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Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates.
In the elderly population, the incidence of cardiovascular disease is increasing annually.
Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly
increased by 14.7%, and the number of cardiovascular disease deaths increased from
2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is
closely related to inflammation, immunity, injury and repair. Chemokines, which induce
directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C,
and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity,
injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis,
myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm,
cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the
relationship between the chemokine CXC subset and cardiovascular disease and its
mechanism of action with the goal of further understanding the onset of cardiovascular
disease.
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INTRODUCTION

Cardiovascular disease is a long-standing major health problem. Because of its many influencing
factors, complex symptoms, rapid changes in disease, and poor prognosis, cardiovascular disease
has become the most important cause of death worldwide and has gradually begun to show
increasing trends among younger people in recent years. Chemokines are a class of small
molecular cytokines that can induce directed chemotaxis in response to activating G protein-
coupled receptors (GPCRs). According to the arrangement of amino acid (N-terminal)
cysteines, chemokines can be divided into four subgroups: CXC, CC, C and CX3C.
Chemokines can be expressed by activated endothelial cells (ECs), smooth muscle cells
(SMCs) and migrating leukocytes (Liu et al., 2019; Zernecke et al., 2008; Hartmann et al.,
2015). To date, 17 CXC chemokines have been found in humans, most of which are involved in
cardiovascular disease. CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 have
proinflammatory effects, mainly through the recruitment of monocytes by CXCR2. In addition,
CXCL9, CXCL10 and CXCL11 induce immune cell infiltration through CXCR3; CXCL12
recruits progenitor cells and leukocytes mainly through CXCR4, playing both
proinflammatory and repair roles; and CXCL16 induces T cell recruitment by CXCR6. In
addition, CXCL4 forms a heterodimer with CCL5 and induces the entry of monocytes into the
endothelium. Studies of CXC chemokines associated with cardiovascular disease suggest that
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they play an important role in the progression of
cardiovascular disease. They may therefore be potential
intervention targets for multiple cardiovascular diseases.

Characteristics of CXC Chemokines
As a class of small secreted proteins, chemokines are best known
for stimulating cell migration. These chemokines, including
CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7 and
CXCL8, act through receptors CXCR1 and CXCR2 to mediate
neutrophil function. In contrast, CXCL4 plays a role by binding
to CCL5 to form heterodimers, mainly promoting monocyte
recruitment (Rajarathnam et al., 2019). In addition, CXCL9,
CXCL10 and CXCL11 are inflammatory chemokines that
share a common receptor, CXCR3. They mainly guide the
recruitment of activated T cells to exert immune functions
and, to some extent, inhibit angiogenesis (Metzemaekers et al.,
2017). Another study found that CXCL12, along with its two
receptors CXCR4 and CXCR7, was associated with the migration
of haematopoietic progenitor cells and stem cells, ECs and most
leukocytes. CXCL12 mainly recruits progenitor cells and white
blood cells through CXCR4, while CXCR7 mainly inhibits the
CXCL12/CXCR4 axis. Additionally, CXCL12 can regulate lipid
metabolism (Janssens et al., 2018; Gao et al., 2019). CXCL16 can
mediate the migration of T cells through CXCR6 and can also be
used as a scavenger receptor for the oxidation of low-density
lipoprotein (Sheikine and Sirsjo, 2008). Chemokines play a
variety of roles in inflammation, immunity, injury repair and
other processes. The recruited cells and major sources of CXC
chemokine family members in disease are listed in Table 1.

Signalling Pathway of CXC Chemokines
Chemokines are first expressed by activated endothelial cells
(ECs), white blood cells and smooth muscle cells (SMCs),
which can exist reversibly in the form of monomers and
dimers (Graham et al., 2019). They are then captured by
glycoaminoglycans (GAGs) on the surface of endothelial cells
and presented to white blood cells as a soluble “cloud”. Among
them, the affinity between the dimer and GAGs is higher
(Rajarathnam et al., 2019). Eventually, chemokines bind to
receptors on the corresponding cells to initiate downstream
signals.

G-protein-coupled receptors (GPCRs) are the largest andmost
diverse group of membrane receptors in eukaryotes. Intracellular
G protein is first activated upon chemokine binding to GPCR,
which is a heterotrimer with alpha (α), beta (β), and gamma (γ)
subunits. The combination of chemokines and GPCRs changes
the conformation of GPCRs to activate the G protein. G proteins
then bind GTP to activate and dissociate into α- and βγ-subunits,
and the α subunit binds to adenosine cyclase and activates it
under Mg2+ to convert ATP into cAMP. Subsequently, cAMP-
dependent protein kinase A (PKA) is activated and enters the
nucleus, regulating the expression of associated genes. However,
chemokine-mediated chemotaxis is mainly induced through
release of the βγ-subunit (Neptune and Bourne, 1997). Gβγ
activates the phosphoinositide 3-kinase (PI3K) and
phosphoinositol-specific phospholipase Cβ (PLC)/inositol
triphosphate (IP3)/diacyl glycerol pathways (Thelen et al.,
1995). The receptors, signalling pathways, and main roles of
the CXC chemokine family members are shown in Table 2.

TABLE 1 | Recruitment cells of CXC chemokines and their main source.

