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Congenital heart defects (CHD), the most common cause of birth defects with increasing
birth prevalence, affect nearly 1% of live births worldwide. Cyanotic CHD are characterized
by hypoxemia, with subsequent reduced oxygen delivery to the brain, especially critical
during brain development, beginning in the fetus and continuing through the neonatal
period. Therefore, neonates with CHD carry a high risk for neurological comorbidities, even
more frequently when there are associated underlying genetic disorders. We review the
currently available knowledge on potential prevention strategies to reduce brain damage
induced by hypoxemia during fetal development and immediately after birth, and the role of
erythropoietin (EPO) as a potential adjunctive treatment. Maternal hyper-oxygenation had
been studied as a potential therapeutic to improve fetal oxygenation. Despite
demonstrating some effectiveness, maternal hyper-oxygenation has proven to be
impractical for extensive clinical application, thus prompting the investigation of specific
pathways for pharmacological intervention. Among those, the role of antioxidant pathways
and Hypoxia Inducible Factors (HIF) have been studied for their involvement in the
protective response to hypoxic injury. One of the proteins induced by HIF, EPO, has
properties of being anti-apoptotic, antioxidant, and protective for neurons, astrocytes, and
oligodendrocytes. In human trials, EPO administration in neonates with hypoxic ischemic
encephalopathy (HIE) significantly reduced the neurological hypoxemic damages in several
reported studies. Currently, it is unknown if the mechanisms of pathophysiology of
cyanotic CHD are like HIE. Neonates with cyanotic CHD are exposed to both chronic
hypoxemia and episodes of acute ischemia-reperfusion injury when undergo
cardiopulmonary bypass surgery requiring aortic cross-clamp and general anesthesia.
Our review supports future trials to evaluate the potential efficiency of EPO in reducing the
hypoxemic neurologic damages in neonates with CHD. Furthermore, it suggests the need
to identify early biomarkers of hypoxia-induced neurological damage, which must be
sensitive to the neuroprotective effects of EPO.
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INTRODUCTION

Improved prenatal and neonatal detection of congenital heart
defects (CHD), along with advancements in medical treatments
and surgical interventions, has led to improved survival rates
among children with complex CHD (Erikssen et al., 2015; Bouma
and Mulder, 2017). Patients with complex CHD are at risk for
neurodevelopmental impairment due to numerous biological and
environmental risk factors (Marino et al., 2012). Immutable risk
factors include underlying genetic conditions associated with
neurodevelopmental impairment, chronic hypoxemic state, and
acute reoxygenation with ischemia-reperfusion injury related to
cardiopulmonary bypass. These risk factors can potentially be
modified by environmental risk factors, including medical and
surgical advancements to mitigate neurological insults; length
and frequency of hospitalizations; education and early childhood
intervention programs; and family and social support system.
Still, children with complex cyanotic CHD who reach school age
often require physical, occupational, and speech therapies, along
with special education. Oftentimes their educational and career
achievements are limited, thus impacting their quality of life
(Marelli et al., 2016; Mulkey et al., 2016; Moons and Luyckx,
2019). With the increasing survival of children with CHD,
research has focused on investigating the biology of the
neurological insults to the brain unique to CHD, beginning in
fetal development, continuing through the neonatal period and
surgeries, and into childhood and later years (Miller et al., 2007;
Gaynor et al., 2015). A better understanding of the biological
mechanisms of injury can lead to the discovery of potential
therapeutic targets aimed at improving neurological outcomes
in CHD patients.

Complex cyanotic CHD are characterized by hypoxemia due
to reduced oxygen delivery to the fetus during a critical period of
brain development, often resulting in a smaller head
circumference at birth, reflective of brain growth in infants
(Williams et al., 2015; Bonthrone et al., 2021). The term
hypoxemia refers to any situation in which oxygen is not
available in sufficient amounts to maintain adequate cellular
homeostasis. This state triggers a general organism response
due to the inhibition of various oxygen-dependent enzymes.
During the early 1990s, it was discovered that hypoxemia
triggered the stabilization of hypoxia inducible transcription
factor (HIF), allowing cells to switch from aerobic to
anaerobic glycolysis (Wiesener et al., 1998). Since those early
studies, the biology of the HIF pathway has been well
characterized, and its role in hypoxemic injury will be outlined
in further detail in this review. We will describe the known
protective mechanisms in response to hypoxemic injury to the
brain and preventive strategies to attenuate brain injury in the
fetus and neonate. It is of growing importance the need for new
pharmacological interventions, which requires, as a start, deeper
knowledge of the harmful and protective biochemical pathways
involved in hypoxia. One of the genes induced by HIF2-α
(Rainville et al., 2016), EPO (erythropoietin), is located in
chromosome seven and encodes for the protein by the same
name responsible for the regulation of erythropoiesis. EPO, a
glycoprotein cytokine well-known for its anti-apoptotic and

antioxidant role in neuronal injury (Rey et al., 2021), will be
discussed in further detail as a burgeoning therapy targeting the
biochemical pathways triggered by hypoxemia in the brain. In the
first sections of this review, we will focus on several preclinical
in vitro and in vivo studies useful in understanding the
biochemical mechanisms of CHD-induced hypoxic-ischemic
neurological damage. Then, we will summarize some of the
main available clinical treatments and preventive strategies,
together with their rationale. Finally, we will focus on the
scientific evidence from in vitro models to clinical trials which
may suggest EPO administration in CHD and non-CHD infants.

