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We assessed the accuracy of tranexamic acid (TXA) concentrations measured in capillary
whole blood using volumetric absorptive micro-sampling (VAMS) devices. Paired venous
and VAMS capillary blood samples were collected from 15 healthy volunteers participating
in a pharmacokinetic study of alternative routes (oral, IM and IV) of administering TXA. To
assess accuracy across a range of concentrations, blood was drawn at different times
after TXA administration. We measured TXA concentrations in plasma, whole blood from
samples collected by venepuncture and whole blood from venous and capillary samples
collected using VAMS devices. TXA was measured using a validated high sensitivity liquid
chromatography - mass spectrometry method. We used Bland-Altman plots to describe
the agreement between the TXA concentrations obtained with the different methods. In the
42 matched samples, the mean plasma TXA concentration was 14.0 mg/L (range
2.6–36.5 mg/L) whereas the corresponding whole blood TXA concentration was
7.7 mg/L (range 1.6–17.5 mg/L). When comparing TXA concentrations in VAMS
samples of venous and capillary whole blood, the average bias was 0.07 mg/L (lower
and upper 95% limits of agreement: −2.1 and 2.2 mg/L respectively). When comparing
TXA concentrations in venous whole blood and VAMS capillary whole blood, the average
bias was 0.7 mg/L (limits of agreement: −2.7 and 4.0 mg/L). Volumetric absorptive micro-
sampling devices are sufficiently accurate for use in pharmacokinetic studies of tranexamic
acid treatment in the range of plasma concentrations relevant for the assessment of
fibrinolysis inhibition.
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INTRODUCTION

Although tranexamic acid (TXA) has been marketed for the
prevention of bleeding since the 1960s and has been used in a
range of surgical and out-of-hospital indications, the dosing
regimens used are mostly empirical. High quality clinical trials
with sufficient power to support efficacy in acute severe bleeding
are relatively recent, as are the pharmacokinetic studies
(Collaborators, 2019; Collaborators et al., 2010; Woman Trial
Collaborators, 2017; Grassin-Delyle et al., 2021a; Grassin-Delyle
et al., 2021b; Grassin-Delyle et al., 2018; Grassin-Delyle et al.,
2013a). Timely TXA treatment, ideally within an hour of bleeding
onset, has been shown to be essential for maximal efficacy in acute
severe bleeding and so effective TXA blood concentrations must
be achieved rapidly (Collaborators et al., 2011; Gayet-Ageron
et al., 2018). For this, knowledge of the pharmacokinetics of TXA
in each population that could benefit from this treatment is
fundamental. Early intravenous (IV) administration of TXA
reduces deaths from post-partum haemorrhage (Woman Trial
Collaborators, 2017). To facilitate the treatment of women who
give birth in community settings, the WHO recommended that
“research into other routes of administration is a priority”
(WHO, 2017). In response, we initiated a programme of
pharmacokinetic (PK) research on alternative routes of TXA
administration. Finding new routes of TXA administration is of
particular interest in low- and middle-income countries and
several studies have been initiated in these settings. The
availability of qualified staff for venipuncture, as well as the
necessary laboratory equipment for pre-analytical processing
and storage of blood samples, is a prerequisite for
pharmacokinetic studies. Because capillary blood sampling is
simpler, less invasive and usually less painful than venepuncture
(Abu-Rabie et al., 2019; Koster et al., 2019), we tested the use of
a volumetric absorptive micro-sampling (VAMS) device for
TXA quantification. Here we report the accuracy of TXA
concentrations in blood collected using theses VAMS devices.