CXC
chemokines

Major recruitment Other recruitment Main sources Reference

CXCL1 neutrophile granulocytes Monocytes endothelial cells (main),
clasmatoblast, macrophage,
neutrophile granulocytes

Miyake et al. (2013), Girbl et al. (2018)

CXCL2 neutrophile granulocytes — neutrophile granulocytes (main),
clasmatoblast, macrophage

De Filippo et al. (2013), Girbl et al. (2018),
Lentini et al. (2020)

CXCL3 neutrophile granulocytes Monocytes Zhang et al. (2016)
CXCL4 Monocytes T lymphocytes, neutrophile

granulocytes
Activated platelets Xiao et al. (2008), Schwartzkopff et al. (2012),

Van Raemdonck et al. (2015), Silva-Cardoso
et al. (2017)

CXCL5 neutrophile granulocytes Monocytes platelets, ECs Mei et al. (2010), Rousselle et al. (2013)
CXCL6 neutrophile granulocytes — ECs Gijsbers et al. (2005)
CXCL7 neutrophile granulocytes — monocytes, platelets Schenk et al. (2002), Pillai et al. (2006), Wang

et al., (2010)
CXCL8 neutrophile granulocytes — monocytes, macrophage Lee et al. (2015), Cho et al. (2017)
CXCL9, CXCL10,
CXCL11

CD4+ and CD8+ T cells CD4+ CD25+ Foxp3+ regulatory
T cells, natural killer T cells, NK cells

ECs(main), macrophage,
neutrophile granulocytes

Miura et al. (2001), Uppaluri et al. (2008)

CXCL12 Hematopoietic stem cells
and progenitor cells

endothelial cells (ECs), leukocytes platelets, ECs Karin, (2010), Chatterjee and Gawaz, (2013),
Janssens et al. (2018b)

CXCL13 B lymphocytes — stromal tissue and follicular dendritic
cells

Hui et al. (2015), Liu et al. (2016)

CXCL14 B-cells THP-1 cells, activated human
natural killer cells (NKs), iDCs and
monocytes

epithelium, iDCs, DCs,B-
Cells,activated isolated human
monocytes, platelet

Meuter and Moser, (2008), Witte et al. (2017)

CXCL15 — — — —

CXCL16 T cells platelets, peripheral blood
mononuclear cells (PBMCs)

vascular wall cells, leukocytes, DCs
and platelets

Tabata et al. (2005), Linke et al. (2019)

CXCL17 — — — —
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CXC CHEMOKINES AND
CARDIOVASCULAR DISEASES

CXC Chemokines and Atherosclerosis
Atherosclerosis is a slow progressive disease, and its initial lesions
are mainly due to vascular endothelial damage and local
accumulation of oxidised low-density lipoprotein (oxLDL) in
the aorta. Subsequently, lipids deposited within the blood
vessels and cytokines released by impaired ECs induce
monocyte-directed chemotaxis (Barlic and Murphy, 2007).
Foam cells are formed after oxLDL is phagocytosed by

infiltrating monocytes, which is also a marker of the early
course of atherosclerosis (Apostolakis et al., 2010). As a class
of cytokines, CXC chemokines are involved in the process of
atherosclerosis (Figure 1).

At present, research on CXC chemokines and atherosclerosis
has mostly been conducted in animals, and clinical research is
limited. Animal studies have shown that CXCL1 and its receptor
CXCR2 are highly expressed in mouse atherosclerotic plaques.
Under hypercholesterolemia, activated endothelial cells express
CXCL1, which can recruit monocytes and neutrophils to the
lesion through its receptor CXCR2 (Greaves et al., 2001;

TABLE 2 | Receptors, signaling pathways of CXC chemokines, and their role in cardiovascular disease.

CXC
chemokines

Receptor Pathways Main role Reference

CXCL1 CXCR1,
CXCR2

PI3K/AKT Proinflammatory effects, Promoting
angiogenesis

Sotsios and Ward, (2000), Curnock and Ward, (2003),
Miyake et al. (2013), Caolo et al. (2016)

ERK1/2
CXCL2 CXCR2 PI3K/AKT Proinflammatory effects, Promoting

angiogenesis
Lentini et al. (2020)

CXCL3 CXCR2 PI3K/AKT Proinflammatory effects Zhang et al. (2016)
CXCL4 CXCR3 ERK1/2 MAPK Induction of macrophage differentiation,

Anti-angiogenesis
Vandercappellen et al. (2011), Van Raemdonck et al.
(2015), Silva-Cardoso et al. (2017)

CXCL5 CXCR2 PI3K/AKT Proinflammatory effects, Promoting Mei et al. (2010)
PI3K/AKT Angiogenesis
CXCL6 CXCR1,CXCR2 PI3K/AKT Proinflammatory effects Gijsbers et al. (2005)
CXCL7 CXCR2 PI3K/AKT Proinflammatory effects Wang et al. (2010)
CXCL8 CXCR1,CXCR2 PI3K/AKT MAPK ROS ERK Proinflammatory effects, Promoting

angiogenesis
Petreaca et al. (2007), Kim et al. (2009), Lee et al. (2015)

CXCL9 CXCR3 Immunization Karin, (2020)
CXCL10 STAT3, STAT6 Anti-angiogenesis
CXCL11
CXCL12 CXCR4,CXCR7 PI3K/AKT, mTOR, NF-κB,

JAK/STAT, ERK1/2
Hematopoiesis, Promoting angiogenesis,
Anti-inflammatory action

Liekens et al. (2010), Janssens et al. (2018b), Mousavi,
(2020)

CXCL13 CXCR5 PI3K/AKT Anti-inflammatory action, Anti-apoptosis Halvorsen et al. (2014)
CXCL14 CXCR4 PI3K/AKT Immunization, Anti-angiogenesis Lu et al. (2016)
CXCL15 — — — —

CXCL16 CXCR6 PI3K/AKT Immunization, Promoting angiogenesis Isozaki et al. (2013), Izquierdo et al. (2014)
CXCL17 CXCR8 — — —

TABLE 3 | Expression of several common CXC chemokines in cardiovascular diseases.