Hypoxemia and Its Neurological
Consequences
The neonatal brain requires efficient oxygen delivery as it
consumes about 60% of the total body oxygen, while the adult
brain only consumes about 20% (Erecinska and Silver, 1989).
During embryogenesis, the heart is the first organ to form in the
fetus, between the first three and 6 weeks of gestation, while the
brain development continues until birth. In cardiac
maldevelopment resulting in a cyanotic CHD, fetal cerebral
oxygen and nutrient delivery are deficient for at least
7 months during a period critical for brain development.
Clinicians and researchers are now recognizing that hypoxic
tissue damage begins during fetal development, with early,
postnatal/perioperative magnetic resonance imaging (MRI)
studies demonstrating brain injury in the form of white matter
injury or stroke in complex cyanotic CHD (Peyvandi and
Donofrio, 2018). Hypoxic brain injury during fetal life
correlates with impaired oxygen delivery.

Three specific congenital heart defects result in poor oxygen
delivery to the brain in the fetus and neonate: 1) transposition of
the great arteries, 2) “functionally” univentricular hearts, and 3)
hypoplastic left heart syndrome (Sun et al., 2015; Claessens et al.,
2017; Morton et al., 2017; Courtney et al., 2018; Peyvandi and
Donofrio, 2018; Rychik et al., 2018; Claessens et al., 2019;
Lauridsen et al., 2019). Transposition of the great arteries
results in blood circulation that occurs in parallel rather than
in series, necessitating deoxygenated and oxygenated blood to
mix across a septal defect and patent ductus arteriosus before
entering the systemic circulation. Univentricular hearts require
the mixing of deoxygenated and oxygenated blood in the single
ventricular chamber prior to entering the systemic circulation. In
both scenarios, the brain is exposed to low oxygen delivery
because of lower-than-normal oxygen saturation. In the last
scenario, the left-sided heart structures are undersized
including the mitral valve, left ventricle, aortic valve, and
ascending aorta. The brain receives the poorest levels of
oxygen delivery due to the compounded effects of low oxygen
saturation and poor perfusion from limited or absent antegrade
blood flow in the ascending aorta to the brain. As a result, cerebral
perfusion is dependent on retrograde blood flow in the aorta of
desaturated blood shunting right-to-left, from the pulmonary
artery via the patent ductus arteriosus. Patients with hypoplastic
left heart syndrome have the highest incidence of brain damage
acquired in the fetal life when compared to the transposition of
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the great arteries and “functionally” univentricular hearts
(Morton et al., 2015).

Following birth, neonates with cyanotic CHD often have
definitive corrective surgery later in infancy for reasons such
as waiting for the infant to grow and reach a size amenable to
surgery or requiring surgical repair in stages. Neonates with
cyanotic CHD exhibit delayed structural brain development,
appearing approximately one month less mature compared to
unaffected infants (Licht et al., 2009). Myelination of the cerebral
cortex is a normal postnatal process beginning at 35 weeks of
gestation and peaks at 1 year of age. The broad range of
neurological dysfunctions documented in CHD patients is
remarkably similar to the deficits observed in non-cardiac
preterm survivors suffering from white matter injury, a
common cause of morbidity (Wintermark et al., 2015).
Preterm infants are especially highly sensitive to hyperoxia-
induced oxidative stress for multiple reasons. Birth is
associated with a dramatic change from an intrauterine
hypoxic milieu to a relatively hyperoxic extrauterine
environment, and this relative hyperoxia can be exaggerated
by supplemental oxygen administration (Brill et al., 2017).
Another common cause of neonatal brain injury is perinatal
asphyxia-induced hypoxic ischemic encephalopathy (HIE).
While HIE is the event of acute hypoxemia in a newborn who
had been normally-oxygenated as a fetus, comparisons in the
mechanism of brain injury have been made with cyanotic CHD.
The standard of care for moderate to severe HIE involves total
body cooling to 33.5°C, or therapeutic hypothermia, for 72 h in
the newborn, immediately following the birth-injury (Shankaran
et al., 2005; Shankaran et al., 2012). However, therapeutic
hypothermia for HIE has its limitations in feasibility in
resource-limited countries and has not shown to be helpful in
premature infants with HIE (Bharadwaj and Bhat, 2012; Rao
et al., 2017). Additionally, therapeutic hypothermia has restricted
long-term benefits, as many children still suffer from long-term

disability following HIE injury (Rao et al., 2017; Shankaran et al.,
2017).

