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Background: Drug repurposing provides an effective method for high-speed, low-risk
drug development. Clinical phenotype-based screening exceeded target-based
approaches in discovering first-in-class small-molecule drugs. However, most of these
approaches predict only binary phenotypic associations between drugs and diseases; the
types of drug and diseases have not been well exploited. Principally, the clinical
phenotypes of a known drug can be divided into indications (Is), side effects (SEs),
and contraindications (CIs). Incorporating these different clinical phenotypes of
drug–disease associations (DDAs) can improve the prediction accuracy of the DDAs.

Methods: We develop Drug Disease Interaction Type (DDIT), a user-friendly online
predictor that supports drug repositioning by submitting known Is, SEs, and CIs for a
target drug of interest. The dataset for Is, SEs, and CIs was extracted from PREDICT,
SIDER, and MED-RT, respectively. To unify the names of the drugs and diseases, we
mapped their names to the Unified Medical Language System (UMLS) ontology using Rest
API. We then integrated multiple clinical phenotypes into a conditional restricted
Boltzmann machine (RBM) enabling the identification of different phenotypes of
drug–disease associations, including the prediction of as yet unknown DDAs in the input.

Results: By 10-fold cross-validation, we demonstrate that DDIT can effectively capture
the latent features of the drug–disease association network and represents over 0.217 and
over 0.072 improvement in AUC and AUPR, respectively, for predicting the clinical
phenotypes of DDAs compared with the classic K-nearest neighbors method (KNN,
including drug-based KNN and disease-based KNN), Random Forest, and XGBoost. By
conducting leave-one-drug-class-out cross-validation, the AUC and AUPR of DDIT
demonstrated an improvement of 0.135 in AUC and 0.075 in AUPR compared to any
of the other four methods. Within the top 10 predicted indications, side effects, and
contraindications, 7/10, 9/10, and 9/10 hit known drug–disease associations. Overall,
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DDIT is a useful tool for predicting multiple clinical phenotypic types of drug–disease
associations.

Keywords: drug repositioning, restricted Boltzmann machine, phenotypic types of drug-disease associations,
machine learning, indication, side effect, contraindication

INTRODUCTION

Novel drug development is a complicated, time-consuming, and
expensive process. It often takes 10–15 years of research and
0.8–1.5 billion dollars to bring a drug to market (Li et al., 2016).
Drug repurposing provides an effective method for high-speed,
low-risk drug development (Rymbai et al., 2020). One classic
example is the discovery of the drug sildenafil for the treatment of
male sexual dysfunction, which had been previously developed as
a hypertension drug in 1989 (Ghofrani et al., 2006). Another is
azidothymidine, originally failing in trials as a tumor
chemotherapy drug, but then succeeding as a treatment for
AIDS in 1980 (Broder, 2010). However, most of these
previously successful cases of drug repositioning have relied
upon individuals with a deep understanding of the
pharmacology of the drug or from retrospective clinical
experience, rather than from systematic or statistical analysis
(Pushpakom et al., 2019).

Based on input data type, in silico drug repositioning is divided
into four classes based on either (1) molecular structure, (2)
drug–target interactions, (3) gene expression, or (4) phenotype
(Duran-Frigola and Aloy, 2012).

For (1) molecular structure-based data, molecular docking is a
versatile bioinformatics tool used to predict the geometry and to
score the interaction of a target protein in a complex with a small-
molecule drug (March-Vila et al., 2017). It requires no prior
information except structural inputs from both the drug and the
target and can either identify potential targets for a given drug or
identify potential drugs for a specific target (Luo et al., 2016a). Liu
et al., for example, developed a computational protocol named
SCAR based on molecular docking to identify the possible
covalent drugs targeting the main protease (3CLpro) of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Liu
et al., 2020). In addition to molecular docking, machine learning
can also use structural data to make predictions. In this way, Hu
et al. used convolutional neural networks to predict drug–target
interactions based on drug structure and protein sequences (Hu
et al., 2019); Yi et al. developed a deep gated recurrent units model
to predict potential drug–disease interactions using
comprehensive similarity measures and Gaussian interaction
profile kernel (Yi et al., 2021); and Ke et al. established a deep
neural network (DNN) to identify potential drugs for anti-
coronavirus activities (Ke et al., 2020).