Disease CXCL1 CXCL8 CXCL9 CXCL10 CXCL11 CXCL12 CXCL16 References

Mice Atherosclerosis Increase Increase Increase Increase Increase Decrease — Boisvert et al. (2006), Gerszten et al. (1999),
Heller et al. (2006), Xu et al. (2011)

Hypertension Increase Increase — — — — Increase Zhang et al. (2019), Kim et al. (2008), Li et al.
(2018), Ma et al. (2016)

Aortic Aneurysms — Increase Decrease Decrease Decrease Increase — Kokje et al. (2018), Gallo et al. (2012),
Michineau et al. (2014)

Myocardial Infarction — Increase Increase Increase Increase Increase Increase Sun et al. (2019), Bujak et al. (2009), Bromage
et al. (2019), Xiao et al. (2014)

Rejection After Heart
Transplantation

Increase — Increase Increase Increase Increase Increase Yun et al. (2000), Ma et al. (2015), Michael et al.
(2015), Jiang et al. (2005)

Human Atherosclerosis Increase Decrease Increase Increase Increase Decrease Increase Greaves et al. (2001), Apostolakis et al. (2009),
de Oliveira et al. (2009), Damas et al. (2002)

Hypertension — — Increase Increase Increase Increase Increase Antonelli et al. (2012), Xia et al. (2013),
Mccullagh et al. (2015)

Aortic Aneurysms — Increase — — — Increase — Kokje et al. (2018), Parietti et al. (2011)
Myocardial Infarction — Increase — — — Increase — Nabah et al. (2004), Zhang et al. (2007)
Rejection After Heart
Transplantation

— — Increase Increase Increase — Increase Ma et al. (2015), Jiang et al. (2010)

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 12 | Article 7657683

Lu et al. The Role of CXC Chemokines in Cardiovascular Disease

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Soehnlein et al., 2013). Boisvert et al. established a chimeric
mouse model of CXCR2 and LDLR deficiency and found that
the atherosclerotic lesions of mice were reduced. CXCL1
promotes the development of atherosclerosis by regulating the
migration, diffusion, and differentiation of macrophages
(Boisvert et al., 2006). However, another study showed that
CXCL1 stabilises plaques in the late stages of atherosclerosis.
Herlea-Pana et al. found that endothelial progenitor cells (EPC)
express CXCR2, the receptor of CXCL1, and can be recruited to
the plaque site in the late stage of atherosclerosis to accelerate
plaque regression. Under the condition of decreased blood lipids,
the expression of CXCR2 on the surface of white blood cells
decreased, and CXCL1 expression increased, which undoubtedly
increased the recruitment effect of CXCL1 on EPCs (Yao et al.,
2012; Herlea-Pana et al., 2015). These studies have shown that
CXCL1 promotes inflammation early in atherosclerosis but plays
a protective role in late atherosclerosis by promoting plaque
stability and regression. Stable plaques generally cause stenosis
or obstruction of the arteries and are rarely fatal in the absence of
myocardial scarring. However, unstable plaques are prone to
rupture and bleeding and cause acute cardiovascular events. It is

therefore necessary to stabilise early atherosclerotic plaques
(Bentzon et al., 2014).

Previous studies have shown that CXCL4 in plasma can
promote the binding of monocytes to ECs by forming a
heterodimer with CCL5 to enter the subendothelial space and
promote atherosclerotic lesions (Domschke and Gleissner, 2019;
von Hundelshausen et al., 2005). In a clinical study, researchers
did not find evidence that CXCL4 levels are directly associated
with coronary artery disease (CAD) (Erbel et al., 2015). However,
inhibition of CCL5 with CCR5 reduced the recruitment and
activation of inflammatory cells and prevented CCR5-
mediated mechanical dysfunction of cardiomyocytes in the
SIV/macaque model of HIV (Kelly et al., 2014).

Clinical evidence has suggested a negative correlation between
CXCL5 plasma levels and CAD severity. Moreover, several
CXCL5 and CXCR2 aggregates were observed in coronary
atherosclerotic plaques, suggesting that CXCL5 plays a
protective role in CAD (Ravi et al., 2017). Animal studies have
demonstrated that foam cells and macrophages accumulate in
atherosclerotic plaques and decrease collagen content in Apoe−/−

mice with inhibition of CXCL5. This result suggests that CXCL5

FIGURE 1 | The role of CXCChemokines in atherosclerosis.Chemokines mainly control the migration of neutrophils, monocytes, T cells, smooth muscle progenitor
cells and angiogenic cells in atherosclerosis. CXCL1 and CXCL8 recruit neutrophils through the PI3K / AKT pathway and plays a pro-inflammatory role. CXCL4 forms
heterodimers with CCL5 to recruit monocytes. CXCL9, CXCL10 and CXCL11 recruit T cells through STAT3, STAT6 pathway, exacerbating tissue inflammation. And
CXCL12 recruits smoothmuscle progenitor cells, angiogenic cells and inflammatory cells, which also plays a pro-inflammatory role and a protective role. In addition,
CXCL16 recruits T cells and acts as an oxLDL clearance receptor.
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may delay the progression of atherosclerosis by limiting
macrophage accumulation and foam cell formation (Rousselle
et al., 2013).

