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Objective: Although guidelines have recommended standardized drug treatment for heart
failure (HF), there are still many challenges inmaking the correct clinical decisions due to the
complicated clinical situations of HF patients. Each patient would satisfy several
recommendations, meaning the decision tree of HF treatment should be nonmutually
exclusive, and the same patient would be allocated to several leaf nodes in the decision
tree. In the current study, we aim to propose a way to ensemble a nonmutually exclusive
decision tree for recommendation system for complicated diseases, such as HF.

Methods: The nonmutually exclusive decision tree was constructed via knowledge rules
summarized from the HF clinical guidelines. Then similar patients were defined as those
who followed the same pattern of leaf node allocation according to the decision tree. The
frequent medication patterns for each similar patient were mined using the Apriori
algorithms, and we also carried out the outcome prognosis analyses to show the
capability for the evidence-based medication recommendations of our nonmutually
exclusive decision tree.

Results: Based on a large database that included 29,689 patients with 84,705
admissions, we tested the framework for HF treatment recommendation. In the
constructed decision tree, the HF treatment recommendations were grouped into two
independent parts. The first part was recommendations for new cases, and the second
part was recommendations when patients had different historical medication. There are 14
leaf nodes in our decision tree, and most of the leaf nodes had a guideline adherence of
around 90%. We reported the top 10 popular similar patients, which accounted for
32.84% of the whole population. In addition, the multiple outcome prognosis analyses
were carried out to assess themedications for one of the subgroups of similar patients. Our
results showed even for the subgroup of the same similar patients that no one medication
pattern would benefit all outcomes.
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Conclusion: In the present study, the methodology to construct a nonmutually exclusive
decision tree for medication recommendations for HF and its application in CDSS was
proposed. Our framework is universal for most diseases and could be generally applied in
developing the CDSS for treatment.

Keywords: decision tree, medication recommendation, clinical decision support system (CDSS), chronic heart
failure, treatment, machine learning

INTRODUCTION

Heart failure (HF) is a clinical syndrome that is a result of the
abnormalities in the structure and function of the myocardium
impairing cardiac output or decreasing the filling of the ventricles
(Metra and Teerlink, 2017). The treatment of heart failure is
guided by the stage of symptoms and signs as well as a robust
literature on therapies proven to be beneficial by randomized
trials (Yancy et al., 2017). Despite tangible advances in recent
years, HF is still a leading cause of death worldwide (Conrad et al.,
2018). As a terminal stage of patients, HF is complexed with
multiple comorbidities, such as coronary heart disease,
hypertension, and diabetes (Chamberlain et al., 2020), making
the clinical decision process complicated. Although guidelines
have recommended standardized drug treatment for HF, given
the complexity of HF, there are still many challenges in making
the correct clinical decisions. Artificial Intelligence-Clinical
Decision Support Systems (AI-CDSSs) has the potential to
assist physicians in the treatment decision process in HF.

CDSSs provide evidence for physicians in making clinical
decisions, such as differential diagnosis and recommending
medications (Bates et al., 2001; Office of the National
Coordinator for Health Information Technology, Department
of Health and Human Services, 2012). The key component for
providing the evidence is finding similar patients. Patients who
have similar clinical conditions are expected to suffer from similar
diseases and be treated with similar medications (Downie et al.,
2020). Within a similar patient group, the retrospective EHR
(electronic health record) data can be used to rank all candidate
medications that occurred in a similar patient group (Austin et al.,
2020). The way of ranking those candidate suggestions is by
calculating the conditional probability (such as the fraction of
diagnoses) and the effectiveness (such as prognoses after
treatment with certain medication) of the suggestions.

To maintain the clinical correctness and interpretability of the
model used in CDSS, knowledge-based decision trees should be
constructed. A decision tree is a model consisting of consecutive
decisions, starting from the root node, and each sample would be
allocated to different branches based on the condition it satisfied.
Nodes without downstream branches are called the leaf node, and
all samples would be classified into different leaf nodes according
to the decision tree. In general, the construction of such a decision
tree is based on the summary of the clinical rules for a specific
disease (Zhao et al., 2020). The clinical rules are composed of the
conditions and actions simultaneously, indicating the actions
under certain conditions. Decision trees are constructed by
integrating all clinical rules to partition patients into specific
subgroups represented by the leaf nodes. The conditions and

corresponding actions, suggested by the clinical guidelines, are
denoted in the non-leaf nodes (Song and Lu, 2015).