Erythropoietin (EPO) has long been used in preterm neonates
to prevent and/or treat anemia of prematurity. While EPO
treatment reduces the frequency and volume of red blood cell
transfusions, its use is currently not recommended, pending the
results of two ongoing clinical trials involving darbepoietin, a
derivative of EPO (Ohlsson and Aher, 2017). However, it is
generally well-tolerated in neonates with a reasonable safety
profile. Given its neuroprotective benefits, researchers have
been investigating its use in neonatal brain injury, particularly
in HIE.

THE BIOCHEMICAL MECHANISMS OF
HYPOXIC DAMAGE IN HEART AND BRAIN

Figure 1 shows some of the main mechanisms involved in the
hypoxic damage in the brain due to CHD. The main source of
further damage are metabolic impairment and oxidative stress.

HIFs
Cellular adaptive response to hypoxia is mainly orchestrated by
the activation of transcription factors called hypoxia inducible
factors (HIFs) (Semenza, 19852000). HIFs are heterodimeric
proteins composed of oxygen-regulated HIF-1α or HIF-2α and
a constitutively expressed HIF-1β subunit. Under hypoxic
conditions, HIF-α proteins are stabilized for
heterodimerization with HIF-β and bound to hypoxia response
elements in the promoter regions of specific genes. In normoxic
conditions, the fine regulation of HIF-1α is catalyzed by enzymes
in the prolyl-hydroxylase domain (PHDs) that start the
ubiquitination process leading to HIF-1α proteasome
degradation (Semenza, 19852000). As oxygen acts as co-
substrate of PHD enzymes, PHD activity decreases under

FIGURE 1 |CHD-induced oxidative and hypoxic damage in the brain and potential counteractivemechanisms. HIF activated by hypoxemia triggers, among others,
the synthesis of EPO which stimulates red blood cell production, in part by inhibiting apoptosis of the red blood cell precursors and helps to counteracts oxidative stress
in the brain by strengthening the immature antioxidant barrier. Created using BioRender.com.
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hypoxic conditions, allowing HIF-α to dimerize with HIF-β and
translocate to the nucleus. HIF-αβ heterodimers are then free to
bind to hypoxia-response elements (HREs) within the enhancers
or promoters of HIF target genes and recruit the transcriptional
co-activator CBP/p300 (Semenza, 2017). This activates the
transcriptional complex by promoting the regulation and
expression of HIF-dependent adaptive genes that regulate
diverse physiologic processes, such as angiogenesis, vascular
remodeling, glucose and energy metabolism, cell proliferation
and survival, and erythropoiesis and iron homeostasis (Semenza,
2017).

The understanding of these biochemical and physiological
processes by HIF-1 led to the award of the 2019 Nobel Prize in
Physiology or Medicine to three scientists who contributed
significantly to the field, William Kaelin, Sir Peter Ratcliffe,
and Gregg Semenza. Semenza’s initial work proved that HIF is
a DNA-binding transcription factor for activating expression of
EPO gene (Semenza et al., 1991). Kaelin’s group discovered that
deletion of von Hippel-Lindau (VHL) results in increased
expression of multiple hypoxia-induced genes, including
VEGFA and SLC2A1, which encode vascular endothelial
growth factor A and glucose transporter 1, respectively
(Iliopoulos et al., 1996). Ratcliffe’s group confirmed the
association between VHL and HIF (Maxwell et al., 1999).
Their crucial discoveries and those from many other
laboratories established HIF-1 as an oxygen-sensing
mechanism for cells and confirmed the critical role of HIF in
hypoxic cellular responses.

The three HIF isoforms (HIF-1, HIF-2, and HIF-3) have some
overlapping roles but also demonstrate distinct functions in
different cell types (Schödel and Ratcliffe, 2019). HIF-2α was
originally named endothelial PAS domain-containing protein 1
(EPAS1), as it was found to be most strongly expressed in
endothelial cells (Wiesener et al., 1998). In the kidney, HIF-2α
is strongly expressed in interstitial cells, endothelial cells, and the
glomeruli, but its expression is largely absent from the tubular
cells, in which HIF-1α is the predominant isoform. HIF-1 and
HIF-2 both transduce positive transcriptional responses to
hypoxia, although their transcriptional targets, the kinetics of
activation and oxygen dependence, differ. HIF-1α is induced
more strongly by severe hypoxia, and its activity peaks within
the first 24 h of hypoxia, whereas HIF-2α is induced by more
moderate hypoxia with a prolonged activation period (Wiesener
et al., 1998; Holmquist-Mengelbier et al., 2006). The HIF-3α
isoform is less well-understood, in part because of its complex
pattern of expression involving multiple variant transcripts
derived from cell-specific patterns of alternative RNA splicing
(Duan, 2016).