For (2) drug–target data, machine learning methods and
network-based methods are often employed. For machine
learning methods, Lu and Yu inferred unknown relationships
between drugs and diseases using a regularized kernel classifier
based on a unified and extended similarity kernel framework (Lu
and Yu, 2018), whereas Luo et al. proposed a novel computational
method named MBiRW, which utilizes some comprehensive

similarity measures and a bi-random walk (BiRW) algorithm
to identify potential novel indications for a given drug (Luo et al.,
2016b). For network-based methods, Yu et al. also developed a
computational pipeline called KDDANet for systematic and
accurate uncovering of the hidden genes mediating known
drug–disease associations from the perspective of a genome-
wide functional gene interaction network. This utilized three
existing network algorithms, namely, minimum cost network
flow optimization, depth-first searching, and graph clustering (Yu
et al., 2021). In addition, Zeng et al. developed a network-based
deep-learning approach, termed deepDR, for in silico drug
repurposing (Zeng et al., 2019).

For (3) gene expression data, signature mapping and machine
learning are often used for drug repositioning. For signature
mapping, Le et al. used a rank-based pattern matching strategy
based on the Kolmogorov–Smirnov Statistic to query the
signatures against drug profiles from Connectivity Map
(CMap) (Lamb et al., 2006; Le et al., 2021). Wu et al.
developed a database called DrugSig for computational drug
repositioning utilizing gene expression signatures (Wu et al.,
2017). Kim et al. used a computational reversal of gene
expression to explore new drug candidates for gastric cancer
(GC) (Kim et al., 2019). For machine learning, Rodriguez et al.
quantified potential associations between the pathology of AD
severity and molecular mechanisms to discover a list of genes
associated with AD severity. Then, they apply DRIAD, a machine
learning framework, to the lists of genes arising from
perturbations in differentiated human neural cell cultures by
80 Food and Drug Administration (FDA)-approved and
clinically tested drugs, producing a ranked list of possible
repurposing candidates (Rodriguez et al., 2021).

For (4), in silico clinical phenotype-based screening
methodologies have also provided new hypotheses to
reposition drugs. Systematic analysis revealed that phenotypic
screening exceeded target-based approaches in discovering first-
in-class small-molecule drugs (Swinney and Anthony, 2011;
Duran-Frigola and Aloy, 2012). Clinical phenotypic
information comes from actual patient data that reduce the
bias caused by incomplete understanding of pathogenesis and
can directly help rational drug repositioning. In this way, Yang
and Agrawal combined adverse effect information derived from
drug labels with drug-disease relationships obtained from the
PharmGKB database (Thorn et al., 2005) and were able to predict
repositioning indications for 145 diseases (Yang and Agarwal,
2011). They claimed that closer attention should be paid to the
side effects observed in trials, not just in evaluating the harmful
effects related to the drug under trial but also in rationally
exploring the repositioning potential based on this “clinical
phenotypic assay.” Vogt et al. found that contraindications
associated with high phenotypic similarities often involved
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diseases that have been reported as side effects of the drug (Vogt
et al., 2014). These indicated that the known drug and clinical
phenotype relationships have provided explicit repositioning
hypotheses, such as drugs causing hypoglycemia are potential
candidates for diabetes. However, such clinical phenotypic
information has not yet been fully exploited in phenotype
screening-based drug repositioning methods. To incorporate
such considerations, we take into account the three types of
clinical phenotype, namely, indications (Is), side effects (SEs), and
contraindications (CIs), each of which are interrelated.
Integrating different such phenotypic types is suggested to
result in an improvement in the prediction performance for
drug repositioning and help to understand drug–disease
associations.

In this paper, we have compiled a multidimensional
drug–disease network by systematically collecting data of
clinical phenotype and proposing a restricted Boltzmann

machine (RBM)-based (Hinton and Salakhutdinov, 2006)
computational tool, DDIT, to predict multiple phenotypes of
drug–disease associations (DDAs). The choosing of an RBM
model to integrate multiple clinical phenotype data is guided
by the following considerations: (1) an RBM is an energy-based
two-layer graph model that can work well on a multidimensional
network; (2) RBMs have been proven to have a competitive
advantage in collaborative filtering (Salakhutdinov et al., 2007),
drug–target interaction prediction (Wang and Zeng, 2013), and
disease–microRNA association prediction (Chen et al., 2015).
The primary potential use of this software is in the preclinical
consideration of any potential new Is, SEs, and CIs of drugs based
on existing information, thereby saving costs and providing
evidence for further downstream analysis. To our knowledge,
DDIT is the first computational model to simultaneously predict
different phenotypes of DDAs.