The core challenge in the construction of the decision tree relies on
the integration of clinical rules (Ehrhardt et al., 2021). For some
diseases, such as type 2 diabetes and hypertension, the whole
population should be partitioned systematically according to the
clinical guidelines. Therefore, themutually exclusive decision trees are
easily constructed following the clinical guidelines. For instance, in
our work in the AMIA 2019 Annual Symposium (Sun et al., 2019),
the whole population of diabetes patients was grouped by the HbA1c
(hemoglobin A1C) value and numbers of historical antidiabetic
medications according to the clinical guidelines of type 2 diabetes.
In this case, each patient only belonged to one unique group.
However, in most other cases, the clinical guidelines have
provided independent clinical condition rules, and there are no
logical exclusiveness between different clinical rules (Keikes et al.,
2021). For example, for heart failure patients, the current medication
recommendations are based on the previous drugs (Ponikowski et al.,
2016), and historically using one drug A is not mutually exclusive
with using another drug B. Therefore, it is unrealistic to integrate
those recommendations into a mutually exclusive decision tree.

It is challenging to convert clinical guidelines into a normal
decision tree since those trees, where one patient can only be
allocated in a unique leaf node, are designed to be mutually
exclusive. To tackle this problem, we proposed a novel way to
construct and leverage a nonmutually exclusive decision tree in
CDSSs. The construction process was just listing all the clinical
rules horizontally if they were independent. Therefore, each
branch was not mutually exclusive with others in the decision
tree. One patient could enter multiple branches and be allocated
to several different leaf nodes simultaneously.

In the current study, we proposed a framework to construct
the nonmutually exclusive decision tree and applied it in the
HF treatment recommendation as shown in Figure 1. The
three essential components for CDSS in application included
the definition of similar patients, the medication patterns for
each similar patient group, and evidence-based
recommendation strategy. For the first component, similar
patients were defined as patients following the exact same leaf
node allocation patterns in the nonmutually exclusive tree.
Second, to obtain the medication patterns for each similar
patient group, the frequent mining algorithm was applied.
Third, to provide real-world evidence, we analyzed the
prognoses for each medication pattern, which were
calibrated by the propensity score of a patient following a
particular medication pattern. The multiple prognoses
provided a multidimensional view for physicians when
making decisions.
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METHODS

This study was approved by the ethics committee of the Chinese
PLA General Hospital.

Datasets
The dataset we used was extracted from a heart failure database in
the Chinese PLA General Hospital in Beijing, China. This
database was initially constructed for all patients diagnosed
with heart failure from 2008 to 2018. The database included
29,689 patients with 84,705 admissions in total. According to the
classification and diagnostic criteria of heart failure in the
guidelines (Ponikowski et al., 2016), all samples that satisfied
the definition of HF with reduced ejection fraction (HFrEF) were
included in the current study. A total of 9,414 patients with 16,063
visits were obtained. Each record consisted of demographic
information, physical examinations, laboratory test results,
medication history, and current medication.

It should be noted that the quality of the data was critical in
providing real-world evidence.We used the data of inpatients instead
of those of outpatients, considering that the coverages of many
features of the data of inpatients were much higher than the data
of the outpatients. Such substitution hypothesized that the
medication for inpatients and outpatients of HfrEF was similar in
terms of medication categories, such as ACEIs (angiotensin-
converting enzyme inhibitors) or β-receptor blocker, and our
CDSS also provided real-world evidence in the granularity of
medication categories. The medication considered in the current
study is listed inTable 1. Another hypothesis was that the relative day
of the admission for one patient was insignificantly related to the
medication decisions, which we had checked in the current study by

regressing the medication decisions with the relative day as the
condition.

Data Preprocessing
The preprocessing of the data of inpatients contained three steps:
data standardization, data segmentation, and missing value
imputations.

First, the medications used in the current study were
standardized by the ATC (Anatomical Therapeutic Chemical)
five-digit code as listed in Table 1.

Second, the data of the inpatients were fragmented by the day.
As shown in Figure 2, the records of the inpatients with a length
of stay equal to n could be converted into n samples. For each sample,
the history was referred to as the activities that happened in the
previous day. It should be noted that by multivariable logistic
regression to the prescriptions, the day indexes in the segmented
daily records were independent of the medications in each day. A
total of 132,158 samples were obtained after data fragmentation.