METHODS

As part of a randomised, cross-over PK study of alternative routes
of TXA administration in healthy volunteers conducted at the
Clinical Investigation Centre of Necker Hospital in Paris, we
assessed the accuracy of TXA concentrations collected using
volumetric absorptive micro-sampling devices. The study was
approved by the London School of Hygiene & Tropical Medicine
ethics committee (16286) and the Comité de Protection des
Personnes Île de France III (2019-000285-38) and registered in
the EudraCT (2019-000285-38) and ClinicalTrials.gov
(NCT03777488) databases. The study methods are described
in detail elsewhere (Grassin-Delyle et al., 2021a). Briefly, adult
volunteers (non-pregnant women and men) aged between 18 and
45 years received TXA by three routes (1 g intravenous, 1 g
intramuscular, 2 g oral) on three separate days with a
minimum washout period of 48 h between each treatment.
After each administration (T0), we took paired venous blood
samples (0.5 ml venous blood in a sodium heparin tube) and

duplicate capillary blood samples using the 10 µL Mitra® VAMS
device (Neoteryx, Torrance, CA, United States) at one of the
following timepoints: T0 + 5 min (IV route only), T0 + 30 min,
T0 + 1 h, T0 + 2 h, T0 + 3 h, T0 + 4 h, T0 + 5 h, T0 + 6 h, T0 + 8 h
(IM and PO routes only), T0 + 24 h. Sampling with the VAMS
device was performed according to manufacturer’s instructions.
Once all clinical samples were obtained, they were sent and
processed in batch in the laboratory.

We measured TXA concentrations in plasma and whole blood
in samples collected by venepuncture. We also measured TXA
concentrations in VAMS devices soaked in the whole blood
collected by venepuncture and in capillary whole blood
samples collected using the VAMS device. All TXA
measurements were made using liquid chromatography - mass
spectrometry methods (Fabresse et al., 2017; Lamy et al., 2020).
For plasma, the lower limit of quantification is 0.1 mg/L with
precision in the range 1.2–3.0% and an accuracy of between 88.4
and 96.6% across the range 0.1–1,000.0 mg/L. For other samples,
the lower limit of quantification is 0.1 mg/L with and a precision
<12.6% and an accuracy between 85.2 and 112.8% across the
range 0.1–1,000.0 mg/L.

We used Bland-Altman plots to describe the agreement
between the TXA concentrations obtained using the different
sampling methods (Bland and Altman, 1999). First, to assess
the impact of capillary sampling, we compared TXA
concentrations in VAMS devices with venous and capillary
blood. Second, to assess the impact of using the VAMS device,
we compared TXA concentrations in venous whole blood and
VAMS capillary blood. Finally, to assess whether capillary
samples can be used to estimate plasma TXA concentrations,
we examined the association between plasma TXA levels and
those estimated from VAMS capillary blood samples using
Equation 1 below, as described in our previous paper
(Grassin-Delyle et al., 2021a):

Cplasma � Cwhole blood × 1
1 −Ht

(1)

FIGURE 1 | Tranexamic acid concentration in mg/L measured in
plasma, whole blood, VAMS venous and VAMS capillary samples (n � 42).
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RESULTS

The characteristics of the study population have been reported
previously (Grassin-Delyle et al., 2021a). There were 11 women
and four men. The median age was 25 years and the median
bodyweight was 64.2 kg.We obtained 42matched venous plasma,
venous whole blood, venous whole blood on VAMS devices and
capillary VAMS samples. There were three missing values for
venous whole blood samples and one missing venous VAMS
sample. The TXA concentrations in all samples are shown in
Figure 1. TXA concentrations in plasma were higher than in
whole blood. The mean (SD) plasma TXA concentration was 14.0
(8.9) mg/L whereas the mean whole blood TXA concentration
was 7.7 (4.3) mg/L. Figure 2 shows the Bland Altman plot of the
tranexamic acid concentration in VAMS samples of venous and
capillary blood. The average bias, lower and upper 95% limits of
agreement were 0.07, −2.1 and 2.2 mg/L respectively. Figure 3
shows the Bland Altman plot of the tranexamic acid
concentration in venous whole blood and VAMS capillary

blood. The bias, lower and upper 95% limits of agreement
were 0.7, −2.7 and 4.0 mg/L respectively. Figure 4 shows a
scatter plot of the tranexamic acid concentration measured in
plasma versus the corresponding concentration estimated from
VAMS capillary blood samples. There was a good correlation
between the values (R2 � 0.81, p < 0.001), with a Lins concordance
correlation coefficient of 0.85 (95% CI 0.76–0.91). The root mean
square error was 4.4 mg/L.