MATERIALS AND METHODS

Overview
Since an RBM can be efficiently applied to learn the distribution
of multidimensional networks and reconstruct their inputs, we
developed an RBM-based model, DDIT, to predict different
phenotypic types of DDAs. Figure 1 shows the flowchart
of DDIT.

Data Collection and Extraction
Drug indications are gold standard dataset from PREDICT
(Gottlieb et al., 2011). The data for drug side effects is
obtained from SIDER (Kuhn et al., 2016). The data for drug
contraindications are from MED-RT (https://ncit.nci.nih.gov/
ncitbrowser/pages/vocabulary.jsf?dictionary�MED-RT), produced
by The Veterans Health Administration (VHA). For this, we
downloaded the archive content Core_MEDRT_2019.11.04_
XML.zip (https://evs.nci.nih.gov/ftp1/MED-RT/Archive/) and
then extracted the relationship of “CI-with,” which describes
co-morbid contraindication of a drug (see Supplementary
Figure S1). In total, we collected 2,816 drug–indication
pairs, 132,150 drug–SE pairs, and 10,443 drug–contraindication
pairs.

Data Mapping
As the names of drugs and diseases in different datasets often vary
in their vocabulary, this required consideration and adjustment
for standardization. For example, the drug names in the
indication dataset, side effect dataset, and contraindication
dataset were from DrugBank (Wishart et al., 2007), ATC
(Miller and Britt, 1995), and RxNorm (Nelson et al., 2011),
respectively, while the corresponding disease names in these
three datasets were from OMIM (Hamosh et al., 2005), UMLS
(Bodenreider, 2004), and MeSH (Leydesdorff et al., 2016),
respectively. To unify the drug and disease names, we mapped
their names to Unified Medical Language System (UMLS)
ontology. We accessed UMLS Knowledge Sources
Metathesaurus 2019AB using Rest API for Java (https://github.
com/HHS/uts-rest-api). All the data were completely mapped to

FIGURE 1 | Flowchart of DDIT modeling. First, we collected different
phenotypic types from PREDICT, SIDER, and MED-RT, respectively, followed
by mapping the disease and drug names to UML ontologies. We then
constructed a multidimensional network with nodes presenting drug or
disease, and with the edge representing indication, side effect, and
contraindication. The formatted data were input into a restricted Boltzmann
machine (RBM) and the output reconstructed the input. We here take five
drugs and four diseases as example. The left matrices represent three types of
DDAs. For each matrix, the row represents drugs, while the column
represents disease. The square is white if Aij � 1, which means the drug and
disease have indication/side effect/contraindication, black if otherwise. The
right matrix is the output probability. The y-axis represents drug, the x-axis
represents disease, and the z-axis represents the three types of DDAs. As the
probability is in the range from 0 to 1, we color them in gray. I, indications; SE,
side effects; CI, contraindications.
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UMLS ontology, and no other tools were used to unify these drug
and disease terms.

Data Balance
During the data collection phase, we collected 2,816
drug–indication pairs, 132,150 drug–SE pairs, and 10,443
drug–contraindication pairs. As these data sets were
unbalanced, to balance the data, we first selected a disease
subset S, then we randomly select 2,816 (2,816 is the lowest
count among three types of DDAs) associations from drug–SEs
and 2,816 associations from drug–contraindications with disease
in the subset S. To obtain S, we have selected the diseases meeting
to one of following two criteria: (1) diseases included in the
known drug indications and (2) diseases shared by two different
types of clinical phenotypes. Finally, we obtained the 2,816 data
points for each type of associations.

The RBM Model
An RBM is an undirected graphic model (Salakhutdinov et al.,
2007) that can be used to learn probability distributions over
input data using a layer of binary hidden units. As shown in
Figure 2, an RBM consists of a layer of visible units (v) and a layer
of hidden units (h). Each visible unit is connected to all hidden
units and has no intralayer connections between any pairs of
visible units or any pairs of hidden units. The state of each unit
possesses a binary value.

