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Mastitis is a worldwide production disease in dairy cows, which mainly affects milk yield,
causing huge economic losses to dairy farmers. Lentinan is a kind of polysaccharide
extracted from Lentinus edodes, which has no toxicity and possesses various
pharmacological activities including antibacterial and immunomodulatory effects.
Therefore, the anti-inflammatory function of lentinan on LPS-stimulated mastitis was
carried out, and the mechanism involved was explored. In vivo, lentinan greatly
reduced LPS-stimulated pathological injury, myeloperoxidase (MPO) activity, and the
proinflammatory factor production (TNF-α and IL-1β) in mice. Further study was
performed to determine the activation of the Wnt/β-catenin pathway during LPS
stimulation. These results suggested that LPS-induced activation of the Wnt/β-catenin
pathway was suppressed by lentinan administration. In vitro, we observed that the mouse
mammary epithelial cell (mMEC) viability was not affected by lentinan treatment. As
expected, LPS increased the TNF-α and IL-1β protein secretion and the activation of
the Wnt/β-catenin pathway that was inhibited by lentinan administration in a dose-
dependent manner in mMECs. Conclusively, lentinan exerts the anti-inflammatory
function in LPS-stimulated mastitis via inhibiting the activation of the Wnt/β-catenin
pathway. Thus, the results of our study also gave an insight that lentinan may serve as
a potential treatment for mastitis.
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INTRODUCTION

Mastitis, one of the most prevalent diseases in dairy cows, is mainly characterized by the
inflammation of the mammary gland with major economic, hygienic, and welfare implications
(Wu et al., 2016; Dai et al., 2019; Puggioni et al., 2019). There are abundant pathogenic
microorganisms that can cause mastitis, such as Gram-negative bacteria Escherichia coli (Zadoks
et al., 2011; Jiang et al., 2018). Escherichia coli inflicts widespread infection in humans and is one of
the most common causative pathogens in bovine mastitis (Filioussis et al., 2020).

Lipopolysaccharide (LPS, which is also called the endotoxin), a main constituent of the Gram-
negative bacterial cell wall, has been often used to mimic E. coli-infected mastitis in vivo as well as in
cultured mammary epithelial cells (Chen et al., 2018; Kusebauch et al., 2018). When the components
of pathogens (for example LPS) or their pathogen-associated molecular patterns are recognized by
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the innate immune system, multiple signaling pathways will be
initiated to eradicate infection and protect the host against
pathogens (Stokes et al., 2015; Iida et al., 2018; Kumar, 2019).
Increasing evidence has revealed that the Wnt/β-catenin
signaling pathway is involved in several inflammatory diseases
(Mu et al., 2020; Quandt et al., 2021; Zhou et al., 2021). Therefore,
pharmacological inhibition or interference of the Wnt/β-catenin
pathway may be an effective strategy for treatment of several
inflammatory diseases.

At present, antibiotics are the major drugs for the treatment of
mastitis, but the emergence of antibiotic resistance has brought
great trouble, threatened the health of humans and animals, and
even caused the possibility of zoonotic bacteria entering the food
chain (Doehring and Sundrum, 2019; Meade et al., 2019).
Lentinan, a plant polysaccharide extracted from the
mushroom, has harmless and few side effects on the human
body (Wang X. et al., 2019; Zhang and Zhao, 2019). Although
lentinan has been reported to possess various pharmacological
activities such as anticancer, antibacterial, antiviral, and
antioxidant effects (Nishitani et al., 2013; Wang X. et al., 2019;
Hou et al., 2020), the potential protective mechanisms of lentinan
on LPS-induced mastitis remain to be explored.

We hypothesized that lentinan alleviated LPS-inducedmastitis
by interfering with the activation of the Wnt/β-catenin pathway,
which may also be a potential target for treatment of bovine
mastitis and other inflammatory diseases. In the present research,
the LPS-induced mouse mastitis was used to evaluate whether
lentinan could protect the LPS-stimulated mastitis and explain its
therapeutic mechanisms.