A growing number of pre-clinical studies in rodents suggests
that the activation of HIF-1α signaling pathway prior or shortly
after ischemic stroke reduces tissue damage and increases
functional recovery from ischemic stroke (Ogle et al., 2012;
Reischl et al., 2014; Wieronska et al., 2021). One example of
an agent that stabilizes the transcriptional activator HIF-1α and
activates target genes involved in compensation for ischemia are
small molecule hypoxia mimics, such as vitamin E, which
activates the HIF-VEGF pathway, thus increasing

microvascular density, restoring local blood flow and
protecting the brain from ischemic insults (Zhang et al., 2004).
The stabilization of HIF-1 might be a promising therapeutic
target for the treatment of neurodegenerative disorders. It has
been found that iron chelators are acting against the generation of
free radicals derived from iron, and also induce sufficient -but not
excessive-activation of HIF-1α, so that only the hypoxia-rescue
genes will be activated (Merelli et al., 2018).

The activation of HIF has been suggested to play a role in fetal
development, and if timed with maternal hypoxia or placental
insufficiency, may contribute to CHD morphology (Bishop and
Ratcliffe, 2015; Llurba Olive et al., 2018). Additionally, HIF-1α
promotes the expression of various genes to assist cells in hypoxic
and ischemic conditions including vascular endothelial growth
factor (VEGF) and EPO, andmay directly protect neurons (Zhang
et al., 2004). While HIF-1α is protective in acute hypoxia such as
ischemic injury by inducing pro-survival signaling pathways, its
role in chronic hypoxia is less understood (Jeewa et al., 2012;
Piccoli et al., 2017). Neonates with cyanotic CHD demonstrate
increased genetic expression of HIF-1α, VEGF, and EPO, in the
peripheral blood, but potential effects on neuroprotection are
unknown (Lemus-Varela et al., 2010).

ROS
Under physiologic conditions, 2% of electrons involved in the
mitochondrial respiratory chain react with molecular oxygen to
produce reactive oxygen species (ROS). ROS generation, mainly
dependent on complexes I and III, highly relies on metabolic
conditions and on the intra-mitochondrial balance between
oxidative and antioxidant factors (Kulkarni et al., 2007). This
process, besides destroying the cell membranes, yields a large
variety of toxic by-products, including β-unsaturated aldehydes
(malondialdehyde, 4-hydroxy-2-nonenal) (Poli et al., 1987), that
can react with carbon–carbon or carbon–oxygen double bond of
proteins, DNA, RNA, glucids, altering their structure or
inactivating their enzymatic function (Schaur, 2003; Forman
et al., 2009).

In response to excess ROS production, antioxidant tasks are
pursued by enzymes as catalases, glutathione peroxidases,
thioredoxins, and peroxyredoxins. These enzymes use electron
donors to tackle the further formation of ROS (Helmerhorst et al.,
2015). The cell organelles peroxisomes have an important role in
reducing intracellular hydrogen peroxide to avoid further
formation of free radicals species. The enzyme glutathione
peroxidase (GPX) on the peroxisome wall catalyses the
transformation of the reduced form of the tripeptide
glutathione (thiol GSH) to its oxidized form (GSSG,
disulphide). Under conditions of pro- and anti-oxidant
balance, up to 98% of the total glutathione pool occurs in its
reduced GSH form (Owen and Butterfield, 2010). Thus, GSH/
GSSG ratio is an important indicator of the cellular oxidative
stress and of its compensation (Aquilano et al., 2014). EPO
treatment induced time-dependent elevations of GPX in a
model of neurodegenerative disease (Thompson et al., 2020).

Another important antioxidant mechanism, induced by the
EPO pathway, is mediated by the enzyme superoxide dismutase
(SOD), which the removal of superoxide free radicals generated
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from mitochondrial respiration (Muller, 2000). Overexpression
of SOD1, one of the isoforms of SOD, is beneficial in case of
oxidative hypoxic damage, but has no effects in the setting of
neonatal hypoxia-ischemia (Sheldon et al., 2017).

Prolonged systemic hypoxia is known to elicit oxidative stress
altering redox balance. Under hypoxia electron-transport rate in the
mitochondria decreases, the binding of oxygen to the proteins/
complexes changes, aerobic oxidative respiration is limited and
partial reduction of oxygen leads to the formation of ROS. While
the ischemic state induces anaerobicmetabolism, a lower level of ATP
production, failure of ion-exchange channels, cell swelling and
impaired enzymatic activity in the cytoplasm, the reintroduction
of oxygen during reperfusion exacerbates mitochondrial damage,
electrolyte imbalance, and oxidative stress affecting the NADPH
oxidase, nitric oxide synthase, and xanthine oxidase systems. ROS
overproduction leads to cell death by different mechanisms, leading
to progressive neurodegeneration (Merelli et al., 2021).