Almost all nucleated cells can produce CXCL8. However, it is
mainly overexpressed in diseased macrophages, ECs and SMCs
(Apostolakis et al., 2009). Animal experiments have
demonstrated that CXCL8 can rapidly cause rolling monocytes
to adhere firmly onto monolayers expressing E-selectin, whereas
related chemokines do not (Boisvert et al., 2006). Studies have
shown a significant reduction in atherosclerosis in CXCL8 and
LDLR deficiency, although this decrease occurs in only half of the
mice with CXCR2 and LDLR deficiency. This also suggests that
CXCL8 can, to some extent, promote the development of
atherosclerosis through the recruitment of macrophages
(Gerszten et al., 1999).

IFN-γ can stimulate endothelial cells to produce CXCL9,
CXCL10, and CXCL11 to recruit and retain activated T cells
at the atherosclerotic site (Mach et al., 1999). In patients with
stable angina, all three chemokine levels were elevated (de
Oliveira et al., 2009). Heller et al. demonstrated that CXCL10
can stimulate atherosclerosis by inhibiting the aggregation of
regulatory T cells (Tregs) to lesion sites and recruiting activated
T cells. CXCL9 and CXCL11 share a common receptor with
CXCL10, i.e., CXCR3; thus, we speculate that they may play the
same role. On the one hand, the formation of atherosclerotic
lesions in mice was significantly inhibited, and cell proliferation
and cell activation at the lesion site were also reduced after
knockout of the CXCR3 gene (Veillard et al., 2005; Heller
et al., 2006). On the other hand, using CXLCL10-neutralising
antibodies to treat Apoe−/− mice with unstable plaques, Dolf
Segers et al. found that the atherosclerotic plaques were more
stable. Additionally, in human arterial intima specimens, they
observed that higher human plasma CXCL10 levels correlated
with more unstable plaques. All of this evidence suggests that
CXCL10 may be positively associated with unstable
atherosclerotic plaques (Segers et al., 2011).

The role of CXCL12 in atherosclerosis is controversial,
although there is substantial evidence indicating that CXCL12
plays a protective role. Through the use of intravenous CXCL12
to treat Apoe−/− mice, Akhtar et al. observed that the fibrous cap
of diseased plaques in mice was thickened and that smooth
muscle cells increased, but the lesion size did not change
significantly (Akhtar et al., 2013). The injured endothelial cells
release apoptotic bodies to induce peripheral vascular cells to
produce CXCL12, which can recruit smooth muscle progenitor
cells and promote atherosclerotic stable plaque formation
(Zernecke et al., 2009). Plasma CXCL12 levels in CAD
patients were lower than those in healthy individuals, and
plasma CXCL12 levels in advanced atherosclerotic mice were
also lower than those in normal mice. This suggests that CXCL12
may have antiatherosclerotic effects (Damas et al., 2002; Xu et al.,
2011). Mice treated with the CXCR4 inhibitor AMD3465 had
increased lesions and leucocytosis in the plaque, suggesting that
CXCL12 might resist atherosclerosis by regulating neutrophil
release. Zernecke et al. also found that CXCL12 can protect
endothelial integrity via CXCR4 through recruitment of
angiogenic cells (Zernecke et al., 2008). Additionally, there is

evidence that CXCL12 has proatherogenic effects. According to
epidemiological investigations, CXCL12 levels were positively
correlated with the risk of CAD onset (Sjaarda et al., 2018).
Reduced aortic lesions were observed in mice with arterial
endothelial (EC)-specific CXCL12 deficiency, suggesting that
CXCL12 from ECs can promote atherosclerosis (Doring et al.,
2019). Ma et al. found that CXCL12 can promote macrophage
phagocytosis by activating its other receptor, CXCR7, which
activates the JNK and P38 pathways and leads to
atherosclerosis (Ma et al., 2013). CXCL12 can also promote
neointimal formation by recruiting smooth muscle progenitor
cells and stimulating vascular smooth muscle cell (VSMC)
proliferation. After treating mice with the CXCL12 antagonist
NOX-A12, both intralesion SMCs and neointimal hyperplasia
were observed (Thomas et al., 2015; Zernecke et al., 2005).
Moreover, CXCL12 can also recruit EPCs to promote
neovascularization in injured arteries (Kanzler et al., 2013). An
increase in CXCL12 expression, which can cause platelet
aggregation and prolong survival of the thrombus, was found
in patients with angina pectoris (Kraemer et al., 2010; Ohtsuka
et al., 2017). Neointima formation, neoangiogenesis and platelet
aggregation all aggravate atherosclerosis.

Clinical studies have shown a significant increase in serum
CXCL16 concentrations in patients with atherosclerosis (Wang
et al., 2010). The CXCL16 gene polymorphism rs3744700 is
closely related to coronary heart disease and can increase the
risk of coronary heart disease (Tian et al., 2015). Another study
showed that CXCL16 levels were significantly positively
correlated with the severity of coronary atherosclerotic heart
disease (Xing et al., 2018). Many studies have found that,
when CXCL16 levels increase, the probability of poor
prognosis in patients with coronary syndrome also increases
(Jansson et al., 2009; Andersen et al., 2019). Soluble SR-PSOX/
CXCL16 is significantly reduced in acute coronary syndrome, and
its specificity and sensitivity are higher than those of high-
sensitivity C-reactive proteins. Therefore, Mitsuoka et al.
proposed that soluble SR-PSOX/CXCL16 could serve as a
biomarker for ACS (Mitsuoka et al., 2009). CXCL16 can
recruit T cells expressing CXCR6 and promote local
inflammation aggravation. Moreover, mice lacking CXCR6
showed reduced lesions (Zernecke et al., 2008). In addition,
CXCL16 acts as an oxLDL clearance receptor to fight
atherosclerosis, and the phagocytosis of oxLDL by
macrophages in CXCL16-deficient mice was decreased.
Furthermore, CXCL16−/−/LDLR−/− mice showed accelerated
atherosclerotic lesions. This evidence confirms the
antiatherosclerotic effects of CXCL16 (Aslanian and Charo,
2006).