Third, a two-step strategy ofmissing value imputationwas utilized
in the current study. First, the missing values were imputed forward
or backward for the same admission. Then the rest of the missing
values were imputed with means for continuous variables and
medoids for discrete variables. The coverage of each variable
before and after the first step imputation is listed in Table2.

Construction of Knowledge-Based
Non-mutually Exclusive Decision Tree
To construct the knowledge model, clinical recommendations
were first summarized and extracted from the clinical guidelines.
Then the clinical recommendations were organized in the form of

FIGURE 1 | The workflow to construct and apply nonmutually exclusive decision tree. The workflow included two parts. The first part is the procedure of the
construction of nonmutually exclusive decision tree, denoted as “knowledge model.” The second part is the application of the nonmutually exclusive decision tree, which
included tree components: the fine group of the patients, the frequent medication patterns mining for each patients group, and the multiple outcomes prognoses
analyses.
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a decision tree with each branch representing one
recommendation in the clinical guidelines. The decision-tree-
like knowledge model was constructed and reviewed by multiple
clinical experts.

As shown in Table 3, the clinical recommendations for HfrEF
were extracted from the 2016 ESC guidelines for the diagnosis and
treatment of HF (Ponikowski et al., 2016). According to the clinical
guidelines, the treatment of HfrEF was divided into three phases: the
new cases without historical HF treatment, cases after the initial
treatment, and end-stage heart failure cases. The last phase was
excluded since there was no medication-related treatment. For each
phase, the clinical conditions and the recommended treatments were
listed horizontally. For the new cases, the prescriptions were made
based onwhether therewere symptoms of congestion. Besides, for the

ones who had congestion symptoms, patients were further divided
according to the existence of hyponatremia and the tendency of renal
function damage. For cases after the initial treatment, the medication
decisions were determined by the previous treatment and the current
symptoms.

To construct the decision tree, the extracted clinical rules were
integrated in the following ways. If the clinical conditions were
independent, the clinical rules were organized horizontally;
otherwise, they were integrated following the logical hierarchy.
The constructed decision tree for the new cases and the cases
after initial treatment were shown, respectively, in Figures 3A, B.
The leaf node represented the treatment strategies as listed inTable 3.
Note that the leaf nodes indexed by 4, 8, 10, 12, and 14 stood for the
same treatment as previous ones.

TABLE 1 | The medication considered in the current study.

Medications for HFrEF
treatment

Abbreviation ATC codes

Angiotensin-converting enzyme inhibitor ACEI C09AA
Angiotensin Ⅱ receptor blocker ARB C09CA
Angiotensin receptor neprilysin inhibitor ARNI C09DX04
β-receptor blocker β C07AB, C07AA, C07AG
Aldosterone receptor antagonist ARA C03DA
Diuretics Diu. C03CA, C03XA
Digitalis Dig. C01AA
Ivabradine Iva. C01EB

FIGURE 2 | The schematic diagram of an n-day electronic health record (EHR) for inpatient. The data would be segmented into n fragments as indicated by the
vertical dash lines, and the colorful boxes represent the different categories of information: d for the prescript medications, c for the results of the laboratory tests, n for the
nursing records, and r for the records of the ward rounds.

TABLE 2 | The coverage of each variable before and after the forward and backward imputation.

Variable name Coverage before the
imputationa

Coverage
after the imputation

Heart rate 96.72% 98.88%
Serum potassium 95.72% 99.83%
Serum sodium 95.08% 99.77%
B-type natriuretic peptide (BNP) 94.12% —

b

Creatinine 93.80% 99.62%
Systolic blood pressure 59.80% 97.83%
Urine volume 57.03% 84.76%
Cardiac function level 37.66% 84.76%
Ejection fraction 26.19% 59.81%

Note. aOnly the first step imputation: forward and backward imputation of the same patients.
bWe did not impute BNP, since it was used to estimate one outcome (BNP_improved).
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It should be noted that in Figure 3B, the decision tree had
four branches, and the leftmost one (marked with a red star)
was independent of the other three. Thus, patients allocated
in the leftmost branch would not be mutually exclusive with

the other three. The clinical records would be allocated to
leaf node 4 and leaf node 6 at the same time. All the
nonmutually exclusive branches were marked with a star
in Figure 3B.

TABLE 3 | Extracted clinical rules for the treatment of HFrEF according to the clinical guidelines.