Human life in utero elapses in an environment that is relatively
hypoxic, however, oxygen availability to the fetus is provided by
adaptive mechanisms that allow oxygen delivery to tissues for
physiological growth and development. The master regulator for
the cell’s adaptive responses to hypoxia are HIFs, which through
VEGF and EPO activation, ensure O2 delivery to the tissue.
Vascular or metabolic alterations in the mother (preeclampsia,
obesity, diabetes) causes the fetus to develop under chronic
hypoxia with higher risk of developing oxidative stress that
may be detrimental for its fetal and postnatal development
(Torres-Cuevas et al., 2017).

Much of what is understood regarding oxygen toxicity and
ROS production comes from research in preterm neonates
suffering from pulmonary diseases of prematurity (e.g.
bronchopulmonary dysplasia), including injury of intestinal
epithelial cells (Zhao et al., 2018), and ophthalmologic and
neuronal damage (Perrone et al., 2015). Hypoxia leading to
asphyxia is characterized by acidosis, base deficit and lactic
acidemia, and requires reoxygenation maneuvers immediately
after birth for resuscitation of asphyxic neonates and preterm
infants with immature lungs, surfactant production and
antioxidant defense system. Attention should be paid to
minimize initial damage triggered by ischemia-reoxygenation
injury (Granger and Kvietys, 2015). Additionally, since the
discovery of oxygen toxicity and its effects on neonatal retinal
development, neonatal intensive care includes close monitoring
retinal development and minimizing excessive oxygenation while
providing adequate respiratory support (Tin and Gupta, 2007).
Several protective strategies have been tested or hypothesized in
the perinatal period, such as the administration of melatonin and
therapeutic hypothermia to slow down pro-oxidant processes and
oxidative stress damage (Hassell et al., 2015).

COUNTERACTING HYPOXEMIC DAMAGE
WITH HYPEROXIA

Maternal Hyperoxygenation
Maternal hyper-oxygenation has been studied as a potential
therapeutic to improve fetal oxygenation, administered

following the ultrasound diagnosis of CHD, until delivery (Co-
Vu et al., 2017). The relatively small studies involved committing
the mothers to several hours of oxygen administration at FiO2 of
40–60% using a face mask, until delivery. Despite evidence
suggesting that the morphology improved, including
pulmonary blood flow and size of left heart dimensions, the
studies were highly heterogeneous in the cardiac phenotypes
enrolled and protocols used, and no studies investigated the
neurodevelopmental outcomes. Recently, research has gained
interest in understanding the fetal cerebrovascular response to
maternal hyper-oxygenation in fetuses with complex CHD (Zeng
et al., 2020; Hogan et al., 2021). Still, maternal hyper-oxygenation
appeared largely impractical for extensive clinical application
(Rudolph, 2020), prompting the investigation of specific
pathways to target pharmacological interventions.

Additionally, for the developing fetus, there are concerns
regarding oxygen toxicity and radiation toxicity known to
occur through a common mechanism related to increased
production of ROS since the 1950s (Gerschman et al., 1954).
The oxidative stress caused by ROS is a primary source of DNA
damage, impairment of mitochondrial function, and organ
injuries (Habre and Peták, 2014). When exposed to hyperoxia,
the developing retinal endothelial cells activate a series of
transcription factors including HIF-1α, insulin-like growth
factor, and vascular endothelial growth factor, leading to
sequelae of vessel damage and impaired vessel growth
(Perrone et al., 2016). Oxidative damage may lead to the so-
called “free-radical related diseases of prematurity”:
bronchopulmonary dysplasia, retinopathy of prematurity,
periventricularleukomalacia, intraventricular hemorrhage,
oxidative hemolysis, and necrotizing enterocolitis (Perrone
et al., 2015; O’Donovan and Fernandes, 2004). In the setting
of maternal hyper-oxgenation supplementation, the fetus would
be protected from iatrogenic diseases such a necrotizing
enterocolitis (typically related to enteral feeding) or
bronchopulmonary dysplasia (related to ventilator
barotrauma). Whether fetuses may be at risk of injuries
related to oxidative stress during maternal hyper-oxygenation
warrants further investigation.

Improving Oxygen Delivery
The formula of the oxygen delivery denotes the importance of
hemoglobin concentration for optimizing oxygen delivery:

oxygen delivery � cardiac output × systemic oxygen saturation

× hemoglobin

Since iron is an essential component of hemoglobin, a
biological response to hypoxia is to increase the demand for
iron. Guidelines for iron supplementation recommend that in
iron sufficient children with hematocrits below 60%, low-dose
iron supplements should be given to prevent the onset of latent
iron deficiency (Kling, 2020). Iron deficiency anemia was
observed as a worsening parameter in several newborns with
CHD, in situations of limited resources and poor diet such as
Ghana (Ossei et al., 2020).
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An ineffective hematopoietic response in newborns with
CHD, or ‘‘relative anemia,’’ results in polycythemia insufficient
for adaptation to hypoxia. Hematocrit increases in mildly
cyanotic CHD, while hemoglobin stays within the normal
range. Unlike adaptations observed in animal models of
chronic hypoxia, human newborns with severe CHD appear to
lack a compensatory increase in hematocrit and hemoglobin,
suggestive of an anemic-like state (Lim et al., 2016). On the other
hand, an excessive increase in hematocrit can also impair tissue
oxygen delivery due to increased blood viscosity (Linderkamp
et al., 1979).