In our study, we built an RBM model for each drug. In other
words, for a drug, we adopted a two-layer RBM with diseases as
visible layer and 400 hidden units as hidden layer. The hidden
layer represented the hidden factor, and it cannot be observed.
Each RBMmodel for a drug only had diseases related to the drug
as visible units. Thus, different drugs had different RBMmodels.
However, different RBMs of drugs shared the connection weight
between each visible disease unit and hidden unit pairs. We
assumed that for each drug, the RBM model had n visible units,
m hidden units, and l association types encoded in a visible unit.
In our context, each visible unit represented a disease.
Therefore, we let binary vector vi � (v1i ,/, vki ,/, vli) denote
the state of the ith visible unit, where visible variables vki � 1 if
the kth type of DDA is observed in the input data, and vki � 0

otherwise. For example, for indication, the binary vector is vi �
(1,0,0), and for both side effect and contraindication, the binary
vector is vi � (0,1,1). With a 3-bit vector, it will be able to
distinguish the three types of DDA at the same time. For each
hidden unit, the state of jth hidden unit is expressed as hj, j �
1, 2,/, m. LetWk

ij denote the weight of the connection between
visible variable vki and hidden variable hj, and it is shared by
different RBMs of drugs. The vector v � (v1, v2,/, vn) denotes
the input layer, while h � (h1, h2,/, hm) denotes the hidden
layer. Figure 3 shows the modeling of four drugs and two
diseases. Through the CD algorithm, the model can be
effectively trained (Hinton, 2002). An RBM can learn the
distribution of multidimensional networks well and
reconstruct the input. This will predict the DDAs that are
not yet known in the input. RBM details are supplied as
Supplementary Material (Supplementary Text S1).

As the verified drug–disease associations provide more reliable
information than those that are as yet unknown, we further
introduced a conditional RBM to incorporate this additional
information to affect the states of hidden units (Salakhutdinov
et al., 2007). In this, we let ri � (r1,/, rj,/, rm) be a binary
vector, in which ri � 1 if disease j has association with the current
drug i, and ri � 0 otherwise. Details about the conditional RBMs
are supplied as Supplementary Material (Supplementary
Text S2).

The algorithm is implemented in Python. Through grid
search, we determined the best parameters: (“m”: 400,
“learning_rate”: 0.5, “epochs”: 300).

K-Nearest Neighbors
According to the computational method of similarity, KNN (Guo
et al., 2003) was divided into drug- and disease-based KNN. For
drug-based KNN, the hypothesis was that similar drugs should
have similar effects on the same disease. For any given drug, we
identified the other top k drugs that were most similar to it and
then calculated its phenotypes by averaging the phenotypes of its
neighbor drugs. The drug similarity is calculated by Jaccard Index
based on the drug-related disease profile with the formula defined
in Eq. 1 as follows:

J � M11

M01 +M10 +M11
(1)

The approach for disease- and drug-based KNN was similar
where the similarity between two diseases was calculated by
disease-related drug profile similarity.

For KNN, we further optimized for k systematically. For drug-
based KNN, we searched k ranging from (1, 10) and choose a k �
6 for the best AUC and AUPR with 0.736 and 0.824, respectively,
in the indication prediction. For disease-based KNN, we searched
k ranging from (1, 10) and choose k � 5 for the best AUC and
AUPR with 0.777 and 0.916, respectively, in indication
prediction.

Random Forest
We adopted Random Forest as a classifier for comparative
analysis. For each drug–disease pair, we combined the drug-

FIGURE 2 | An RBM model. n andm are the number of visible units and
hidden units, respectively. a is the bias of visible variables, while b is the bias of
hidden variables.W is the connection weight matrix between each visible unit
and each hidden unit.
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related disease profile and disease-related drug profile together as
the feature vector to train the Random Forest prediction model.
For three association types, we constructed three random forest
models, respectively. Each model was a problem of binary
classification. We implemented this algorithm by using the
“RandomForestClassifier” function in the sklearn package with
default parameters.

XGBoost
We further carried out XGBoost on our dataset. We modeled the
same data as the input of random forest. We adopted the
Scikit–Learn Wrapper interface for XGBoost to create the
XGBoost model. We optimized the hyper parameters using
“GridSearchCV” function and obtained the best parameters
(“gamma”: 0.25, “learning_rate”: 0.1, “max_depth”: 5,
“reg_lamba”: 0, “scale_pos_weight”: 1). We then trained the
model with the best parameters.