Clinical situation Recommended treatment

Historical
medication

Others

New cases — Have symptoms and/or
signs of congestion

There was no hyponatremia and no tendency of renal
function damage

Loop diuretics|thiazide Diu. + ACEI/
ARB + β

There is hyponatremia or tendency of renal function damage Tolvaptan + ACEI/ARB +β
No symptoms and/or signs
of congestion

ACEI/ARB +β

Cases after initial
treatment

Containing
diuretics

Congestion symptoms
improved

The original diuretic regimen was
maintained for further observation

Congestion symptoms did
not improve

Add tolvaptan

Containing ACEI/
ARB +β

Improvement of heart
failure symptoms

Maintain the original treatment plan
and continue to observe

The symptoms of heart
failure did not improve

eGFR ≥ 30 ml min−1·1.73m−2 and serum potassium
<5.0 mmol/L

Addition of aldosterone receptor
antagonist

NYHA cardiac function class –I–III and blood pressure can
tolerate ACEI/ARB (systolic blood pressure ≥95 mmHg)

Replacing ACEI/ARB with ARNI

β has reached the target dose or the maximum tolerated
dose, sinus heart rate ≥70 beats/min and LVEF ≤ 35%

Addition of Iva.

According to CRT/ICD indications CRT/ICD
The combination of multiple treatments still has symptoms Add Dig.

End-stage heart
failure

— — — Heart transplantation|palliative care|
left ventricular assist device

Note. *Medication referred to Table 2.
Abbreviations: eGFR, estimated glomerular filtration rate; NYHA, the New York Heart Association Functional Classification; LVEF, left ventricular ejection fraction; CRT, cardiac
resynchronous therapy/ICD (cardiac resynchronous therapy).

FIGURE 3 | The integrated knowledge-based decision trees for heart failure (HF) with reduced ejection fraction (HFrEF): (A) the decision tree for new cases; (B) the
decision tree for cases with initial treatment of HFrEF. The nonmutually exclusive branches were labeled with the red *. For (B), the medications were grouped into two
independent parts as indicated by the dashed boxes. The leaf nodes were colored in green, indicating the medications for each branch. The details for decision condition
1 was the existence of congestion symptom; for decision condition 2, the existence of hyponatremia or the tendency of renal function impairment; for decision
condition 3, the whether the congestion symptoms got improved; for decision condition 4, whether the heart failure symptoms got improved; for decision condition 5,
whether the LVEF ≤40% and no symptom improvement with a combination of multiple medications; for decision condition 6, whether the eGFR ≥30 ml min−1,·1.73 m−2,
and the blood potassium <5.0 mmol/L; for decision condition 7, whether the NYHA was between II and III and the tolerance of ACEI/ARB (the systolic blood pressure
≥95 mmHg); for decision condition 8, whether the LVEF ≤35%, the sinus heart rate ≥70 beats/min, and β-receptor blocker reached the target dose (or the maximum
tolerated dose). Abbreviations: eGFR, estimated glomerular filtration rate; NYHA, the New York Heart Association Functional Classification; LVEF, left ventricular ejection
fraction.
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Similar patients and medication
recommendation
Similar patients
After the knowledge tree was constructed, the clinical records
would be allocated to a set of leaf nodes. In the current study, we
proposed defining similar patients as those who followed the
same pattern of leaf node allocation. For example, patients
allocated to leaf node 4 and leaf node 6 were treated as the
same patient group. Note that only the exact leaf allocated
patterns were counted in the fine grouping of the patients.

Frequent Medications’ Mining for Each Subgroup and
Each Non-Mutually Exclusive Part in the Decision Tree
To provide real-world clinical evidence, for each patient
subgroup, the frequent drug patterns were mined using the
Apriori algorithms (Ding et al., 2008). The Apriori algorithm
was a powerful tool to mine the frequent patterns for
transaction data. By iteratively adding candidate frequent
items into the kth frequent itemsets, the k+1st frequent
itemsets were generated. Then those generated candidates
were excluded once they did not satisfy the frequency
threshold. The remaining k+1st frequent itemsets were used
for the next round of generation.

It should be noted that the nonmutually exclusive feature led
to the independence of the frequent medication patterns between
nonmutually exclusive parts in the decision tree. As shown in
Figure 3B, the prescription for a particular patient would be the
combination of the diuretics with other medicines related to heart
functions, such as ACEI and β-receptor blocker. Therefore, the
frequent medication patterns would be mined, respectively, for
diuretics and heart function-related drugs.

