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Idiopathic pulmonary fibrosis (IPF) is a fatal disease with unknown cause and limited
treatment options. Its mechanism needs to be further explored. Sirtuin2 (Sirt2), a
nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, has been proved to
be involved in the fibrosis and inflammation in the liver, kidney and heart. In this study, we
aimed to evaluate the role of Sirt2 in pulmonary fibrosis. We found that Sirt2 expression
was upregulated in transforming growth factor-β1 (TGF-β1) treated human embryonic lung
fibroblasts. Sirt2 inhibitor AGK2 or the knockdown of Sirt2 expression by targeting small
interfering RNA (siRNA) suppressed the fibrogenic gene α-SMA and Fibronectin
expression in TGF-β1 treated fibroblasts and primary lung fibroblasts derived from
patients with IPF. In addition, Sirt2 inhibition suppresses the phosphorylation of
Smad2/3. Co-immunoprecipitation (Co-IP) showed that there is interaction between
Sirt2 and Smad3 in the TGF-β1 treated lung fibroblasts. In bleomycin-induced
pulmonary fibrosis in mice, AGK2 treatment significantly mitigated the degree of
fibrosis and decreased the phosphorylation of Smad2/3. These data suggest that Sirt2
may participate in the development of IPF via regulating the Smad2/3 pathway. Inhibition of
Sirt2 would provide a novel therapeutic strategy for this disease.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a devastating disease with increasing morbidity, and the
median survival of the patients is only 3–5 years after diagnosis (Chanda et al., 2019). There is no
effective treatment for this disease (Noble et al., 2012). The pathogenesis of IPF remains unclear.
Aberrant activation and differentiation of fibroblasts to myofibroblasts plays a critical role in the
development of this disease (Wynn and Ramalingam, 2012; Selman and Pardo, 2014; Meiners et al.,
2015). Myofibroblast differentiation is induced by various cytokines and chemokines (Ballester et al.,
2019), among these, transforming growth factor-β1 (TGF-β1) is a well-documented mediator (Meng
et al., 2016; Morikawa et al., 2016). Myofibroblasts are characterized by the expression of α-smooth
muscle actin (α-SMA), excessive accumulation of extracellular matrix (ECM) components including
Fibronectin and collagen, which would form fibrotic scars and eventually lead to the loss of tissue
function (Wynn, 2008). Understanding the molecular mechanisms of lung fibroblasts activation is
important for developing new anti-fibrotic agents.

Accumulating evidence supports the role of epigenetic alterations including histone acetylation in
the pathogenesis of IPF (O’Reilly, 2017; Wallner et al., 2020; Jones et al., 2019). Histone acetylation is
regulated by histone deacetylases (HDACs) and histone acetylases (HATs) (Drazic et al., 2016).
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Sirtuins are Class III HDACs that are nicotinamide adenine
dinucleotide (NAD+) dependent deacetylase (Imai and
Guarente, 2014), including seven members (Sirtuin 1–7)
(Gomes et al., 2019). The cytosol member Sirtuin 2 (Sirt2) is
widely expressed in almost all mammalian organs. Previous
studies suggest that Sirt2 is involved in inflammatory response
and fibrosis progress in different organs, including kidney, heart
and liver, however, its role is controversial (Ponnusamy et al.,
2014; Arteaga et al., 2016; Tang et al., 2017). For instance, Sirt2
acts as a cardio-protective deacetylase in aging-related and
angiotensin II (Ang II)-induced cardiac fibrosis and
hypertrophy, and loss of Sirt2 promotes these pathological
changes (Tang et al., 2017). While in hepatic and renal
fibrosis, Sirt2 demonstrated the pro-fibrogenesis
characteristics, blocking Sirt2 inhibited the activation of
hepatic stellate cells and renal interstitial fibroblasts, and
suppressed hepatic and renal fibrosis (Ponnusamy et al.,
2014; He et al., 2018). It is noteworthy that a study involving
triple antigen induced-allergic eosinophilic asthma has proved a
stimulatory role of Sirt2 on the recruitment of eosinophils. This
indicates a pro-inflammatory effect of Sirt2 in pulmonary
microenvironment (Lee et al., 2019). The role of Sirt2 in
pulmonary fibrosis remains elusive.