Tenfold Cross-Validation
We used the 10-fold cross-validation method to evaluate the
model. In this method, the data set was randomly divided into
10 sub-parts with nine of them used as the training set in turn and
the remaining one being the test set.

Leave-One-Drug-Class-Out
Cross-Validation
To access how trained models can be generalized into groups of
drugs that the models have never trained on before, we further
make a leave-one-drug-class-out cross-validation (Yao et al.,
2019). We first mapped the UMLS concept to the ATC code,
then divided the drugs into 15 classes by the ATC code (See
Supplementary Table S1). The data sets were divided into 15
parts according to drug classes. Fourteen of them were used as the
training set in turn, the remaining one being the test set.

FIGURE 3 | A toy example of constructing conditional RBMs for two drugs and four diseases. The RBMs for both drug 1 and drug 2 share the same parameters.
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Leave-One-Disease-Class-Out
Cross-Validation
To access how trained models can be generalized into groups of
diseases that the models have never trained on before, we further
made a leave-one-disease-class-out cross-validation. We divided
the diseases into 23 MSH classes (see Supplementary Table S2).
Twenty-two of them were used as the training set in turn, the
remaining one being the test set.

Web Server
The web server of DDIT was built using modern
frontend–backend architecture with three main components:
front end, backend server, and a relational database containing
the information of drugs, diseases, and their phenotypic
associations. The database was built using Mysql 5.6. The
backend was implemented in Java using SSM (Spring +
SpringMVC + Mybatis) as a framework and provided the
REST API (Sohan et al., 2017). The front-end was built using
React (Gackenheimer, 2015) and several other libraries. The
backend was deployed in Apache Tomcat (Vukotic and
Goodwill, 2011), while the front-end was deployed in Nginx
(Nedelcu, 2013). This architecture provided for the easy
maintenance of each module.

RESULTS

DDIT Performance
Receiver operator characteristic (ROC) and precision–recall (PR)
curves were used as evaluation metric for predictive performance.

We compared DDIT integrating three phenotypic types of DDAs
with one single phenotypic type. Both in terms of ROC
(Figure 4A) and PR curves (Figure 4D), DDIT with
integrated three phenotypic types performed >0.079 better
than single indication data in indication prediction. Similarly,
in prediction of side effect and contraindication, area under ROC
curve (AUC) and area under the PR curve (AUPR) had improved
by >0.086 (Figures 4B, E) and >0.102 (Figures 4C,F)
respectively. This suggests that data integrating multiple
clinical phenotypic types provide more information than single
analysis and simultaneously improve prediction performance.

Comparison With Other Methods
We then evaluated the performance by comparing DDIT with the
drug-based KNN, disease-based KNN, Random Forest, and
XGBoost (see Materials and Methods). As shown in Figure 5,
DDIT represented improvement by at least 0.217 in AUC and
0.072 in AUPR compared with the other four methods. The AUC
and AUPR for leave-one-drug-class-out is also shown in
Supplementary Figure S2. Here, DDIT represented
improvement of at least 0.135 in AUC and 0.075 in AUPR,
compared to the other four methods.

The Applications of DDIT to Multiple Clinical
Phenotypic Types
We then searched for an external validation dataset from CTD
(Davis et al., 2021), DrugBank (Davis et al., 2021), and DynaMed
(https://www.dynamed.com/) to evaluate the prediction results.
We collected the novel DDAs from the CTD database. These had
not been used for building DDIT, but the drugs and diseases of

FIGURE 4 | ROC and PR curve of DDIT compared with permutation test and single phenotypic type data only. (A,D) ROC and PR curves comparing DDIT with
permutation tests and indication data only for indication predictions of known drugs. (B,E) ROC and PR curves comparing DDIT with permutation test and side effect
data only for side effect predictions of known drugs. (C,F) ROC and PR curves comparing DDIT with permutation test and contraindication data only for contraindication
predictions of known drugs.
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FIGURE 5 | ROC and PR curves of DDIT compared with drug-based KNN, disease-based KNN, Random Forest classifier, and XGBoost. (A,D) ROC and PR
curves comparing DDIT with drug-based KNN, disease-based KNN, Random Forest, and XGBoost for novel indication prediction of known drugs. (B,E) ROC and PR
curves comparing DDIT with drug-based KNN, disease-based KNN, Random Forest, and XGBoost for novel side effect prediction of known drugs. (C,F) ROC and PR
curves comparing DDIT with drug-based KNN, disease-based KNN, Random Forest, and XGBoost for novel contraindication prediction of known drugs.