MATERIALS AND METHODS

Reagents
Lentinan was obtained from Shanghai Yuanye Biotechnology
Co., Ltd., and dissolved with DMSO to prepare a final
concentration of 100 mg/ml. When lentinan is used, it is
diluted to the experimental concentrations (DMSO<0.1%).
LPS was purchased from Sigma Chemical CO (St. Louis,
United States). A mouse myeloperoxidase (MPO) ELISA kit
was obtained from MultiSciences (Lianke) Biotech Co., Ltd
(Zhejiang, China).

Animal Treatment and Experimental Groups
Mice were purchased from the Laboratory Animal Center of
Zhejiang University (Hangzhou, China). Ninety BALB/c female
mice (8 week old) were used in this experiment. Food and water
were available ad libitum. The mice were kept in separate cages
for a 12 h dark light cycle under controlled temperature (24°C ±
1°C) and 60% humidity for 1 week before the research. All
experimental procedures and protocols were approved by the
Institutional Animal Care and Use Committee in Zhejiang
University.

The mice were randomly classified into six groups, each
comprising fifteen mice: Control group, LPS group, lentinan
(5, 10, and 20 mg/kg) + LPS groups, and dexamethasone
group (5 mg/kg). The mastitis model was carried out as

described previously by us (Xingxing et al., 2018). In brief,
100 μl of LPS (1 mg/ml) was infused into two abdominal
mammary glands (R4 and L4) in mice under anesthesia with
pentobarbital. Mice received an intraperitoneal injection (ip) of
different lentinan concentrations (5, 10, and 20 mg/kg) or
dexamethasone after 1 h of LPS or saline ip treatment. After
24 h, the mice were sacrificed by CO2 inhalation at the same time.
The mouse mammary tissues were collected and stored at −80°C
until being analyzed.

Histopathologic Evaluation of theMammary
Tissues
The mouse mammary gland tissues were excised and fixed in 10%
formalin for subsequent histopathological analysis. In brief,
tissues were dehydrated with different concentrations of
alcohol, paraffin-embedded sections were prepared at a 4-µm
thickness, and hematoxylin and eosin (H and E) staining was then
performed to observe the morphology changes with an optical
microscope (Olympus, Japan).

Myeloperoxidase (MPO) Analysis
MPO activity in mammary gland tissue was detected in tissue
homogenates prepared as described above using the ELISA kit
following the instruction book of the producer. In addition,
mammary tissues were fixed in 4% paraformaldehyde,
embedded in paraffin, sectioned, and then incubated with the
MPO antibody (Servicebio, China). Immunopositive cells were
counted, and positive cells in mammary gland tissue sections
were quantified to the tissue area.

Cell Culture and Treatment
Epithelial cells from the mammary gland tissue of lactating mice
were cultured as described previously (Wu et al., 2017). The
mouse mammary epithelial cells (mMECs) were cultured in
DMEM containing 10% FBS, 100 U/mL
penicillin–streptomycin, and 10 μg/ml insulin in a 5% CO2

incubator. The cells were pretreated with different
concentrations of lentinan (5, 10, and 20 μg/ml) or
dexamethasone for 1 h before LPS challenge.

Cell Biological Examination and MTT Assay
The cells were fixed with paraformaldehyde at room temperature
for 15 min and then washed three times with PBS in a twelve-well
plate. Next, the cells were sealed with 10% normal goat serum at
room temperature for 1 , followed by incubation with the primary
antibody CK-18 at 4°C for 12 h. The cells were then incubated
with the fluorescent-labeled secondary antibody (Bioss, China)
for 45 min at room temperature and washed three times in PBS.
Finally, DAPI was used to stain the cell nuclei, which were then
observed using a laser scanning confocal microscope (Leica,
Germany).

The mMEC viability was evaluated by the 3-[4,5-
dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT)
experiment. Cells (1 × 105 cell/mL) were cultured in 96-well plates
for 6 hours. The cells were stimulated with lentinan (5, 10, and
20 μg/ml) for 24 h. Next, the MTT (5 mg/ml) agent was added in
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mMECs for 4 h, and 100 μl of DMSO per well was added. The
optical density (OD) at 570 nm was read with a microplate reader
(Thermo, United States).