In the current study, we evaluated the role of Sirt2 in TGF-β1
induced lung fibroblasts activation and bleomycin induced
pulmonary fibrosis in mice. Our findings indicated for the first
time that the expression of Sirt2 is increased in TGF-β1- activated
lung fibroblasts and fibrotic lung tissues of mice induced by
bleomycin. Sirt2 inhibition suppressed the fibrogenic gene
α-SMA and Fibronectin expression in TGF-β1 treated lung
fibroblasts and primary lung fibroblasts derived from patients
with IPF. In addition, Sirt2 inhibition suppresses the
phosphorylation of Smad2/3. Co-immunoprecipitation
demonstrated the interaction between Sirt2 and Smad3 in lung
fibroblasts. In animal model, inhibition of Sirt2 alleviated
pulmonary fibrosis and reduced the phosphorylation of
Smad2/3 induced by bleomycin.

MATERIALS AND METHODS

Cell Culture and Treatment
The human embryonic lung fibroblasts (MRC-5) used in this
study were purchased from the Chinese academy of sciences (Cat.
no. GNHu41, Shanghai, China). Human primary IPF lung
fibroblasts were purchased from The Global Bioresource
Center (ATCC® CCL-134™, United States). In TGF-
β1 concentration-dependent assay, when the MRC-5 reached
80% confluence, the growth medium was changed to serum free
medium overnight; then the cells were treated with Recombinant
human TGF-β1 (R&D Systems, Minneapolis, MN) at 0, 1, 2, 5,
and 10 ng/ml for 24 h. In the time-dependent test, the cells were
cultured for a period of 0, 3, 6, 12, 24, and 48 h at 2 ng/ml TGF-β1.
In Sirt2 inhibition study, MRC-5 cells were treated with TGF-β1
at 2 ng/ml for 24 h, and then added 10 μMAGK2 (an inhibitor of
Sirt2) (MCE, HY-100578) or vehicle control (dimethyl sulfoxide,
a AGK2 solvent) for another 24 h in the presence of TGF-β1.

RNA Extraction and Real-Time RT-PCR
RNA was extracted with a RNeasy® Mini kit (Qiagen GmbH,
Hilden, Germany), and converted into cDNA using a Revert Aid
First stand cDNA synthesis Kit (Thermo Scientific,
United States). Real-time PCR was performed using a SYBR
Green/qPCR Master Mix kit according to the manufacturer’s
instructions (Thermo Scientific, United States). Real-time RT-
PCR was performed in triplicate and normalized to GAPDH or
β-actin with the ΔΔCt method. Primers are listed in Table 1.

Western Blot Analysis
Whole cell lysates were collected with RIPA Lysis Buffer containing
protease and phosphatase inhibitor mixture. The total protein
concentration of the lysates was quantified using a Micro BCA
Protein Assay Kit (Thermo Scientific, United States). The same
amount of protein was electrophoresed on 10% SDS-PAGEs and
Western immunoblotting was performed according to the
manufacturer’s instructions. Immunoblots were imaged using an
Amersham Biosciences 600 imager. Quantification of protein
expression for all blots was performed using ImageJ software.
Primary antibodies Sirt2 (1:1000; #9787), α-SMA (1:1000;
#19245), Fibronectin (1:1000; #26836), phospho-Smad2 (1:1000;
#3108), phospho-Smad3 (1:1000; #9520), Smad2/3 (1:1000;
#8685), GAPDH (1:1000; #2118), β-actin (1:1000; #4970), and
horseradish peroxidase-conjugated secondary antibody (1:5000;
#7074) were all from Cell Signaling Technology.