CXCChemokines andMyocardial Infarction
and Cardiac Ischaemia Reperfusion Injury
Myocardial infarction (MI) occurs mostly in patients with
coronary heart disease and is caused by myocardial ischaemia
and hypoxia, which are caused by coronary artery occlusion.
Injured cardiomyocytes can activate complement, produce
reactive oxygen species and induce cytokine upregulation.
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Upregulated cytokines then recruit leucocytes to the injured site,
exacerbating inflammation (Figure 2) (Frangogiannis, 2014; Lu
et al., 2015).

CXCL4 itself has a strong proinflammatory effect.
Nevertheless, in the I/R model, Vajen et al. observed a
decrease in the area of MI and a decrease in the number of
neutrophils in the infarct area by blocking the isomerization of
CXCL4 with CCL5. Lindsey et al. also found that infusion of
exogenous CXCL4 into MI mice inhibited phagocytosis of
macrophages and increased mortality after MI (Vajen et al.,
2018; Koenen, 2019; Lindsey et al., 2019). CXCL5 expressed
by cardiomyocytes is upregulated in a mouse ischaemia-
reperfusion model, while CXCL5 can recruit neutrophils to
aggravate myocardial ischaemia-reperfusion injury
(Chandrasekar et al., 2001). Furthermore, studies have
demonstrated that CXCL8 is upregulated by Ang II in the
infarcted myocardium, similarly inducing inflammatory cell
infiltration (Nabah et al., 2004; Sun et al., 2019). The use of
FR183998 in reperfusion models significantly inhibited the
content of CXCL8 and the occurrence of MI (Ohara et al.,
2002). According to these studies, CXCL8 can promote MI in

the case of myocardial ischaemia. CXCL10 is similarly
upregulated in the infarcted myocardium, and animal
experiments have shown that CXCL10-deficient mice over-
repair and have scarred cardiomyocytes after reperfusion.
Furthermore, CXCL10 can inhibit fibroblast migration while
promoting wound contraction, playing a protective role in MI
(Bujak et al., 2009). The role of CXCL12 in MI is controversial.
On the one hand, a great deal of evidence suggests an increase in
plasma CXCL12 in patients with myocardial infarction (Zhuang
et al., 2009; Kim et al., 2016). In the case of heart damage,
CXCL12 can protect cardiomyocytes from IRI damage and
improve the proliferation of cardiomyocytes (Bromage et al.,
2014; Hou et al., 2015). In the early stages of MI, CXCL12 can
recruit bone marrow-derived progenitor cells and vascular cells in
the heart, promoting cardiovascular production and cardiac
repair (Ghadge et al., 2011; Goldstone et al., 2018).
Experiments have shown that the left ventricular MI of mice
treated with SDF-1αPEG fibrin patches is better than that of the
control group. This suggests that increased local release of
CXCL12 can increase stem cell homing and repair damaged
hearts (Zhang et al., 2007). On the other hand, experiments

FIGURE 2 | CXC chemokines in the Myocardial Infarction and Cardiac Ischaemia Reperfusion Injury. CXCL4 recruited neutrophils in a mouse MI model and
inhibited macrophage phagocytosis after MI, exacerbating tissue injury. CXCL5 recruits neutrophils and promotes inflammatory development. CXCL8 recruits
inflammatory cells through the PI3K / AKT pathway and plays a pro-inflammatory role. CXCL10 can inhibit fibroblast migration and thus promote tissue repair. CXCL12
recruits both bone marrow-derived progenitors, vascular cells, and Th1 cells, playing both proinflammatory and repair roles. CXCL16 primarily recruits monocytes
to promote inflammatory development.
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have shown that CXCL12 has adverse effects on MI. Mice
overexpressing CXCL12 had impaired cardiac function and
increased myocardial fibrosis after MI, and high
concentrations of CXCL12 can upregulate TNF-α protein to
induce cardiomyocyte apoptosis. In addition, CXCL12-
deficient mice showed retention of cardiac function and
decreased Th1 cell infiltration. This indicates that CXCL12 can
aggravate MI by promoting Th1 cell infiltration, cardiomyocyte
apoptosis and cardiac fibrosis (Muhlstedt et al., 2016; Jarrah et al.,
2018). In the ischaemia-reperfusion model, therapeutic CXCL12
2 hours in advance reduced the myocardial infarction area in
mice. This evidence shows that CXCL12 can have a protective
effect (Bromage et al., 2019). However, another experiment found
that treatment of mice after ischaemia/reperfusion injury with the
CXCR4 inhibitor AMD3100 significantly improved cardiac
function after reperfusion. This could be due to the inhibition
of CXCL12-mediated recruitment of CXCR4+ inflammatory cells
(Chen et al., 2010; Jujo et al., 2013; Wang et al., 2019). These
opposing results may have been due to the different models used
by the two experiments. CXCL12 transgenic overexpressing (Tg)
rats promoted inflammation and fibrosis after the induction of
myocardial infarction. Another set of experiments using fibrin
patches to control the release of CXCL12 to the MI site in mice
increased the recruitment of c-kit+ cells to the mouse heart and
significantly improved cardiac function. This indicates that the
early administration of exogenous CXCL12 may improve cardiac
function after myocardial infarction. Plasma CXCL16 levels were
similarly elevated in myocardial infarction mice, as CXCL16
exerts a protective function by promoting macrophage
phagocyte fragments (Xiao et al., 2014). CXCR6 KO mice
showed a smaller infarct size and better cardiac function
under I/R induction. This finding indicates that failure of the
CXCL16-CXCR6 axis can resist I/R damage (Zhao et al., 2013).