Immunofluorescence Staining
Immunofluorescence staining assay of the mouse mammary
tissue and mMECs was carried out. Briefly, the mouse
mammary tissues or cells were fixed in 10% formalin, and
tissues were embedded in paraffin. The tissue or cell slice was
permeated with PBS appending Triton X-100 (0.3%, Sigma,
United States) and 10% BSA. The tissue or cell slice was
hatched for 12 h at 4°C with a special antibody for Wnt3a and
β-catenin (Servicebio, China) and a Cy3 secondary antibody.
Then, Wnt3a and β-catenin proteins were determined and
immobilized using mounting media supplemented with DAPI.
Finally, all of the slices were observed with fluorescence
microscopy.

Cytokine Assay
The cytokine secretion after LPS challenge was assessed with the
ELISA kit in the mouse mammary tissues and mMECs. The
tissues were homogenized in ice-cold PBS and then centrifugation
at 10,000 rpm, 4°C for 15 min. Harvested tissue and cell supernate
to detect the production of cytokines (IL-1β and TNF-α) using
the ELISA kit following the instruction book of the producer.
Finally, the optical density (OD) at 450 nm is read with a
microplate reader.

Western Blot Assay
The total protein of mMECs was obtained by the lysis solution
containing the phosphatase repressor. The BCA kit was used to
determine the protein concentration. Then, samples with the
same amount of protein were applied to 10% SDS-PAGE gel
electrophoresis and then transferred to the PVDF membrane.
After being placed in the 5% skim milk, the membrane was
washed three times and incubated with the corresponding
primary antibody at 4°C for 12 h. Next, the membrane was
incubated with the secondary antibody at room temperature

for 1 hour. The protein band density was detected using a
chemiluminescence system.

Statistical Analysis
SPSS software was used for data analysis. Statistical data were
expressed as the mean ± S.E.M. of three individual experiments.
Data were analyzed by Student’s t-test or one-way analysis of variance
(ANOVA). p ≤ 0.05 was deemed a statistically significant difference.

RESULTS

Effects of Lentinan on LPS-Induced
Histopathological Changes
The histological analysis was used to evaluate the mouse mammary
tissue damage. Histological analysis showed that the mammary
tissue of the control group was intact without histopathological
changes (Figure 1A). In the LPS group, the injury of mouse
mammary tissue was obvious, and inflammatory cell infiltration
was extensive and hyperemia (Figure 1B). However, the extensive
inflammatory cell infiltration and hyperemia were relieved, and the
tissue structure was relatively complete in lentinan or
dexamethasone treatment (Figures 1C–F). Moreover, in order
to further verify the degree of tissue damage, the
histopathological changes of the mouse mammary gland were
evaluated according to the number of infiltrated inflammatory
cells. As described in the literature, the pathological grade was
scored according to 0–5 (Xingxing et al., 2018). As expected, the
result was consistent with pathological sections (Figure 1G).

Effects of Lentinan on Myeloperoxidase
Activity
MPO is an enzyme in neutrophils, and its activity is related to
neutrophil infiltration (Lin et al., 2020). As displayed in
Figure 2A, compared with the control group, the MPO
activity was obviously enhanced in LPS challenge. Lentinan
treatment reduced MPO activity in a dose-dependent manner,

FIGURE 1 | Effects of lentinan on LPS-stimulated histopathological changes. Histopathological changes in mammary gland tissues (H and E). (A) Control group,
(B) LPS group, (C–E) lentinan (5, 10, and 20 mg/kg) groups, (F) dexamethasone group, and (G) histopathological grade score. The blue arrow indicates the mammary
gland tissue lesion area. All data are represented as the mean ± S.E.M. of three replicates. #p < 0.05 vs the control group. *p < 0.05 vs. the LPS group. **p < 0.01
compared with the LPS group. ***p < 0.01 compared with the LPS group.
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especially at high concentration. In order to further verify the
effect of Lentinan on MPO activity, the immunofluorescence
technique was performed. As expected, LPS-enhanced MPO
activity was decreased by lentinan or dexamethasone treatment
(Figure 2B).