The number of transfusions received during the neonatal
intensive care unit stay (especially by preterm children) also
correlates with increased white matter injury observed by
MRI. A reasonable “double hit” hypothesis resulting in white
matter injury involves the hypoxia of low hemoglobin leading to
the transfusion and the inflammation associated with transfusion
(Wiesener et al., 1998).

If the formula of the oxygen delivery is considered, in the presence
of neonatal hypoxemia, means to improve the oxygen delivery to the
brain, and subsequently the neurological conditions include 1)
increase of the cardiac output, 2) increase of the oxygen
saturation. Increase in cardiac output can be achieved either with
interventional catheter procedures, such as the balloon atrial
septostomy (� Rashkind procedure), or with surgery, aimed at
improving the intra-cardiac mixing and the effective pulmonary
blood flow. Additionally, there are medications utilized to increase
cardiac output and optimization of respiratory support (Tabbutt
et al., 2001; Browning Carmo et al., 2007; McQuillen et al., 2007;
Feltes et al., 2011). In order to increase oxygen saturation, oxygen can
be administered, but excess oxygen can be a further source of
oxidative stress, leading to more severe bronchopulmonary
dysplasia and retinopathy of prematurity (O’Donovan and
Fernandes, 2004).

IMPROVING ANTIOXIDANT RESPONSE
THROUGH EPO ADMINISTRATION

The generation of oxidative stress in various clinical situations may
play an additional pivotal role inHIF2-α stabilization and hence EPO
production. Both EPO and its receptor, primarily secreted by kidney
and, in the fetal period, by the liver (Dame et al., 1998), are also
detectable in the brain and upregulated during injury (Wakhloo et al.,
2020). HIF-2-α contains an iron-responsive element in its 5’
untranslated region. Under iron-deficient conditions, when
hemoglobin synthesis is decreased, HIF2-α translation is
upregulated. These mechanisms ensure that EPO synthesis is
adaptable to iron availability (Gassmann and Muckenthaler, 2015).
EPO also mediates other processes such as angiogenesis,
neuroprotective properties, and immune regulation.

The EPORelated Pathway in the Developing
Brain
In the brain, investigation of the functions of EPO was initially
undertaken using cultured cells before in vivo studies, and it is

primarily produced by cultured astrocytes as a highly-specific
neuronal growth factor upregulated by hypoxia (Masuda et al.,
1994). Oligodendrocytes, endothelial cells, neurons, and
microglia can also produce EPO when upregulated by hypoxia
(van der Kooij et al., 2008). EPO and its receptor were detected in
the developing brain and their persistence in the mature brain
have been suggested to play a role in both neurodevelopment and
homeostasis for 20 years (Juul et al., 1999). Induction of myelin
genes, together with promotion of oligodendrogenesis, was
theorized to play a role in EPO-induced neurological recovery
in neonatal hypoxic-ischemic brain injury, where
oligodendrocyte damage is an important pathogenic
component (Cervellini et al., 2013). EPO receptor is present in
rats’ oligodendrocytes and astrocytes in culture, and high dose
EPO (1, 3, 10 U/ml) markedly enhanced the proliferation of
astrocytes. These results suggested that EPO not only promotes
the differentiation and/or maturation in oligodendrocytes, but
also enhances the proliferation of astrocytes (Sugawa et al., 2002).
The activation of EPOR downstream molecules JAK2 and PI3K,
together with the regulation of the apoptotic proteins Bad and
Bcl-xL, leads to a decrease in the apoptosis process (Rey et al.,
2019). In vitro, it was observed that EPO downregulates two
microRNA molecules (miR-451 and miR-855-5p) in
neuroblastoma cell line. This mechanism seems to be one of
the main causes for the neurotrophic, neuroprotective,
antioxidant, and antiapoptotic effects (Alural et al., 2014). The
antioxidant effects of EPO pathway were studied in animal
models such as SOD1-overexpressing mice, that accumulate
excess hydrogen peroxide, exposed to hypoxia. In situations of
extreme hypoxic-ischemic damage, such study theorized that
there is little chance of rescue with these neuroprotective
therapies (Sheldon et al., 2017). On the other hand, when the
damage is at the beginning, the damages induced by hypoxia may
be counteracted by the previously described mechanisms, as
shown in Figure 2.

Neuroprotective Role of Recombinant
Human EPO
A recombinant adenovirus engineered to express HIF-1α
demonstrated that HIF-1α attenuated neuronal apoptosis partially
through upregulating EPO following cerebral ischemia in a rat model
(Li et al., 2020). In humans, umbilical cord blood infusion in
combination with EPO administration showed therapeutic efficacy
in the treatment of stroke-induced injury by promoting neurogenesis
and angiogenesis through HIF-1a (Hwang et al., 2019).