Immunofluorescence Staining
MRC-5 cells were cultured on coverslips as described previously
with or without 10 μMAGK2 in the presence of TGF-β1 for 24 h.
The cells were fixed with 4% paraformaldehyde for 15 min at
room temperature, permeabilized with 0.1% Triton X-100 for
10 min, blocked with 10% normal goat serum and incubated with
anti-Fibronectin (1:400) or anti-α-SMA (1:400) followed by Alexa
Fluor 558 goat anti-rabbit secondary antibody (1:1000).
Fluorescence images were collected on a fluorescence microscope.

Small Interfering RNA Transfections
When MRC-5 cells and IPF lung fibroblasts grew to 70–80%
confluence, the cells were transfected with negative control small
interfering RNA (NC siRNA) or Sirt2 targeted siRNA (Sirt2
siRNA) (Santa Cruz Biotechnology, sc-40988, Inc.
United States) using lipofectamine® 3000 (Invitrogen,

TABLE 1 | Primers used in the real-time RT-PCR.

Gene name Sequence

Sirt2 F: 5′-TGCGGAACTTATTCTCCCAGA-3′
R: 5′-GAGAGCGAAAGTCGGGGAT-3′

Fibronectin F: 5′-TCGCTTTGACTTCACCACCAG-3′
R: 5′-CCTCGCTCAGTTCGTACTCCAC-3′

α-SMA F: 5′- CTATGAGGGCTATGCCTTGCC-3′
R: 5′-GCTCAGCAGTAGTAACGAAGGA-3′

β-actin F: 5′-CTGTCCCTGTATGCCTCTG-3′
R: 5′-ATGTCACGCACGATTTCC-3′

GAPDH F: 5′-CCCATGTTCGTCATGGGTGT-3′
R: 5′-TGGTCATGAGTCCTTCCACGATA-3′
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Carlsbad, CA, United States) according to manufacturer’s
instructions. After 24 h transfection, the medium was changed,
and cells were incubated for another 24 h in the absence or
presence of 2 ng/ml TGF-β1. The efficiency of transfection was
evaluated by Sirt2 mRNA and protein expression using
quantitative real-time RT-PCR and Western blot.

Co-Immunoprecipitation
Co-IP was carried out with IP/Co-IP Kit (88,804; Thermo Fisher
Scientific, United States). Pierce protein A/G-Agarose beads were
washed using 100 μl antibody binding and washing buffer to
wash. Beads were collected and gently rotated with rabbit anti-
Sirt2 (1:20, ab211033, Abcam) or rabbit IgG (1:20, ab6715,
Abcam) antibodies for 10 min after supernatant was removed.
Subsequently, incubate the antibody-beads complex with 400 μg
total protein from hypotonic lysis buffer for 5 min. The
supernatant was removed and the antibody-protein-beads
complex was washed 3 times using washing buffer. The
supernatant was removed again and the antibody-protein
beads complex was gently resuspended with 100 μl elution
buffer for 2 min. The sample was separated and subjected to
Western blot analysis.

Experimental Mice Model of Pulmonary
Fibrosis
Animal studies were approved by the Animal Ethics Committee
of the Second Xiangya Hospital, Animal Center of Central South

University (Approval No. 2021026). 6-8-week-old healthy
C57BL/6 mice (male, 20–25 g) were randomly divided into
three experimental groups: control group (n � 6, with saline
treatment), bleomycin (BLM) group (n � 6, with BLM treatment),
and BLM + AGK2 group (n � 6, with BLM/AGK2 co-treatment).
A single dose of bleomycin sulfate at 1.5 U/kg body weight was
conveyed via transtracheal injection. AGK2 in dimethyl sulfoxide
solution was administered via daily intraperitoneal injection for
successive 7 days at 50 mg/kg, starting at day 14 post-bleomycin
injury. Mice were sacrificed on day 21 post bleomycin injury, and
the lung tissues were prepared for Western blot and histology.