Prognosis’s Analyses
Multiple Outcomes
The real-world evidence for each subgroup was provided based
on the prognosis analyses. The real-world evidence played a
critical role for leaf nodes with variable choice of medications.
Therefore, multiple outcomes were considered in the current
study to assist the physician to make decisions even for the same
patient subgroup.

To assess each treatment effect of HfrEF, six outcomes were
considered in the current study. They are hyponatremia,
hypernatremia, hypokalemia, hyperkalemia, acute kidney
injury, and the reduction of B-type natriuretic peptide. They
could be grouped into the following three categories:

(1) Electrolyte disturbance

In the treatment of HfrEF, electrolyte disturbances mainly
referred to the blood potassium and the blood sodium. The high
or low blood potassium and the blood sodium were all considered
as electrolyte disturbances. Hyponatremia is defined as blood
sodium <135 mmol/L, while hypernatremia is defined as blood
sodium >145 mmol/L. The lower limit for blood potassium was
3.5 mmol/L, and the upper limit was 7.0 mmol/L. Any values out
of the range were defined as hypokalemia or hyperkalemia
accordingly.

(2) Acute kidney injury

Heart failure and chronic kidney disease often coexist, and the
existence of renal insufficiency could worsen the prognosis of HF
(Bock and Gottlieb, 2010). The following standard was used to
judge the occurrence of acute kidney injury (a severe case for renal
insufficiency) (Khwaja, 2012): the creatinine rises 26.5 µmol/L
within 48 h or 1.5 times of the baseline within 7 days (increase
>50%), and urine output of <0.5 ml kg−1 h−1 (time >6 h).

(3) B-type natriuretic peptide

The B-type natriuretic peptide (BNP) was one of the most
common heart failure biomarkers used in screening, diagnosis,
severity assessment, and prognosis of heart failure. Also, it was
an indicator of the risk of cardiovascular events in patients
with heart failure after discharge. The lower the BNP values,
the better the clinical conditions the patient had. We chose a
20% reduction of BNP as the indicator of improvement of
clinical conditions for HF, denoted as BNP_ improved17. The
20% increase in BNP was labeled as the deterioration of HF
conditions.

Medication Assessments Using Propensity Score
As aforementioned, the treatment using diuretic and other HF
drugs were independent; the prognosis analyses were also carried
out separately for diuretic and other HF drugs. For each group of
similar patients with each nonmutually exclusive part, suppose
there were n candidate medications, and there would be 6n
prognosis analyses since there were six outcomes considered
in the current study.

To calibrate the bias introduced by patients using the specific
medication, the propensity score of the medications was included
in the regression to the outcomes. To be specific, for the prognosis
analysis with treatment T, other variables X, and the outcome Y,
we first regressed T on X and obtained the propensity score of a
patient using treatment T. Then the propensity score, as well as
the variable X, was used to the regression of the outcome Y. The
formula for the second regression was:

Y � σ(βPSPS + BTX + βTT + b)

where σ is the sigmoid function, which transforms any value to a
probability between 0 and 1. The equation is:

σ(x) � 1
1 + e−x

The PS was the propensity score of a patient choosing the
treatment T, and βPS, βT, and B were the learnable parameters for
the propensity score, the treatment variable, and other variables,
respectively. According to the potential outcome framework
(Rubin, 2005), after being calibrated with the propensity score
of the selection bias of the treatment, the estimation of correlation
between the treatment and the outcome would be more
reasonable. Finally, βT was used to reflect the propensity of
treatment T to the occurrence of the outcome Y. A positive βT
indicated a promoted effect to the outcome.
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RESULTS

Loading all Clinical Records to the
Knowledge-Based Decision Tree for Heart
Failure With Reduced Ejection Fraction
Historical Medication Patterns’ Mining and Expansion
of the Knowledge-Based Decision Tree
According to the HfrEF knowledge decision tree, the first decision
point was the history of medication of the patient. To understand
the distribution of medication history, we first mined the history
medication using the Apriori algorithms (Agrawal and Srikant,
1994) as introduced in the method section and identified the
frequent sets of medications with a support threshold of 0.05%.
The frequent set is shown in Figure 4. Only the top 10medication
strategies had their name listed in Figure 4 for the sake of clarity.
The top 10 medication strategies accounted for 78.55% of the
total sample of 132,158. The most popular medication strategy
was no medication, which accounted for 30.28%. Those samples
would be loaded into the decision tree for new cases (see
Figure 3A), while the remaining 69.72% would be loaded into
the decision tree shown in Figure 3B.