The administration of recombinant human EPO (rhEPO)
might be effective against hypoxic, ischemic, and traumatic
brain injury, as well as chronic and progressive degenerative
diseases (Erbayraktar et al., 2003; Brines et al., 2004; Gorio et al.,
2005; Heikal et al., 2016). An increase in BCL2 gene expression,
and a decrease of ROS induced by EPO ligand antioxidant effects,
activate a group of vital genes that preserve cell survival, prevent
apoptotic signals, and alleviate inflammation (Castillo et al.,
2018). The neuroprotective effects of EPO are related to
increased resistance to oxidative stress and stabilization of the
redox equilibrium, as observed in in vitro and ex vivo experiments
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(Castillo et al., 2018; Castillo et al., 2019; Rey et al., 2019). The
effect of EPO on plasma biomarkers of brain injury in HIE
patients who were randomized to receive adjunctive EPO
treatment along with standard hypothermia were explored in
patients enrolled in the NEATO trial (Massaro et al., 2018). While
several biomarkers correlated with brain injury visualized on
MRI, only Tau and brain-derived neurotrophic factor (BDNF)
were associated with neurological outcomes at one year of age. In
addition, EPO treatment did not appear to influence biomarkers
included in the small study.

To cross the blood-brain barrier, rhEPO must be administered in
high doses of 2000–5000 IU/kg of body weight (Zhang et al., 2010).
The need for very high dosages to achieve neuroprotection potentially
leads to elevated hematocrit levels, increased blood viscosity, and
perfusion deficits in the brain. An overexpression of EPO receptor is
observed after brain hypoxia, and this high expression is also needed
for a successful treatment with exogenously administered high doses
of rhEPO. In this regard nasal administration of lower doses of
rhEPO can help to produce neuroprotection without increasing the
circulating red blood cells (Merelli et al., 2011a; Merelli et al., 2015).
Hypoxia may induce damage in the blood-brain barrier permitting
greater penetration of EPO, and other factors, into brain tissues,
where it is known to counteract oxidative damage (Castillo et al.,
2018; Rey et al., 2021). One randomized clinical trial reported that low
dose rhEPO intravenous treatment significantly decreased the
incidence of retinopathy of prematurity, an effect of preterm
hypoxia, in infant boys (Sun et al., 2020), while many other
studies focused on demonstrating that such oxidative damage was
not related to EPO concentrations. (Bui et al., 2021). Other clinical
trials showed that EPO treatment was associated with a reduction in
bronchopulmonary dysplasia, without considering the potential
positive neurodevelopmental effects (Rayjada et al., 2012; Bui
et al., 2019). EPO neuroprotection includes systemic effects such

as enhanced erythropoiesis which increases iron utilization, thereby
decreasing free iron and reducing oxidative brain injury. It has been
hypothesized that systemic effects of EPO such as stabilizing oxygen
availability, decreasing free iron, and reducing inflammation,
complement the direct neuroprotective effects of EPO and may
explain why lower dosing strategies also improve outcome
(McPherson and Juul, 2010). At the same time, other forms of
EPO, slightly modified to improve delivery through the blood-brain
barrier, without the need of administrating high doses of EPO, are
under development (Zhang et al., 2010).

DISCUSSION

EPO has been proposed as a potential therapeutic option in CHD
in previous reviews (Stegeman et al., 2018), even if specific studies
are still a limited number (Table 1).

EPO administration to improve oxygen delivery and treat
anemia in infants have been proposed by several studies,
sometimes together with iron administration (Kling, 2020). A
very recent meta-analysis confirmed the efficacy and safety of
rhEPO in preterm infants (Qin and Qin, 2021). Some of the white
matter neurological damages in such patients are quite similar to
the ones observed in preterm infants (Wintermark et al., 2015),
The studies investigating neurological effects of EPO in preterms
might be suggestive of its potential neuroprotective effect too.
Such studies are listed and commented in Table 2.

Recently, EPO was studied in clinical trials as a single
treatment (in countries with limited access to hypothermia
therapy), as adjunctive treatment to hypothermia therapy, and
in preterm infants who do not qualify for hypothermia therapy
(Zhu et al., 2009;Wu et al., 2016; Juul et al., 2018; Juul et al., 2020).
While EPO did not reduce severe neurodevelopmental

FIGURE 2 | Neuroprotective role of EPO in response to hypoxia. Activated by both hypoxia itself and the harmful mechanisms induced by hypoxia (such as
neuroinflammation, apoptosis and oxidative stress), EPO counteracts such mechanisms by inducing antioxidant and antiapoptotic pathways and blocking pro-
apoptotic pathways.e

Frontiers in Pharmacology | www.frontiersin.org November 2021 | Volume 12 | Article 7705907

Ottolenghi et al. Erythropoietin in CHD-Induced Neurological Damages?