Histological Staining and
Immunohistochemical Staining
Lung tissues were fixed with 4% paraformaldehyde for 24 h and
underwent dehydration by alcohol of different concentration.
Tissues were embedded into paraffin and placed at room
temperature for 24 h, then cut into 5 μm sections.
Haematoxylin-eosin (HE) staining kit (cat. no. C0109;
Beyotime) and Masson staining kit (cat. no. C0215; Beyotime)
were used to determine the degree of alveolitis and fibrosis
withSzapiel’s method (Szapiel et al., 1979). Images were
captured under a microscope (BA210T; Motic). For IHC, the
sections received antigen retrieval in citrate buffer at 95°C for
15 min, then blocked with 0.5% BSA-PBS containing 10% goat
serum for 1h, and finally incubated with anti-Fibronectin (1:100;
66042-1-IG), anti-α-SMA (1:200; 55135-1-AP), or anti-Sirt2 (1:

FIGURE 1 | Sirt2 expression is increased in TGF-β1 stimulated lung fibroblasts. (A,D) Expression of Fibronectin, α-SMA and Sirt2 proteins detected by Western
blot in MRC-5 cells treated with 0 (control), 1, 2, 5, and 10 ng/ml TGF-β1 for 24 h (B,E) Densitometric analyses of theWestern blot in (A,D). (C) Expression of Fibronectin
and α-SMAmRNA detected by real-time RT-PCR in MRC-5 cells treated with 0 (control), 1, 2, 5, and 10 ng/ml TGF-β1 for 24 h. (F) Expression of Sirt2 protein detected
byWestern blot in MRC-5 after 2 ng/ml TGF-β1 exposure for 0, 3, 6, 12, 24, and 48 h. (G) Densitometric analyses of theWestern blot in (F). GAPDHwas used as a
loading control. The bars indicated mean ± SD of three separate experiments. *p ＜0.05, **p ＜0.01, ***p ＜0.001, ****p ＜0.0001 compared to the control.
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100; 19655-1-AP) antibody overnight. The density of positive
areas was measured using Image-Pro Plus 6.0 software.

Quantification and Statistical Analysis
GraphPad Prism version 7.0 software was used for graph
preparation and data analysis. Densitometric analysis was
performed by ImageJ software. All data were calculated as the
means ± standard deviation (SD) based on at least three
independent experiments. The significance of differences was
analyzed using Student’s t test or one-way ANOVA. A p-value of
less than 0.05 was statistically significant.

RESULTS

Sirt2 Expression Is Increased in TGF-β1
Treated Lung Fibroblasts
Lung fibroblasts activation and differentiation is critical for the
development of pulmonary fibrosis. Since TGF-β1 is a well-
documented pro-fibrogenic cytokine in the progression of IPF,
we used TGF-β1 as a fibroblast activator in this study. As shown
in Figures 1A–C, after exposure to different concentrations of
TGF-β1 (1, 2, 5 and 10 ng/ml for 24 h), the protein and mRNA
expression of fibrogenic genes Fibronectin and α-SMA were

increased significantly in MRC-5 cells. Next, in order to
determine whether Sirt2 plays a role in pulmonary fibrosis,
Sirt2 expression was examined in MRC-5 cells treated with the
same concentration of TGF-β1 as described above (Figures
1A–C). As shown in Figures 1D,E, the protein expression of
Sirt2 was elevated at different concentrations of TGF-β1
treatment, with a peak level at 2 ng/ml treatment. In order to
determine the time course of TGF-β1 regulating Sirt2 expression,
the cells were treated with 2 ng/ml TGF-β1 for different time
periods and the results showed that Sirt2 expression was
significantly increased at 3, 6, 12, 24, and 48 h, and the level
peaked at 24 h after TGF-β1 stimulation (Figures 1F,G). The
results suggested that Sirt2 may play a role in the process of lung
fibroblasts activation.