Lentinan Inhibited the Secretion of
Proinflammatory Factors
The secretion of proinflammatory factors in mouse mammary
tissues was detected using ELISA kits. The result of ELISA assay
displayed that LPS markedly promoted the production of TNF-α
and IL-1β. In contrast, lentinan or dexamethasone treatment
substantially decreased the levels of TNF-α and IL-1β (Figure 3).
These abovementioned results suggested that lentinan
significantly inhibited the secretion of proinflammatory factors
in LPS-induced mastitis at a concentration of 20 mg/kg. Thus,
this concentration of lentinan was used to study the protective
mechanism of LPS-induced mastitis.

Effects of Lentinan on the Activation of the
Wnt/β-Catenin Pathway
The Wnt/β-catenin signaling pathway is an evolutionarily
conserved mechanism that is fundamentally vital for
inflammation-related diseases (Guan et al., 2021). We
evaluated whether lentinan alleviated the LPS-induced
inflammatory response by suppressing the Wnt/β-catenin
pathway. The result of immunofluorescence assay displayed
that LPS treatment significantly enhanced the activation of the
Wnt/β-catenin signaling pathway that was reduced by lentinan
treatment (Figure 4).

Cell Biological Detection
CK-18 is commonly used to identify the integrity of epithelial
cells. Thus, mMECs were pretreated with the blue fluorescent
pigment to identify the cell nucleus and CK-18 labeled with the
green fluorescent pigment to show the cell integrity. The result is
displayed in Figure 5.

FIGURE 2 | Effects of lentinan on MPO activity. (A,B) MPO activity assay in lentinan-treated mMECs. All data are represented as the mean ± S.E.M. of three
replicates. *p < 0.05 vs. the LPS group. **p < 0.01 compared with the LPS group. ***p < 0.01 compared with the LPS group.

FIGURE 3 | Lentinan inhibited the secretion of proinflammatory factors. The expression of TNF-α and IL-1β in LPS-stimulated mouse mastitis was detected using
ELISA kits. All data are represented as themean ± S.E.M. of three replicates. *p < 0.05 vs the LPS group. **p < 0.01 compared with the LPS group. ***p < 0.01 compared
with the LPS group.
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Effects of Lentinan on Inflammatory
Response of Mouse Mammary Epithelial
Cells
First, the potential cytotoxicity of lentinan on mMECs was
detected by MTT experiment. As shown in Figure 6A, the cell
viability was not affected by lentinan treatment. To investigate the
effects of lentinan on inflammatory response in LPS-stimulated
mMECs, the TNF-α and IL-1β protein levels were detected using
the ELISA kit. As displayed in Figure 6B, LPS increased TNF-α

and IL-1β secretion that was inhibited by lentinan or
dexamethasone administration.

Effects of Lentinan on the Activation of the
Wnt/β-Catenin Pathway in mMECs
The activation of the Wnt/β-catenin signaling pathway in LPS-
stimulated mMECs was also determined by immunofluorescence
assay. The result showed that LPS challenge greatly enhanced the
activation of the Wnt/β-catenin pathway, but that was reduced by

FIGURE 4 | Effects of lentinan on the activation of the Wnt/β-catenin pathway. The activation of the Wnt/β-catenin pathway in LPS-stimulated mouse mastitis was
determined by immunofluorescence assay. All data are represented as the mean ± S.E.M. of three replicates.

FIGURE 5 | Cell biological detection. The nucleus was dyed blue. The cytoplasm was dyed green by CK-18.
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lentinan treatment or dexamethasone administration (Figures 7A,B).
In order to confirm the effect of lentinan on the Wnt/β-catenin
pathway activation, western blot was performed in mMECs.
Consistent with the results in Figure 7C, the downstream factors
in theWnt/β-catenin pathway, Wnt3α, and β-catenin were activated
upon LPS challenge, while lentinan or dexamethasone administration
downregulated the Wnt3α and β-catenin protein expression.