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


impairment or death in preterm infants with HIE, results from
trials involving EPO as monotherapy and combined with
therapeutic hypothermia look promising (Oorschot et al.,
2020). Importantly, based on the relative successes of the
clinical trials for HIE patients, the neuroprotective role of
erythropoietin for children with CHD undergoing surgery
justifies further investigations since studies of modifiable
perioperative strategies have failed to show significant changes
in the risk of poor outcomes (Marino et al., 2012). An option to
increase efficacy and and avoid side effects could be intranasal
administration, as suggested by in vivo animal studies in adult rats
(Merelli et al., 2011b).

CONCLUSION

Neurological damages in children with CHD are associated
with elevated mortality and morbidity, seriously affecting the

patients, their families, the care providers, and society at large.
In this review available knowledge on potential prevention
and reduction of the severity of neurological damages due to
hypoxemia have been analyzed, in particular the potential role
of EPO administration. Several in vitro and in vivo studies
suggest the neuroprotective effects of both hypoxia-induced
and administrated EPO in infants. The studies published so
far suggest the need for further clinical investigations to
evaluate the potential efficiency of EPO administration in
reducing the hypoxemic neurologic damages in neonates
with CHD.
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TABLE 1 | Studies involving EPO administration in children with CHD.

Authors Patients (n) Objective EPO dosing Outcomes

Andropoulus et al., 2013
(Andropoulos et al., 2013)

Neonates scheduled for
cardiac surgery with
hypothermic CPB
for>60 min (n � 62)

To assess the safety and give a
preliminary indication of the efficacy
of EPO treatment for
neuroprotection in the perioperative
period for neonatal cardiac surgery

500–1,000 units/kg No different safety profile of EPO
than placebo, including major
intracranial thromboses,
hemorrhage, other MRI injuries,
and death

Sonzogni et al., 2001
(Sonzogni et al., 2001)

Children undergoing open
heart surgery (2–14 years
old, n � 39)

To assess feasibility and efficacy of
EPO treatment and its effect on
allogenic blood transfusion in
children undergoing open heart
surgery

1,000 units/kg during the 3 weeks
preceding operation)

EPO increases the amount of
autologous blood that can be
collected and minimizes allogenic
blood exposure in children
undergoing open heart surgery

Ootake et al., 2007
(Ootaki et al., 2007)
(abstract only, no full text
available)

Children undergoing
cardiac surgery (cyanotic
CHD, n � 10; noncyanotic
CHD, n � 72)

To evaluate the efficacy of
administering a single dose of rhEPO
on the requirement for blood
transfusion

200 units/kg plus 2 mg/kg of iron
sulfate, vs 400 units/kg plus
4 mg/kg of iron sulfate, vs placebo

The administration of a single dose
of rhEPOwithout autologous blood
donations increased hematocrit
levels

TABLE 2 | Studies involving EPO administration in preterm infants without CHD.

Authors Patients (n) Objective Role of EPO Outcomes

Fahim et al.,
2021 (Fahim
et al., 2021)

Preterm infants with
gestational age >30 weeks
expected to survive >72 h
(n � 27)

To investigate correlations between
EPO concentrations and outcomes,
including retinopathy of prematurity
(ROP) and brain injury

Biomarker of hypoxic damage Elevated endogenous EPO
concentrations in the first 2 weeks of life
are associated with lower birth weight
and increased risk of adverse outcomes

Endogenously produced

Song et al., 2016
(Song et al.,
2016)

Preterm infants
(<32 weeks, n � 800)

To reduce early severe complications
and improve long-term neurological
outcomes in very preterm infants

Administration as drug 300-
500 U/kg

EPO decreased the risk of death and
moderate/severe disability at 18 months

Juul et al., 2020
(Juul et al., 2020)

Extremely preterm infants
(24–27 weeks)

To prevent death and improve
neurodevelopmental outcomes at
2 years of age

Administration as drug 1000 U/kg
of every 48 h for a total of six
doses, followed by a maintenance
dose of 400 U/kg

No lower risk of death or better
neurodevelopmental outcomes at
2 years of age, no detected side effects

Natalucci et al.,
2016 (Natalucci
et al., 2016)

Very preterm infants
(26–31 weeks)

the effect of early high-dose rhEPO on
the neurodevelopmental outcome at
2 years

Administration as drug 3000 IU/kg
for a total of five doses

No statistically significant differences in
neurodevelopmental outcomes at
2 years

Natalucci et al.,
2020 (Natalucci
et al., 2020)

2-year-olds who had been
born very preterm (ie,
<32 weeks’ gestation, n
� 448)

To assess neurodevelopmental
outcomes at 5 years

3000 IU/kg intravenously vs saline
within 3, at 12–18, and at 36–42
postnatal hours

No lower risk of death or better
neurodevelopmental outcomes at
5 years of age, no detected side effects
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