AGK2 Attenuates TGF-β1-Induced Lung
Fibroblasts Activation
To further examine the role of Sirt2 in lung fibroblasts activation,
we used selective Sirt2 inhibitor AGK2 to inhibit its function in
MRC-5 cells, and then analyzed the expression of Fibronectin and
α-SMA. MRC-5 cells were treated with 10 μM AGK2 or vehicle
control for 24 h in the presence of 2 ng/ml TGF-β1. The results
showed that AGK2 significantly downregulated the increased

FIGURE 2 | AGK2 decreases fibrogenic gene expression in TGF-β1-induced lung fibroblasts activation. (A,C) Protein and mRNA expression of Sirt2, Fibronectin
and α-SMA proteins byWestern blot and real-time RT-PCR in MRC-5 cells treated with 2 ng/ml TGF-β1 for 24 h and then added 10 μMAGK2 or DMSO for another 24 h
in the presence of TGF-β1. GAPDH was used as loading control. (B) Densitometric analyses of the Western blot in (A). (D) Fibronectin and α-SMA was strongly
expressed in response to TGF-β1, and AGK2 decreased the expression by immunofluorescence staining. Green means Fibronectin and α-SMA staining; Blue
means DAPI. The bars indicated mean ± SD of three separate experiments. DMSO, dimethyl sulfoxide; **p＜0.01, ***p＜0.001, ****p＜0.0001 compared to the TGF-
β1+DMSO group.
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protein and mRNA expression of Fibronectin and α-SMA
induced by TGF-β1 (Figures 2A–C). Likewise,
immunofluorescence staining further demonstrated that AGK2
treatment reversed the increased Fibronectin and α-SMA
fluorescence intensity induced by TGF-β1 (Figure 3D). These
data demonstrated that inhibiting Sirt2 can downregulate
expression of Fibronectin and α-SMA at transcriptional and
translational levels in TGF-β1-stimulated lung fibroblasts.

Sirt2 siRNA Attenuates Fibrogenic Gene
Expression in TGF-β1-Treated Lung
Fibroblasts and IPF Lung Fibroblasts
After analyzing the function of Sirt2 by the pharmacologic
inhibitor AGK2, two kinds of siRNA targeting Sirt2 were used
to further confirm the role of Sirt2 in fibroblast activation. First,
the high knockdown efficiency of two Sirt2 siRNAs was verified
by Western blot and real-time RT-PCR (Figures 3A–C).
Considering these two Sirt2 siRNAs have the same silent
efficiency in down-regulating Sirt2 protein expression, so we
only used Sirt2 siRNA1 in the following Sirt2 knockdown

experiments. Sirt2 siRNA or NC siRNA transfected MRC-5
cells were incubated with TGF-β1 for 24 h, and the results
showed that silencing Sirt2 expression significantly attenuated
the protein (Figures 3D,E) and mRNA expression (Figure 3F) of
Fibronectin and α-SMA induced by TGF-β1 stimulation.
Similarly, in primary lung fibroblasts derived from IPF
patients, silencing Sirt2 expression with siRNA decreased the
expression levels of Fibronectin and α-SMA protein (Figures
3G,H). Overall, these data suggest that interfering the expression
of Sirt2 suppresses lung fibroblasts activation.

Inhibition of Sirt2 Alleviates the Increased
Smad2/3 Phosphorylation Induced by
TGF-β1
TGF-β1/Smad2/3 is a well-known signaling pathway involved in
tissue fibrosis. Upon TGF-β1 stimulation, Smad2/3 are
phosphorylated and the phosphorylated Smad2/3 combines
with Smad4 to form heteromeric complexes, which translocate
into the nucleus to modulate target gene transcription (Yan et al.,
2016). Several studies showed that some Sirtuins, including Sirt1,

