARS-
CoV-2 induced pulmonary complications include the
overexpression of pro-inflammatory chemokines and
cytokines, which can lead to a “cytokine storm.” After SARS-
CoV-2 infects Calu-3 human lung epithelial cells, the pro-
inflammatory chemokines CXCL9, CXCL10, and CXCL11 are
up-regulated in an AKT-dependent manner (Li et al., 2021).
Furthermore, complete transcriptome RNA sequencing of the
peripheral blood of COVID-19 patients revealed that AKT1 is
one of the central genes in the differential gene PPI network
(Casalino-Matsuda et al., 2020). In influenza, hypercapnia (HC)
is a risk factor for mortality in patients with severe acute and
chronic lung diseases, suppressing macrophage antiviral activity
and increasing mortality of influenza A infection via AKT1
(Taniguchi-Ponciano et al., 2021). The highly contagious
SARS-CoV-2 virus mainly attacks lung tissue and impairs gas
exchange, leading to acute respiratory distress syndrome (ARDS)
and systemic hypoxia. Hypoxia and cytokine storm are the main
pathophysiological characteristics of COVID-19, and the prelude
to multiple organ failure and mortality. Hypoxia-inducible factor
1α (HIF-1α) is involved in the activation of pro-inflammatory
cytokine expression and the subsequent inflammatory process,
which makes it a potential molecular marker of the severity of
COVID-19 (Jahani et al., 2020; McElvaney et al., 2020;
Serebrovska et al., 2020). In addition, recent studies have
shown that hypoxia-inducible factor 1-alpha (HIF-1α) is
associated with the production of proinflammatory molecules
in the severe pneumonia caused by H1N1 infection (Guo et al.,
2017).

The results of the KEGG enrichment of 192 targets indicated
that phillyrin might mainly regulate HIF-1 signaling pathway,
PI3K-Akt signaling pathway, and Ras signaling pathway to
reduce the inflammation in the lungs caused by SARS-CoV-2
and influenza virus co-infection. As well as we know, hypoxia and
cytokine storm are highly correlated influencing factors with the
severity of COVID-19 and severe influenza. Hypoxia is a
common feature of inflammation, and HIF-1α transcription
factor promotes inflammation by up-regulating genes
containing HRE in pro-inflammatory immune cells (including
neutrophils, DCs, and macrophages) (McElvaney et al., 2020). Its
expression and activity are strictly regulated by oxygen content,
and it is considered an “inflammation switch.” Inappropriate
reactions can lead to tissue destruction, blood vessel damage, and

FIGURE 6 | (A) The pathway clusters for 192 genes. (B) Pathway activity
ranking (adjusted p-value < 0.05). The colors indicated adjusted p-value, and
the brighter the color, the higher the ranking.
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organ failure, although proper inflammation helps eradicate
infectious pathogens and maintain tissue integrity (Marchetti,
2020). The HIF-1 signaling pathway is expected to become one of
the targets for effective treatment of influenza and COVID-19 co-
infection in the future.

PI3K-Akt signaling pathway plays an important role in the cell
entry and immune response development of SARS-CoV-2 virus.
After SARS-CoV-2 binds to ACE2, it activates CD147 and furin for
endocytosis, which is regulated by PI3K-AKT signal transduction
(Asselah et al., 2020). In addition, inhibiting the PI3K-AKT signaling
pathway can inhibit the activation of activated protein-1 (AP-1) and
nuclear factor kappa B (NF-KB), thereby reducing the expression of
inflammatory cytokines (Yodkeeree et al., 2018).

RAS plays an important role in the occurrence and development
of new respiratory infectious diseases such as SARS and influenza.
RAS dysfunction is the key to ALI/ARDS in patients with virus
infection (Gao et al., 2020). ACE2 is a key member of RAS, as the
receptor of SARS-CoV-2, can assist the viruses to enter the body,
reduce the level of ACE2, and cause RAS dysfunction (Hoffmann
et al., 2020). After entering the body, H5N1,H7N9, and other viruses
can inhibit the expression of ACE2 and increase the level of Ang II by
binding to other receptors, thereby forcing RAS imbalance (Huang
et al., 2014; Zou et al., 2014). They then activate the inflammatory
pathway and innate immunity, a large number of cytokines, and
chemokines act together to induce ALI and even ARDS. Therefore,
some scholars believe that the use of renin angiotensin receptor
antagonists may improve the inflammatory response, regulate
immunity, maintain or restore the integrity of the pulmonary
microvascular barrier, and ultimately reduce the mortality rate.

Phillyrin exhibited anti-virus (Wang et al., 2010; Ma et al.,
2020), anti-inflammatory (Pan et al., 2014), antioxidant, and
antibacterial (Qu et al., 2008) effects. A previous study has
reported that phillyrin could inhibit novel coronavirus (SARS-
CoV-2) and human coronavirus 229E (HCoV-229E) replication
in vitro, and reduced the proinflammatory cytokines (TNF-α, IL-
6, IL-1β, MCP-1, and IP-10) expression by regulating the activity
of the NF-lB signaling pathway (Ma et al., 2020). In addition,
phillyrin shows protective effects against influenza A in vivo, with
significantly prolonging the mean survival time, reducing the
lung index, decreasing the virus titers and interleukin-6 levels,
reducing the expression of HA, and attenuating lung tissue
damage (Qu et al., 2016). Moreover, phillyrin suppresses the
expressions of IL-1β, IL-6, TNF-α, iNOS, and COX-2 in LPS-
stimulated RAW264.7 macrophages in vitro by inhibiting JAK-
STATs and p38 MAPKs signaling pathways and the production
of ROS (Pan et al., 2014). We also have found that phillyrin
reduces pulmonary inflammation via inhibiting MAPK and NF-
κB pathways in an acute lung injury model induced by LPS
(Zhong et al., 2013). Phillyrin not only has a direct antiviral effect,
but also has multiple biological activities such as good anti-
inflammatory and immune-regulating activities.

Our research shows that phillyrin can be used as one of the
compound candidates for co-infection of SARS-CoV-2 and influenza
virus, but there are some limitations. First, biological information
analysis based on existing databases has the problems of inconsistent
data processing standardization and the subjectivity of data set
selection. Second, this research is based on the conclusions drawn

from a series of texts and data analysis, and further in vivo and in vitro
experiments are needed to support our research. Finally, this study
mainly focuses on exploring the feasibility of phillyrin in the
treatment of COVID-19 and influenza co-infection.

CONCLUSION

In summary, the severity of pneumonia caused by SARS-COV-2
and influenza virus infection is closely related to the cytokine
storm mediated by excessive inflammation. Controlling excessive
inflammation and reducing the body’s immune damage is one of
the important strategies for the treatment of COVID-19 and
influenza. This study identified 192 common core targets and 25
biological pathways for phillyrin to treat co-infection of SARS-
COV-2 and influenza virus through bioinformatics analysis.
Combining the results of biosynthesis analysis and previous
studies, we infer that phillyrin may mainly act on the HIF-1
signaling pathway, PI3K-AKT signaling pathway, and RAS
signaling pathway to regulate the body’s immune and anti-
inflammatory effects, thereby reducing the severity of diseases
caused by SARS-COV-2 and influenza virus infections. These
findings provide a theoretical and scientific basis for the further
development of phillyrin to treat COVID-19 and influenza co-
infection.
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