DISCUSSION

Mastitis is a worldwide production disease of dairy cattle, whichmainly
affects milk yield, causing huge economic losses to dairy farmers
(Krishnamoorthy et al., 2021). It is well known that inflammation is
harmful to the breast, but the effect of mastitis on parts other than the
breast is not obvious until researchers began to pay attention to
environmental pathogens (Ruegg, 2017). The main pathogen
causing mastitis in dairy cows is Escherichia coli (Shao et al., 2015).
At present, antibacterial agents are still the main treatment and
prevention of mastitis in most dairy farms (Stevens et al., 2016).
However, consumers and public health authorities are increasingly
concerned about the use of antibiotics to balance animal health and the
development of antimicrobial resistance on farms (Ruegg, 2017;
Nobrega et al., 2020). Lentinan is a kind of polysaccharide extracted
from Lentinus edodes, which has no toxicity and possesses various

pharmacological activities such as anticancer, antibacterial, and antiviral
effects (Antonelli et al., 2020; Lv et al., 2020; Zi et al., 2020). Thus, the
anti-inflammatory function of lentinan on LPS-stimulated mastitis was
carried out, and the mechanism involved was explored.

In the present research, LPS challenge significantly enhanced the
LPS-induced inflammatory injury that was lightened by lentinan
treatment. Additionally, as the first line of defense against
microorganisms, epithelial cells are cleared by producing a series
of immune reactions (Shin et al., 2010). Therefore, the effect of
lentinan on LPS-stimulated mouse mammary epithelial cells
(mMECs) was also determined. The MTT test showed that the
dose of lentinan used in the study had no cytotoxicity, which was
consistent with the results of other studies (Guangming et al., 2018;
Zhang and Zhao, 2019). Although inflammatory factors can produce
adaptive behavioral response and promote energy conservation to
fight infection or recover from injury, excessive proinflammatory
factors (such as TNF-α and IL-1β) will cause damage to the body and
cause inflammation-related diseases (Wang J. et al., 2019).We found
that LPS induced the overproduction of proinflammatory factors
that were suppressed by lentinan treatment.

There is increasing evidence that in many activated signaling
pathways, theWnt/β-catenin pathway plays vital role in the process of
bacterial infection (Umar, 2012; Li et al., 2021). The proinflammatory
stimulation of bacterial infection is a necessary condition for activating
the Wnt/β-catenin pathway (Silva-García et al., 2014). For instance,

FIGURE 6 | Effects of lentinan on inflammatory response of LPS-induced mouse mammary epithelial cells. (A) The potential cytotoxicity of lentinan (5, 10, and
20 μg/ml) on mMECs was detected byMTT experiment. (B) The TNF-α and IL-1β protein levels were detected using the ELISA kit in LPS-stimulated mMECs. All data are
represented as the mean ± S.E.M. of three replicates. *p < 0.05 vs. the LPS group. **p < 0.01 compared with the LPS group. ***p < 0.01 compared with the LPS group.
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FIGURE 7 | Effects of lentinan on the activation of the Wnt/β-catenin pathway in mMECs. (A,B) The activation of the Wnt/β-catenin signaling pathway in LPS-
stimulated mMECs was also determined by the immunofluorescence technique. (C) The expression of Wnt/β-catenin proteins was detected by western blot. β-actin
served as an internal control. All data are represented as the mean ± S.E.M. of three replicates.
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the proinflammatory functions were recorded in Wnt3a-stimulated
several cells. Moreover, it has been found that mutations in genes
encoding β-catenin or other Wnt pathway molecules have been
verified in several inflammatory diseases, cancers (Castellone et al.,
2009). To further explore the anti-inflammatory mechanism of
lentinan, we then investigated the activation of the Wnt/β-catenin
pathway in LPS-stimulated mMECs. The result showed that lentinan
suppressed the activation of the Wnt/β-catenin pathway in LPS-
stimulated mMECs. As we had expected, consistent results were
obtained in the tissue immunofluorescence test.

In conclusion, the present results suggested that lentinan had a
good anti-inflammatory function in LPS-stimulated mastitis
through inhibiting the Wnt/β-catenin signaling pathway.
Therefore, the results of our study also gave an insight that
lentinan may serve as a potential treatment for mastitis.
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