FIGURE 3 | Silencing Sirt2 inhibits fibrogenic gene expression in TGF-β1-treated lung fibroblasts and IPF lung fibroblasts. (A,C)MRC-5 cells were transfected with
NC siRNA or Sirt2 siRNA for 24 h, Sirt2 siRNA successfully downregulated Sirt2 protein and mRNA expression detected by Western blot and real-time RT-PCR. (B)
Densitometric analyses of theWestern blot in (A). (D,F) Protein and mRNA expression of Sirt2, Fibronectin, and α-SMA byWestern blot and real-time RT-PCR in MRC-5
cells transfected with NC siRNA or Sirt2 siRNA for 24 h in the absence or presence of 2 ng/ml TGF-β1. (E) Densitometric analyses of the Western blot in (D). (G)
Expression of Sirt2, Fibronectin and α-SMA by Western blot in IPF lung fibroblasts treated with NC siRNA or Sirt2 siRNA for 24 h. (H) Densitometric analyses of the
Western blot in (G). GAPDH or β-actin was used as loading control. The bars indicated mean ± SD of three separate experiments. NC, negative control; siRNA, small
interfering RNA. **p ＜0.01, ***p ＜0.001, ****p ＜0.0001.
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Sirt3, Sirt6, and Sirt7, involved in the pathogenesis of fibrosis
partially through TGF-β1/Smad2/3 signaling pathway (Sosulski
et al., 2017; Wyman et al., 2017; Zhang et al., 2019). Therefore, we
hypothesized that Sirt2 also modulates TGF-β1 induced lung
fibroblasts activation through Smad2/3 pathway. Our results
showed that phospho-Smad2 (p-Smad2) and phospho-Smad3
(p-Smad3) levels were significantly upregulated in response to
TGF-β1 treatment compared with control (Figures 4A–D).
AGK2 or Sirt2 siRNA treatment downregulated the increased
phosphorylation of Smad2/3 induced by TGF-β1, decreased total
Smad3 protein was also observed when Sirt2 was inhibited
(Figures 4A–D). These indicated that Sirt2 promote the lung
fibroblasts activation in a Smad2/3-dependent manner. Co-IP

demonstrated directly that Sirt2 interacts with Smads in TGF-β1
treated MRC-5 (Figure 4E). Taken together, these results suggest
that Sirt2 regulates fibroblasts activation through Smad2/3
signaling pathway in human embryonic lung fibroblasts.

AGK2 Alleviates Bleomycin-Induced
Pulmonary Fibrosis in Mice
Mice model of bleomycin-induced pulmonary fibrosis was used
to elucidate the protective effects of AGK2 treatment in vivo.
Lung tissues were examined with HE and Masson staining. In HE
staining, saline-treated lung tissue showed normal alveolar spaces
and normal thickening of the alveolar septa; bleomycin

FIGURE 4 | Inhibiting Sirt2 activity and expression downregulates the increased Smad2/3 phosphorylation induced by TGF-β1. (A) Protein expression of
p-Smad2/Smad2 and p-Smad3/Smad3 by Western blot in MRC-5 cells pretreated with 2 ng/ml TGF-β1 for 24 h and then 10 μM AGK2 or DMSO for 24 h in the
presence of TGF-β1. (B) Densitometric analyses of the Western blot in (A). (C) Protein expression of p-Smad2/Smad2 and p-Smad3/Smad3 by Western blot in MRC-5
cells transfected with NC siRNA or Sirt2 siRNA for 24 h in the absence or presence of 2 ng/ml TGF-β1. (D) Densitometric analyses of the Western blot in (C). (E)
MRC-5 cells were treated with TGF-β1 at 2 and 5 ng/ml for 24 h, and total protein was co-immunoprecipitated with anti-Sirt2 antibody or IgG and immunoblotted with
Smad3 antibody. GAPDH was used as a loading control. The bars indicated mean ± SD of three separate experiments. NC, negative control; siRNA, small interfering
RNA; DMSO, dimethyl sulfoxide. *p ＜0.05, ***p ＜0.001.
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stimulation induced obviously more interstitial infiltration by
inflammatory cells than saline-treated control group, AGK2
administration apparently attenuated the degree of alveolitis
(Figure 5A upper panel). In Masson staining, bleomycin
stimulation induced a significant thickening of the alveolar
septa with increased deposition of collagen in lung tissues
compared with the control (Figure 5A lower panel).
Quantitative analysis showed that the alveolitis and fibrosis
scores induced by bleomycin were significantly reduced after
AGK2 treatment (Figure 5B).