Among all samples loaded for Figure 3B, 47,028 records were
successfully loaded into the tree, which accounted for 35.58%
(47,028/132,158) of the candidate samples. The main reasons
came from the missing historical medication strategies in the
knowledge-based decision tree. The other reason for records
failed to be loaded into Figure 3B was the missing value for
clinical conditions, such as the ejection fraction. It should be
noted that the records were loaded before the second
imputation step.

As shown in Figure 4, historically, only β-receptor blocker was
used for heart function accounting for 15.85% of the records,
which consisted of using β-receptor blocker (12.63%) only and

using β-receptor blocker with diuretics (3.22%). The same reason
for the other historical medication strategies was denoted in red
in Figure 4. Considering that HF patients only had β-receptor
blocker (15.85%), or ACEI/ARB (angiotensin II receptor blocker)
(3.47%) were common in clinical practice, the knowledge
decision tree for the cases after initial treatment got expanded
as shown in Figure 5. As shown in Figure 5, there were two
expanded branches: branch (6) and branch (7). Branch (6) was
ACEI/ARB, and branch (7) was a β-receptor blocker. The
corresponding decision condition 9 was defined as systolic
blood pressure >90 mmHg or heart rate >60 beats/min, and
decision condition 10 was systolic blood pressure >90 mmHg
or heart rate >60 beats/min. Leaf node 15 represented adding β-
receptor blocker based on ACEI/ARB medication, leaf node 16
represented maintaining the original medication ACEI/ARB, leaf
node 17 represented adding ACEI/ARB based on β-receptor
blocker, and leaf node 18 indicated maintaining the original
medication β-receptor blocker.

Ambiguous clinical conditions
Since the existence of some subjective or hardly recorded clinical
conditions, it may be difficult to run through the decision tree.
Thus, we proposed their alternative estimations. For example, the
decision condition 1/3/4 (the existence of congestion symptoms/
the improvement of congestion symptoms/the improvement of
heart failure symptoms) was difficult to assess directly by using
our data. For the decision condition ¾, changes in the BNP values
were used instead (Nassif et al., 2019). More specifically, if the
BNP value decreased by more than 20%, the symptoms were
defined as improved, and vice versa. For decision condition 1,
there was no substitute for judgment, so we did not analyze the
corresponding branch.

Estimation of the Adherence to the Clinical Guideline
for Each Leaf Node
After loading the records to the decision tree, we estimated the
adherence of each clinical node to the clinical guideline. By
adherence, we meant the medication patterns were not in
conflict with the clinical guidelines. To estimate the
adherence, the frequent medication patterns were mined for
each leaf node, and the top ones were used to be compared with
the guideline-recommended medications. The top five frequent
medications and the corresponding guideline adherence for
each leaf node are listed in Table 4. By the time the dataset
was generated, there was no usage of new drugs, such as
tolvaptan, ARNI (angiotensin receptor neprilysin inhibitor),
and ivabradine. Therefore, the leaf nodes involving the new
drugs were excluded from the following analyses, such as leaf
node 4. Most of the leaf nodes had a guideline adherence of
around 90%, except leaf nodes 7 and 13.

Similar Patients for Non-Mutually Exclusive
Decision Tree
Once the clinical records were loaded into the decision tree, the
patients were clustered into different subgroups according to our

FIGURE 4 | Distribution of the mined frequent historical medications for
all HFrEF clinical records (132,158 in total). The top 10medications were listed
with the name and the proportions. Please see Table 1 for the abbreviations of
the medicines. The medicines labeled in red were not considered as
historical medication strategies in the decision trees for HFrEF.
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definition of similar patients. The leaf node patterns and sample
size of the top 10 subgroups are listed in Table 5. The most
popular pattern was allocated to leaf node 5 only, which
accounted for 18.54% of all running through clinical examples.
Subgroup c was the most popular pattern that contained multiple
leaf nodes.