TABLE 1 | Top 10 scoring indications by DDIT.

Drug CUI Drug name Disease CUI Disease name Evidence

C0392938 Zoledronate C0029459 Osteoporosis, senile CTD
C0392938 Zoledronate C0029458 Osteoporosis, postmenopausal DrugBank
C0014912 Estradiol C4722327 Prostate cancer, hereditary, 1 DynaMed
C0020823 Ifosfamide C0149925 Small cell carcinoma of lung CTD
C0030899 Pentoxifylline C1858361 Pyogenic arthritis, pyoderma gangrenosum and acne —

C0004147 Atenolol C1837014 Atrial fibrillation, familial, 3 DrugBank
C0059985 Fludarabine C0023467 Leukemia, myelocytic, acute CTD
C0005740 Bleomycin C0149925 Small cell carcinoma of lung —

C0123091 Quetiapine C0036341 Schizophrenia CTD
C0006462 Buspirone C0028768 Obsessive–compulsive disorder —

TABLE 2 | Top 10 scoring side effects by DDIT.

Drug CUI Drug name Disease CUI Disease name Evidence

C0042523 Verapamil C0018681 Headache DynaMed
C0031469 Phenylephrine C0027497 Nausea DynaMed
C0016365 Fluoxetine C0042963 Vomiting DynaMed
C0008809 Ciprofloxacin C0027497 Nausea DynaMed
C0073571 Ropivacaine C0027497 Nausea DynaMed
C0529793 Sildenafil C0017178 Gastrointestinal Diseases DynaMed
C0216784 Valsartan C0018681 Headache DynaMed
C0529793 Sildenafil C0035455 Rhinitis DynaMed
C0035608 Vincristine C0011603 Dermatitis —

C0021246 Indomethacin C0011991 Diarrhea DynaMed
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these novel DDAs were contained in our modeling datasets.
Table 1 shows the top 10 predicted indications. Seven of these
10 predictions could be found in CTD, DrugBank, or DynaMed
databases. The remaining three predictions may represent
candidate drugs for new indications. For example, DDIT
predicted that Bleomycin is indicated for small cell lung
cancer. This is conceivable as a true positive, since Bleomycin,
as recorded in DrugBank, is a drug for the treatment of malignant
neoplasms and operates by inhibiting DNA synthesis. That
Buspirone is a candidate drug for obsessive–compulsive
disorder may also be true positive, as it is labeled as indicated
for anti-anxiety in DynaMed, which is a symptom of
obsessive–compulsive disorder.

For the prediction of side effect, Table 2 shows the top 10
predicted side effects. Nine of 10 can be found in DynaMed.

DDIT inferred that dermatitis was a side effect of vincristine.
Vincristine is a chemotherapy medication used to treat various
types of cancer. The prevalent cutaneous side effects in patients
affected by tumors undergoing chemotherapy are skin rash,
xerosis, pruritus, paronychia, hair abnormality, and mucositis
(Fabbrocini et al., 2012). This may suggest that our inference is
again a possible true positive.

As for contraindications, Table 3 shows the top 10 predicted
contraindications. Nine of ten could be found in DynaMed. The
prediction atrioventricular block as a contraindication of atenolol
may also be true positive as DynaMed notes that atenolol can
cause atrioventricular blocks in cases of severe positioning.

Altogether, these results suggest that DDIT is a powerful
computational tool that integrates multiple clinical features for
the facilitation of drug repurposing.

TABLE 3 | Top 10 scoring contraindications by DDIT.