AGK2 Alleviates Bleomycin-Induced
Pulmonary Fibrosis and Decreases the
Expression of p-Smad2/3 in vivo
In mice model of bleomycin-induced pulmonary fibrosis, IHC
was performed to further explore the effects of AGK2 on the
expression of fibrosis-related proteins. As shown in Figures 6A,B,
the staining of Fibronectin, α-SMA, and Sirt2 protein in the saline
group was not remarkable, while the positive staining showed as
dark brown was significantly increased after treating with

bleomycin. Western blot showed similar results, which
demonstrated the protein expression of Sirt2, Fibronectin and
α-SMA were higher in the lung tissue of bleomycin-treated mice,
but lower in those with AGK2 treatment, when compared to the
saline control (Figures 6C,D). Furthermore, AGK2 treatment
significantly decreased the levels of p-Smad2/Smad3 induced by
bleomycin (Figures 6E,F). These results demonstrated that Sirt2
inhibitor can alleviated bleomycin-induced pulmonary fibrosis in
vivo and inactivated Smad2/3 signaling pathway.

DISCUSSION

IPF is a progressively fatal disease and more effective therapeutic
strategies are urgently needed. However, the underlying
mechanism of the progress of IPF has not yet been fully
elucidated. The chronic injuries or repetitive stimulation of
lung epithelial cells lead to aberrantly activated fibroblast
proliferation and excessive amount of ECM deposition may be
a key process for this disease. Emerging evidence suggests that
other Sirtuins are involved in the fibroblast activation and

FIGURE 5 | AGK2 alleviates the degree of pulmonary fibrosis in bleomycin-induced pulmonary fibrosis in mice. (A) Representative images of HE and Masson
staining of lung tissues. Magnification, ×100. (B) The quantitative results of alveolitis and fibrosis scoring. BLM, bleomycin. *p ＜0.05.
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progression of pulmonary fibrosis (Mazumder et al., 2020). For
the first time, we demonstrate that the expression of Sirt2 is
increased in lung fibroblasts stimulated with TGF-β1 in vitro and
in the mice model of pulmonary fibrosis induced by bleomycin in
vivo; inhibiting Sirt2 by the pharmacologic inhibitor or targeting
small interfering RNA can inhibit fibrosis process by blocking
Smad2/3 signaling pathway.

The occurrence and development of pulmonary fibrosis is
complex. TGF-β1 is the most important primary driver and
mediator in the process of pulmonary fibrosis through
recruiting and activating fibroblasts, promoting epithelial-
mesenchymal transition (EMT) and inducing ECM production
(Hu et al., 2018). TGF-β1 regulates a complex networks of gene
expression, including Smad and Sirtuins signaling pathway.

FIGURE 6 | AGK2 attenuated bleomycin-induced pulmonary fibrosis and decreased the expreesion of p-Smad2/3 in vivo. (A)Representative image of IHC staining
of Sirt2 (top, brown), Fibronectin (middle, brown) and α-SMA (bottom, brown) (magnification: ×400). (B) Quantitative analysis of IHC in (A) with Image-Pro Plus 6.0
software. (C,E) Protein expression of Sirt2, Fibronectin, α-SMA, p-Smad2/Smad2 and p-Smad3/Smad3 of lung tissues byWestern blot. (D,F)Densitometric analyses of
the Western blot in (C,E). BLM, bleomycin. *p ＜0.05, **p ＜0.01, ***p ＜0.001, ****p ＜0.0001.
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The mechanisms by which the Sirtuins contribute to the
pathogenesis of fibrotic diseases are different in previous
studies. Among these Sirtuins, Sirt1, Sirt3, Sirt6, and Sirt7
have been well studied in pulmonary fibrosis (Chun, 2015;
Mazumder et al., 2020). Several studies have documented the
regulatory function of Sirtuins on some classic fibrotic-related
signaling pathway including TGF-β1/Smads. For instance, Sirt1
activation or overexpression can inhibit pulmonary fibrosis
in vitro via inactivation of TGF-β1/Smad3 and mTOR
signaling (Warburton et al., 2013; Chu et al., 2018). Sirt6
inhibits lung myofibroblasts differentiation by repressing NF-
κB-dependent transcriptional activity and TGF-β1/Smad2
signaling pathway (Tian et al., 2017; Zhang et al., 2019).