CXC Chemokines and Hypertension
Hypertension is a serious public health problem worldwide. During
hypertension, infiltration of immune cells often leads to tissue
damage and elevated blood pressure. The injured tissue further
releases IFN-γ to promote T lymphocyte migration. Moreover,
injured tissues express several kinds of CXC chemokines (such as
CXCL1-CXCL8); regulate the accumulation of neutrophils; and
promote vascular inflammation, dysfunction and injury
(Rudemiller and Crowley, 2017).

A recent study showed elevated blood CXCL1 and CXCL2
levels in spontaneously hypertensive rats (SHRs). Treatment with
CXCR2 inhibitors inhibits the accumulation of monocytes/
macrophages and reduces the production of proinflammatory
cytokines and ROS, thereby weakening cardiac remodelling and
improving cardiac function (Zhang et al., 2019; Zhang et al.,
2020). Upon hypertension, AngII mediates continuous
expression of CXCL8 through the AT1 receptor. Meanwhile,
CXCL8 promotes VSMC proliferation through the ERK
pathway and increases hypertension (Kim et al., 2008; Kim
et al., 2009). Stimulated by hypertension, the tissue may
secrete various inflammatory factors, including CXCL10. This
view is supported by increased circulating levels in patients with
hypertension. CXCL10 induces infiltration of T cells in the

kidney, causing T cell-driven inflammation and exacerbating
hypertension and kidney damage (Antonelli et al., 2012; Youn
et al., 2013). Similarly, AngII induced CXCL16 expression in
renal tubular epithelial cells by activating NF-κB. Experiments
have shown that the absence of CXCL16 inhibits the recruitment
of bone marrow-derived fibroblasts, macrophages, and T cells
into the kidney and reduces fibrosis of the renal interstitium (Xia
et al., 2013; Ma et al., 2016).

CXC Chemokines and Aortic Aneurysms
and Aortic Dissection
Both aortic aneurysm and aortic dissection are associated with the
degeneration of aortic elastic mediators, especially loss of SMCs.
Among them, the production of reactive oxygen species and
inflammatory factors is closely related to the apoptosis of SMCs.
Loss of SMCs destroys the integrity of the aortic structure and
further exacerbates both lesions (Lopez-Candales et al., 1997;
Sakalihasan et al., 2005).

Clinical studies have shown that serum CXCL8 levels in
patients with abdominal aortic aneurysms (AAAs) are
increased, and neutrophils are recruited. Neutrophil release of
multiple matrix degradation proteases (MMPs) induces
destruction of aortic extracellular matrix components and
VSMC apoptosis in human AAA (Kokje et al., 2018). Another
study showed elevated CXCR3 levels in thoracic aortic
aneurysms. Animal experiments have shown that CXCR3 is
closely related to mouse aneurysms and can promote
aneurysm formation (Gallo et al., 2012). Only one study
mentioned that upregulation of CXCL10 expression via IFN-γ
induction can inhibit the formation and rupture of AAAs.
CXCL10 can raise T lymphocyte levels and reduce the
enrichment of non-Th1 cytokines at the lesion site, including
transforming growth factor-β1 (TGF-β1). Thus, CXCL10 reduces
the expansion of aneurysms and delays disease progression by
inhibiting TGFβ1-mediated VSMCs (King et al., 2009).

Parietti et al. found a positive correlation between CXCL12 levels
and aortic aneurysm size (Parietti et al., 2011). The expression of
CXCL12 and CXCR4 genes was significantly increased in AAA,
especially CXCR4 in neutrophils (Tanios et al., 2015). Blocking
CXCR4 with AMD3100 reduced the infiltration of outer
membrane macrophages in experimental AAA and significantly
inhibited AAA amplification. This finding suggests that CXCL12
likely aggravates AAA lesions through proinflammatory effects
(Michineau et al., 2014). Another study showed that the CXCL12/
CXCR4 axis could induce homing of rat bone marrowmesenchymal
stem cells (BMSCs) and delay further AAA development (Long et al.,
2014). With regard to aortic dissection, only one study showed that
CXCL1 levels increased after abdominal aortic dissection (AAD),
promoting neutrophil infiltration. Neutrophils can express high levels
of IL-6, leading to outer membrane inflammation with dilation and
rupture of the aortic arch (Anzai et al., 2015).

CXC Chemokines and Cardiac Fibrosis
Myocardial fibrosis is caused by excessive repair of damaged
myocardium. Impaired apoptosis of cardiomyocytes induces the

Frontiers in Pharmacology | www.frontiersin.org May 2022 | Volume 12 | Article 7657687

Lu et al. The Role of CXC Chemokines in Cardiovascular Disease

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


production of a large number of cytokines and promotes the
proliferation of myocardial fibroblasts. At the same time,
fibroblasts synthesize a large number of collagen fibres to
accelerate the repair of damaged tissues, causing heart fibrosis
(Figure 3) (Dobaczewski and Frangogiannis, 2009).