Drug CUI Drug name Disease CUI Disease name Evidence

C0033497 Propranolol C0036980 Shock, cardiogenic DynaMed
C0076840 Torsemide C0003460 Anuria DynaMed
C0027302 Nadolol C0428977 Bradycardia DynaMed
C0015011 Ethinyl estradiol C0034065 Pulmonary embolism DynaMed
C0025598 Metformin C0011880 Diabetic ketoacidosis DynaMed
C0289313 Rosiglitazone C0011880 Diabetic ketoacidosis DynaMed
C0002598 Amiodarone C0037052 Sick sinus syndrome DynaMed
C0072857 Quinapril C0020649 Hypotension DynaMed
C0004147 Atenolol C0004245 Atrioventricular block –

C0028356 Norethindrone C1458155 Mammary neoplasms DynaMed

FIGURE 6 | DDIT web interface. (A) Home page. (B) Prediction page. Predicting clinical phenotypic types based on drug profiles submitted by users. (C) Search
page. Left: search drug’s Is, SEs, and CIs by drug’s name; right: search for drugs that can cure, cause the disease, or as contraindicated in people with the disease by
disease’s name. (D) eDoctor page. Provide recommended drugs for patients with underlying diseases.
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Web Interface
Figure 6 represents the web interface of DDIT. Three core
functions are implemented in DDIT:

– Drug/Disease: The page allows users to search for either (i)
predicted Is, SEs, and CIs by inputting a drug name or (ii)
predicted related that can cure, cause the disease, or as
contraindicated in people with the disease, by giving the
disease name.

– Submit and Predict: The page executes real-time phenotype
prediction of DDAs based on drug profiles, including drug
Is, SEs, and Cis, as submitted by users.

– eDoctor: This page provides recommended drugs for patients
with underlying diseases.

Data Collection
The exact data for the RBM is a 3D array (2141*780*3) named A
in .npy format in Numpy (provided in Supp. Data S1 file). The
0th dimension represents drugs, A[i,,] means the i-th drug; the
1th dimension represents diseases, A[,j,] means the j-th disease;
the 2th dimension represents the phenotypic types. A[i,j,k]
means the k-th type between drug i and disease j. For
example, A[i,j,0] denotes indication between drug i and
disease j, A[i,j,1] denotes side effect between drug i and
disease j, while A[i,j,2] denotes contraindication between
drug i and disease j. The index i and j is calculated by the
drug_id -1 and disease_id -1 respectively because the array in
numpy starts from index 0 rather than 1. The mapping between
drug id and drug name is provided in Supp. Data S2 file, while
the mapping between disease id and disease name is provided in
Supp. Data S3 file.

The ranked predictions of three types are provided in
supplementary files of Supp. Data S4, Supp. Data S5, Supp.
Data S6 respectively. The first column represents drug id, the
second column is disease id, the third column is the prediction
score, and the last column represents the status, status � 0 if the
association type is not included in our dataset, status � 1 if the
association type is known in our dataset.

DISCUSSION

DDIT is a user-friendly web server that facilitates researchers
to explore potential clinical phenotypes of DDAs. The main
contributions are as follows: (i) simultaneous prediction of
multiple phenotypes of DDAs based on the integration from
distinct datasets with respective clinical phenotypes; (ii)
prediction of real-time potential phenotypes of a drug of
interest, including Is, SEs, and CIs, by uploading drug
profiles; and (iii) preliminary drug screening for patients
with underlying diseases. One shortcoming is represented
in that our study observed that an RBM cannot make
predictions for a disease class without any known related
drugs (AUC, ∼0.549). That is because, in our model, we view
each visible unit as a disease, and the model then learns the
similarity of different diseases. As for a site that recommends
movies to watch would find it difficult to process a

recommendation for a movie that nobody has ever seen or
reviewed, it would be hard for this model to predict drugs for a
new disease class that had no prior drug associations. To
validate this, we further used drugs as visible units and built
RBM for each disease. We want to see if it can make good
prediction for leave-one-disease-class-out. As expected, the
AUC and AUPR is 0.822 and 0.803 for indication, 0.770 and
0.689 for side effect, and 0.876 and 0.795 for contraindication,
respectively. These results have further demonstrated that,
using drug as visible unit, RBM can capture the similarity of
different drugs and can make good prediction for leave-one-
disease-class-out. In the future, we will expand the number of
drugs, diseases, and their associations, and integrate this
knowledge into DDIT for further aiding drug repositioning.
We will also try to collect more data and use DDIT to
reposition drugs for COVID-19. We believe that our work
will provide an additional layer, providing positive
contributions towards drug repositioning.
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