Prognostic Analyses for Similar Patients
and Medication Recommendation Strategy
As introduced in Prognosis analyses, all combinations for the top
five medications and the six outcomes were analyzed for each leaf
node. As a running example, here we showed the prognosis
analysis for subgroup d. For subgroup d, patients were
allocated to five leaf nodes simultaneously. As the prescription
of the diuretics and heart functional-related drugs was
independent according to the clinical guidelines, the
prognostic analyses were carried out separately. Shown in
Figures 6A, B are the prognostic analyses on whether to use
diuretics, while Figures 6C, D are the analyses for heart function-
related medications. The occurrence ratios for each medication
are shown in Figures 6A, C, while the calibrated coefficients of
each medication for different outcomes are indicated in
Figures 6B, D.

As shown in Figure 6A, using diuretics for subgroup c had a
higher ratio of improving BNP level, and also the risk of AKI and
HypoNa. According to Figure 6B, using diuretics only would
significantly lower the risk of occurring HyperNa. As shown in

FIGURE 5 | The expansion of the knowledge-based decision tree for cases with initial treatment of HFrEF. The nonmutually exclusive branches were labeled with
red *. The leaf nodes were colored in green, indicating the medications for each branch. The decision condition 9 was whether the systolic blood pressure >90 mmHg or
the heart rate >60 beats/min. The decision condition 10 was whether the systolic blood pressure >90 mmHg or the heart rate >60 beats/min.

TABLE 4 | The frequent set of leaf node medication for HFrEF (top 5).

Leaf
node no.

The medications recommended
by clinical guidelines

The top 5
medication strategies (separated

by comma)

Guideline
compliancea

4 Diu. Diu., Diu. +ARA, Diu. +β+ ARA, Diu. +β, Diu. +β+ ARA + Dig. 84.39%
6 (Diu.) + ACEI/ARB+β Diu. +ACEI/ARB+β+ ARA, ACEI/ARB+β, Diu. +ACEI/ARB+β +ARA + Dig.,

ACEI/ARB+β+ ARA, Diu. +ACEI/ARB+β,
93.57%

7 (Diu.) + ACEI/ARB+β+ARA ACEI/ARB+β, Diu. +ACEI/ARB+β+ARA + Dig., Diu. +ACEI/ARB+β+ ARA,
ACEI/ARB+β+ ARA, ACEI/ARB+β+ ARA + Dig.

44.22%

8 (Diu.) + ACEI/ARB+β ACEI/ARB+β, Diu. + ACEI/ARB+β+ ARA + Dig., Diu. + ACEI/ARB+β+ ARA,
Diu. +ACEI/ARB+β, ACEI/ARB+β+ ARA

94.62%

10 (Diu.) + ACEI/ARB+β ACEI/ARB+β, Diu. + ACEI/ARB+β+ ARA + Dig., Diu. + ACEI/ARB+β+ ARA,
Diu. + ACEI/ARB+β+ ARA, Diu. +ACEI/ARB+β

94.62%

13 (Diu.) + ACEI/ARB +β+ARA + Dig. or (Diu.) +
ARNI+β+ Dig.

Diu. +ACEI/ARB+β+ ARA + Dig., Diu. +ACEI/ARB+β+ ARA, ACEI/ARB+β+ARA,
ACEI/ARB+β+ ARA + Dig., Diu. +β+ ARA + Dig.

54.43%

14 (Diu.) + ACEI/ARB +β+ ARA or (Diu.) +
ARNI+β

Diu. +ACEI/ARB+β+ ARA + Dig., Diu. +ACEI/ARB+β+ ARA, ACEI/ARB+β+
ARA, ACEI/ARB+β+ ARA + Dig., Diu. +β+ ARA

93.47%

Note. aGuideline compliance was calculated as the proportion of medications that were including recommended by the guidelines. The bold font indicated the medications that obeyed the
guidelines.

TABLE 5 | Leaf node patterns and sample size for the top 10 subgroups.

Subgroups no. The leaf nodes Number Ratio (%)

A 5 24,508 18.54
B 4 6,952 5.26
C 7,12 3,007 2.28
D 5, 7, 10, 12, 14 2,278 1.72
E 7, 10, 12 2,057 1.56
F 4, 6 1,061 0.80
G 5, 7, 12, 14 1,035 0.78
H 6 967 0.73
i 7, 10, 12, 14 821 0.62
j 7, 12, 14 724 0.55
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Figure 6C, the medication of β+ ARA (aldosterone receptor
antagonist) benefitted the improvement of the BNP level the
most, but would also increase the risk of HypoNa. As indicated by
Figure 6D, using ACEI/ARB+β+ARA + Dig. Would significantly
lower the risk of occurring HyperNa.