Previous studies have demonstrated that Sirt2 is involved in the
pathological process of tissue fibrosis. A pro-fibrotic function of
Sirt2 has been documented in hepatic fibrosis. Genetic or
pharmacological inhibition of Sirt2 significantly suppressed
fibrogenic gene expression in hepatic stellate cells through ERK
dephosphorylation and c-MYC degradation (Arteaga et al., 2016).
In the study of hepatitis B virus (HBV) infection, Sirt2
overexpression was associated with Akt activation, which
consequently downregulated glycogen synthase kinase 3β (GSK-
3β) and increased β-catenin levels. These results indicate that Sirt2
inhibitor may control HBV infection and prevent the development
of hepatic fibrosis (Piracha et al., 2018). In kidney fibrosis, AGK2
dose- and time-dependently inhibited the expression of fibrotic
markers (Ponnusamy et al., 2014). Moreover, a stimulatory
function of Sirt2 on eosinophil recruitment and inflammatory
cytokines (TNF-α, IL-1β, IL-4 and IL-6) and mediators
(myeloperoxidase, eosinophil peroxidase, and tumor growth
factor-α) secretion in lung tissues was observed (Lee et al., 2019;
Kim et al., 2020). However, the role of Sirt2 has not been explored
in pulmonary fibrosis.

In this study, we showed that Sirt2 level was upregulated in
TGF-β1 activated human lung fibroblasts and lung tissues of
bleomycin-treated mice model, which suggested that Sirt2 may
play a role in fibroblasts activation and pulmonary fibrogenesis.
Downregulation of Sirt2 expression using pharmacologic
inhibitor AGK2 and siRNAs alleviated TGF-β1 induced lung
fibroblasts activation, as evidenced by reduced expression of
α-SMA and Fibronectin. The anti-fibrotic effect of Sirt2
knockdown was also observed in IPF lung fibroblasts.
Moreover, AGK2 treatment significantly mitigated the degree
of pulmonary fibrosis in mice induced by bleomycin.

Smad2 and Smad3 are key mediators of TGF-β1-induced
fibrogenesis and ECM production. TGF-β1 binds to its
receptor and forms complexes with Smad2/3, then the
phosphorylated Smad2/3 and its subsequent complex
translocate to the nucleus, which are the key steps to modulate
TGF-β1 dependent gene expression and fibrosis progress (Li
et al., 2019; Zou et al., 2019; Nanri et al., 2020). Our results
found that p-Smad2/3 expression was increased in activated lung
fibroblasts induced by TGF-β1 and in lung tissues of bleomycin-
induced pulmonary fibrosis. Sirt2 inhibitor AGK2 or Sirt2 siRNA
can attenuated its expression. Co-IP further identify the
interactions between Sirt2 and Smad3. Our results illustrated

that Sirt2 possibly regulates Smad2/3 directly or indirectly and
lead to higher phosphorylation of Smad2/3 in response to
stimulators; Sirt2 may promote the activation of fibroblasts
and the development of pulmonary fibrosis through Smad2/3
pathway. This result was similar to a previous study, which
demonstrated that AGK2 reduced the level of collagen
deposition in specific Smad signaling transfected cells (Kim
et al., 2020).

In the present study, Sirt2 has been identified as an important
factor in the process of pulmonary fibrosis, and inhibition of Sirt2
ameliorated the degree of fibrosis and decreased the
phosphorylation of Smad2/3, which indicate that targeting
Sirt2 would provide novel therapeutic candidate for preventing
pulmonary fibrosis. However, the limitation of this study is that
only small molecule inhibitor was used, and further studies with
Sirt2-KO mice are needed to investigate the exact effects of Sirt2
on pulmonary fibrosis.
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