DISCUSSION

Whole blood tranexamic concentrations in samples collected
using the VAMS devices correspond closely to those measured
in liquid blood samples collected by venepuncture. As blood and
plasma samples were stored frozen and in conditions which do
not affect TXA stability (Grassin Delyle et al., 2010; Fabresse et al.,
2017), the excellent agreement between TXA concentrations
measured in whole blood samples and those in VAMS devices
stored for the same period at ambient air suggest that VAMS
storage conditions are appropriate and are not responsible for any
stability issue. Our Bland Altman plots show that VAMS capillary
blood samples provide reliable estimates of the TXA
concentrations in venous blood and that the TXA
concentrations capillary blood samples collected using VAMS
correspond closely with those in blood obtained by venepuncture.
The average bias of less than 1 mg/L suggests that the VAMS
device is suitable for use in pharmacokinetic studies of TXA.

Amajor strength of our study is the use of well validated, high-
sensitivity LC–MS/MS methods for the quantification of
tranexamic acid concentrations. Our assay was validated in
accordance with internationally recognised standards and has
excellent analytical performance across the range of clinically

FIGURE 2 | Bland Altman graph for tranexamic acid concentration in
mg/L measured in VAMS samples of venous and capillary blood. The bias,
lower and upper limits of agreement are at 0.07, −2.1 and 2.2 mg/L
respectively (n � 44).

FIGURE 3 | Bland Altman graph for tranexamic acid concentration in
mg/L measured in venous whole blood and VAMS capillary blood. The bias,
lower and upper limits of agreement are at 0.7, −2.7 and 4.0 mg/L respectively
(n � 42).

FIGURE 4 | Scatter plot for tranexamic acid concentration in mg/L
measured in plasma versus the calculated plasma concentration estimated
from VAMS capillary blood samples (n � 42). The blue dotted line represents
the line of identity (y � x).
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relevant tranexamic acid concentrations in both liquid and dry
samples collected using VAMS (Fabresse et al., 2017; Lamy et al.,
2020). Although there was no substantial systematic differences
(bias) in TXA concentrations from samples collected using the
VAMS device, the intervals of agreements were wide. Whether
these are acceptable is a matter for judgment that will depend on
the analytic goals and practical constraints.

Pharmacodynamic studies show that plasma TXA
concentrations over 10 mg/L provide near maximal inhibition
of fibrinolysis, with concentrations over 5 mg/L providing some
inhibition (Picetti et al., 2019). An important observation from
this study is that the average TXA concentration in whole blood is
approximately half the average plasma TXA concentration. We
have previously shown that the distribution of TXA into red cells
is almost negligible. Because TXA in the blood is almost
completely contained within the plasma, the concentration of
TXA measured in the plasma will necessarily be higher than in
whole blood. We previously proposed that plasma TXA
concentrations can be estimated from whole blood
concentrations using the haematocrit and Eq. 1.

However, the “translation” of whole blood TXA levels from
VAMS capillary samples into plasma levels may require
caution for high concentrations. The concentration range of
the present study was less than 40 mg/L, corresponding to
concentrations observed in pharmacokinetic studies with an
intramuscular dose of 1 g or an oral dose of 2 g (Grassin-Delyle
et al., 2021a; Grassin-Delyle et al., 2021b). These
pharmacokinetic studies with outpatient TXA use are
precisely the types of studies for which design is most
appropriate for the use of VAMS devices. However,
concentrations greater than 700 mg/L may be expected with
some dosing schemes used for the preventive inhibition of
fibrinolysis before surgery (Grassin-Delyle et al., 2013b), and
our results cannot be extrapolated to such elevated
concentrations. However, although sampling of classical
venous samples is not an issue with intravenous
administration of high-dose TXA, the interest of VAMS
sampling may be explored in such conditions due to easier
analysis, storage, shipping and handling. Because our study
was conducted in healthy volunteers, our results should be
confirmed in patient populations. In conclusion, there was a
reasonable correspondence between plasma TXA
concentrations and those calculated from VAMS capillary
samples, especially in the range of plasma concentrations
0–15 mg/L, which should be appropriate to properly assess
the antifibrinolytic activity of TXA (Picetti et al., 2019). VAMS

devices could be a means to facilitate high quality clinical
research on TXA in all populations of interest.
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