Few studies have evaluated CXC chemokines and cardiac fibrosis.
One study mentioned that CXCR4 antagonists could delay cardiac
fibrosis inmicewith type I and II diabetes. In addition, treatmentwith
CXCL12 can cause proliferation and hypertrophy of cardiac
fibroblasts (CFs) in mice and promote CFs to produce collagen.
This result was more significant in hypertension models (Jackson
et al., 2017;Wang et al., 2020). Moreover, CXCL12 itself can promote
cardiac repair and delay cardiac fibrosis. After inhibiting the
scavenger receptor CXCR7, the fibrosis process slowed in mice
(Chu et al., 2015). The effect of CXCL12 on promoting cardiac
fibrosis may be due to the recruitment of CXCR4-expressing
inflammatory cells that trigger local inflammation and CF
activation (Menhaji-Klotz et al., 2018). CXCL8 plays a
proinflammatory role in cardiac fibrosis, and increased CXCL9
expression after MI promotes the proliferation and migration of
fibroblasts. Unlike CXCL9, however, CXCL10 can inhibit fibroblast

migration (Dobaczewski and Frangogiannis, 2009; Turner et al., 2011;
Lin et al., 2019).

CXC Chemokines and Atrial Fibrillation
Atrial fibrillation (AF) is a common arrhythmia that is often
closely associated with inflammation and atrial fibrosis (Figure 4)
(Melenovsky and Lip, 2008).

There is growing evidence that inflammatory cells, especially
monocytes/macrophages, play an important role in AF. CXCL1/2
regulate the entry of CXCR2+ monocytes/macrophages into cardiac
tissues and lead to the further development of AF. In contrast,
inhibition of the CXCR2-MAPK (mitogen-activated protein kinase)
and nicotinamide adenine dinucleotide phosphoroxidase, NF-κB,
and TGFβ-1/Smad2/3 pathways significantly attenuated atrial
infiltration in monocytes/macrophages, AF induction, and atrial
remodelling in Ang II-infused mice (Zhang et al., 2020). The
inflammation resolution-promoting molecule resolvin-D1 reduced
CXCL1 and CXCL2 expression in heart tissues of monocrotaline
MCT-treated rats and simultaneously attenuated AF induction in
MCT rats and reduced the mean AF duration (Hiram et al., 2021).
Abnormal haemostasis and platelet activation occurs in permanent

FIGURE 3 | CXC chemokines in Cardiac Fibrosis. CXCL8 recruits inflammatory cells through the PI3K / AKT pathway and plays a pro-inflammatory role. CXCL9
promotes the proliferation and migration of fibroblasts through the STAT3 and STAT6 pathway, promoting cardiac fibrosis. Instead, the CXCL10 inhibit fibroblast
migration and protects the heart from Cardiac Fibrosis. CXCL12 can promote the proliferation of cardiac fibroblasts (CFs), and recruit inflammatory cells, while exerting
pro-inflammatory and repair effects.
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AF patients, and Serkan et al. observed high levels of CXCL4 in the
plasma of AF patients (Kamath et al., 2002; Topaloglu et al., 2007). A
clinical report showed that elevated blood CXCL8 levels in patients
with coronary artery bypass transplantation (CABG)were associated
with the occurrence of atrial fibrillation. CXCL8 may be produced
after reperfusion of ischaemic myocardium (Melenovsky and Lip,
2008; Wu et al., 2008). CXCL12 expression was also increased,
especially in patients with permanent and persistent AF. Another
clinical study showed a similar increase in CXCR4 expression in AF
patients (Stellos et al., 2012). In an AF model, CXCR4 inhibitors
blocked hyperactivation of ERK1/2/AKT/mTOR signalling in the
atrium, reduced atrial inflammation, and delayed left ventricular
remodelling (Larocca et al., 2019; Liu et al., 2021).

CXC Chemokines and Rejection After Heart
Transplantation
Rejection is an important complication of heart transplantation,
and recruitment of lymphocytes to the transplanted heart leads to
organ structure damage, the basis of rejection (Figure 5) (Long
et al., 2014).

Early CXCL1 and CXCL2 expression was increased in blood
upon neutrophil infiltration in heart transplant mice (Fairchild
et al., 1997; Yun et al., 2000), and treating heart transplant mice
with CXCL1/CXCL2 antibodies can prolong heart transplant
survival. Wieder et al. also found that the treatment of heart
transplant rats with rapamycin prolonged graft survival, and they
observed a decrease in CXCL1/CXCL2 content and neutrophil
infiltration in these rats (Wieder et al., 1993; El-Sawy et al., 2005).

Previous clinical studies have reported elevated CXCL9
and CXCL10 levels after cardiac transplantation (Ma et al.,
2015). After a postoperative follow-up survey of heart
transplant patients, Michael et al. found that CXCL10 was
significantly induced upon acute rejection, and expression of
its receptor CXCR3 was also associated with T cell infiltration
(Melter et al., 2001). Moreover, plasma CXCL10 levels
decreased in patients who were treated with simvastatin.
These data also further confirm that CXCL10 promotes
rejection (Nykanen et al., 2019). Animal experiments have
shown that treating heart transplant mice with CXCL9 and
CXCL10 inhibitors reduces memory T lymphocyte infiltration
in the graft and prolongs its survival (Yun et al., 2002; Ma

FIGURE 4 | CXC chemokines in Atrial Fibrillation. CXCL1/2 recruits monocytes/macrophages through the PI3K / AKT pathway to induce atrial fibrillation and
ventricular remodeling. CXCL4 is involved in hemostasis and abnormal platelet activation, inducing the development of atrial fibrillation. CXCL8 recruits inflammatory cells
through the PI3K / AKT pathway and plays a pro-inflammatory role. CXCL12 recruits inflammatory cells and promotes inflammation associated with cardiac remodeling.
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et al., 2015). In a previous study, Michael et al. reported that
inhibition of the CXCL12/CXCR4/CXCR7 axis could improve
chronic rejection after heart transplantation in mice (Michael
et al., 2015). Furthermore, a combination of CXCR4
antagonists and immunosuppressive agents can reduce
rejection and angiopathy in a porcine heart transplant
model (Hsu et al., 2018). All of these results demonstrate
the effect of CXCL12 on rejection after heart transplantation.
Moreover, CXCL13 can recruit B lymphocytes through
CXCR5 and induce acute immune rejection (Di Carlo
et al., 2007). Similarly, in allograft transplantation, CXCL16
can recruit NKT cells and activated CD8+ T cells through
CXCR6 and accelerate acute immune rejection (Jiang et al.,
2005; Jiang et al., 2010).