DISCUSSIONS

In the present study, we proposed a framework to construct a
nonmutually exclusive decision tree and to combine the tree with
real-world data for a treatment recommendation. Based on this
framework, we successfully built the CDSS for chronic heart
failure treatment with a large real-world inpatient dataset. In
addition, the multiple outcome prognosis analyses were carried
out to assess the medications for the subgroup of each similar
patient, which facilitated the physicians in making decisions in a
patient-specific way.

Although many achievements have been made in improving
the model precision for medication recommendations (Liu et al.,

2017; Shang et al., 2019; Chowdhury and Turin, 2020), it is still
necessary to maintain the interpretability and ensure consistency
with clinical knowledge in the real application of CDSS.
Therefore, there is a trend in combining clinical guidelines
and retrospective I data. Wei Zhao et al. proposed to construct
a decision tree with clinical rules extracted from the clinical
guidelines by the Gini impurity calculated by using the real data
(Zhao et al., 2020). Sun et al. (2019) proposed to integrate the
real-world evidence calculated using data with the knowledge-
based decision trees. In the present study, we found data helped in
expanding the knowledge-based decision tree for cases with the
initial treatments for HFrEF. Also, the mining of the frequent
medication patterns enriched the knowledge-based tree,
especially when the prognosis analyses showed benefit for
some outcomes.

The decision tree is composed of the clinical conditions
mentioned in the clinical guidelines and the candidate
medications in the leaf nodes. In the mutually exclusive settings,
following the clinical conditions on the decision trees, one patient is
allocated to a unique leaf node. Those required a systematic partition

FIGURE 6 | The prognosis’s analyses for the subgroup (allocated to leaf nodes 5, 7, 10, 12, and 14): (A,C) showed the occurrence ratios of each outcome for
different medications, where the x-axis indicted the different outcomes, the y-axis indicated the occurrence ratio, and the color denoted different medications. (B,D)were
2D heatmaps indicating the calibrated coefficients of each medication for different outcomes, where the x-axis showed the medications, the y-axis indicated the
outcomes, and the color was in proportion to the coefficients. Red colors denote the risk factors for the outcomes, and the blue ones denote the protective factors.
The coefficients with p-value <0.05 were labeled with red *.
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of the whole population, which was infeasible for most cases,
especially for complicated diseases such as chronic heart failure.

As proposed in the current manuscript, the construction of the
nonmutually exclusive decision tree simply organized the
independent clinical rules horizontally. The similar patients
were defined as the same patterns of leaf nodes allocated, and
the preparation of the real-world evidence for each subgroup of
similar patients relied on the two-step linear regression for the
nonmutually exclusive parts separately. In summary, the three
key components for nonmutually exclusive decision trees, the
construction process, the similar patients, and the real-world
evidence were nondisease specific; thus, the methodology would
be a general solution for all diseases without a systemic partition
of the whole population.

The limitation of the current work was that we only used
single-center data and had not yet tested the construct CDSS with
an external dataset. Besides, the effect of the substitution of the
data of outpatients for the data of the inpatients was not carefully
evaluated in the application of CDSS.

The novelty of our work relied on how to utilize such a
nonmutually exclusive decision tree in CDSS. First, one key
concept in CDSS was identifying similar patients, which were
defined as patients assigned to the same set of leaf nodes. Second,
to provide real-world evidence, we separated different types of
medications and recommended independent medications for
each similar patient group. To make precise medication
recommendation for each patient, the prognoses evidence for
each treatment should be calibrated by the propensity score of a
particular treatment. In practice, the calibration included two
steps. First, the propensity for patients in a particular patient
group to choose one medication pattern were evaluated by
regression to the medication patterns. Second, the effect of
each medication pattern to the outcome should be calibrated
by considering the propensity of medication chosen when
regressed to the outcome. Therefore, our nonmutually
exclusive decision tree would provide risks of different
outcomes for each medication pattern of each patient group,
which would assist physicians to make medication decisions for a
specific patient.

In conclusion, in the present study, the methodology to
construct a nonmutually exclusive decision tree for
medication recommendations for HFrEF and its application
in CDSS was proposed. Our framework is universal for most
diseases and could be generally applied for developing the CDSS
for treatment. This provides a promising solution for diseases

that are infeasible to obtain a mutually exclusive decision tree
for treatment.
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