CXCChemokines andOther Cardiovascular
Diseases
CXC chemokines are also involved in other types of heart disease,
such as cardiomyopathy, viral myocarditis, congenital heart
disease and ventricular fibrillation (Delete: However, there are
few reports about them).

Anna et al. reported that CXCL1 knockout mice were more
likely to survive bur-type spirochete-induced myocarditis, and
reduced neutrophil infiltration at the lesion site reduces heart
disease (Ritzman et al., 2010). In addition, in acute stress
(Takotsubo) cardiomyopathy, CXCL1 expression was
upregulated, and the number of monocytes was increased
(Scally et al., 2019). In viral myocarditis, Coxsackie virus B
type 3 (CVB3) infection induces CXCL2 and CXCL10
expression in myocardial tissue. An upregulation of
CXCL10 expression and a decrease in viral titre were also
observed in early stage viral myocarditis, indicating that
CXCL10 plays a protective role in viral myocarditis (Shen
et al., 2003; Yuan et al., 2009). Moreover, studies have shown
that cardiomyocyte-specific CXCR4 knockout (CXCR4cKO)
mice exhibit progressive cardiomyopathy and that CXCL12
treatment prevents isoproterenol-induced cardiac
hypertrophy (Larocca et al., 2019). Another experiment
demonstrated that CXCL12 can promote cardiac fibrosis in
dilated cardiomyopathy mice (Chu et al., 2019). According to
clinical reports, CXCL16 expression is upregulated in patients
with inflammatory cardiomyopathy and heart failure (Dahl
et al., 2009; Borst et al., 2014). CXCL16 is also elevated in

FIGURE 5 |CXC chemokines in Rejection After Heart Transplantation. CXCL1/2 recruits neutrophils and plays a pro-inflammatory role. CXCL10 can promote T cell
infiltration and promote rejection. CXCL12 recruits bone marrow-derived progenitor cells, vascular cells, and inflammatory cells through multiple pathways, promoting
rejection and angiopathy. CXCL13 recruits B lymphocytes and promotes rejection. CXCL16 recruits NKT cells and activated CD8+ T cells, which can accelerate acute
immune rejection.
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inflammatory valvular heart disease, which mediates the
adhesion of CD8+ T cells to ECs through VLA-4 and
stimulates CD8+ T cells to produce IFN-γ (Yamauchi et al.,
2004). The expression of chemokines varies in cardiovascular
disease in human and mouse, and these differences are
summarized in Table 3.

DISCUSSION

We attempted to describe the expression, signalling pathways,
sources and main roles of CXC chemokines in different
cardiovascular diseases. First, CXCL1, CXCL2, CXCL3,
CXCL5, CXCL6, CXCL7 and CXCL8 can recruit
neutrophils through the common receptor CXCR2; play a
proinflammatory role; and promote angiogenesis to some
extent. Moreover, CXCL1, CXCL6, and CXCL8 can also
recruit inflammatory cells through CXCR1 to promote the
development of inflammation. However, CXCL4 is special in
cardiovascular disease, as it needs to form a heterodimer with
CCL5 to promote monocyte adhesion and play an
antiangiogenic role. In addition, CXCL9, CXCL10, and
CXCL11 share the same receptor, CXCR3. They promote
cellular immunity by recruiting T cells and are often
upregulated in heart transplantation and viral infections.
Unlike previous CXC chemokines, CXCL12 mainly recruits
haematopoietic stem and progenitor cells and can promote
the repair of haematopoietic and damaged tissues. However,
two roles have been proposed for CXCL12 in cardiovascular
disease. CXCL12 can recruit smooth muscle progenitor cells
and endothelial progenitor cells through CXCR4, promote the
repair of damaged tissues, or recruit inflammatory cells to a
certain extent to play a proinflammatory role. In contrast,
CXCL14 recruits B lymphocytes with natural killer cells

through CXCR4 to play an immune role. CXCL16 also
enhances cellular immunity by promoting the adhesion of
T cells and some peripheral blood monocytes to
endothelial cells.

Here, we report a diverse role of CXC chemokines in
cardiovascular disease. Blocking the CXCR2 pathway primarily
inhibits the development of cardiac inflammation and may help
to improve the prognosis of inflammation-related cardiovascular
diseases. In contrast, promoting the antiangiogenic effects of
CXCL4 can inhibit tumour development to some extent. The
CXCL9,10,11/CXCR3 axis can also play an antitumour role. On
the other hand, inhibition of this axis can attenuate the
occurrence of immune rejection. This may be a potential
target for therapeutic intervention after heart transplantation.
Furthermore, inhibition of the CXCL12/CXCR4 axis can improve
cardiac fibrosis and promote tissue repair after myocardial
infarction. CXC chemokines therefore play an important role
in cardiovascular disease and may be potential intervention
targets for multiple cardiovascular diseases. However, further
research is needed.
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