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Using real-world data and past vaccination data, we conducted a large-scale experiment
to quantify bias, precision and timeliness of different study designs to estimate historical
background (expected) compared to post-vaccination (observed) rates of safety events for
several vaccines. We used negative (not causally related) and positive control outcomes.
The latter were synthetically generated true safety signals with incident rate ratios ranging
from 1.5 to 4. Observed vs. expected analysis using within-database historical
background rates is a sensitive but unspecific method for the identification of potential
vaccine safety signals. Despite good discrimination, most analyses showed a tendency to
overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the
large databases included in our study. Efforts to improve the comparability of background
and post-vaccine rates, including age-sex adjustment and anchoring background rates
around a visit, reduced type 1 error and improved precision but residual systematic error
persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but
came at the cost of increasing type 2 error.
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FIRST PAGE
Standfirst

Using real-world data and past vaccination data, we conducted a
large-scale experiment to quantify bias, precision and timeliness
of different study designs to estimate historical background
(expected) compared to post-vaccination (observed) rates of
safety events for several vaccines. We used negative (not
causally related) and positive control outcomes. The latter
were synthetically generated true safety signals with incident
rate ratios ranging from 1.5 to 4.

Observed vs. expected analysis using within-database
historical background rates is a sensitive but unspecific
method for the identification of potential vaccine safety
signals. Despite good discrimination, most analyses showed a
tendency to overestimate risks, with 20-100% type 1 error, but
low (0-20%) type 2 error in the large databases included in our
study. Efforts to improve the comparability of background and
post-vaccine rates, including age-sex adjustment and anchoring
background rates around a visit, reduced type 1 error and
improved precision but residual systematic error persisted.
Additionally, empirical calibration dramatically reduced type 1
to nominal but came at the cost of increasing type 2 error.

Key Messages

¢ Within-database background rate comparison is a sensitive
but unspecific method to identify vaccine safety signals. The
method is positively biased, with low ( <20%) type 2 error,
and 20-100% of negative control outcomes were incorrectly
identified as safety signals due to type 1 error.

e Age-sex adjustment and anchoring background rate
estimates around a healthcare visit are useful strategies to
reduce false positives, with little impact on type 2 error.

e Sufficient sensitivity was reached for the identification of
safety signals by month 1-2 for vaccines with quick uptake
(e.g., seasonal influenza), but much later (up to month 9) for
vaccines with slower uptake (e.g., varicella-zoster or
papillomavirus).

e Empirical calibration using negative control outcomes
reduces type 1 error to nominal at the cost of increasing
type 2 error.

INTRODUCTION

As regulators across the world evaluate the first signals of post-
marketing safety potentially associated with coronavirus disease
2019 (COVID-19) vaccines, they rely on the use of historical
comparisons with so-called “background rates” for the events of
interest to identify outcomes appearing more often than expected
following vaccination. However, a literature gap remains on the
reliability of these methods, their associated error(s), and the impact
of potential strategies to mitigate them. We therefore aimed to study
the bias, precision, and timeliness associated with the use of historical
comparisons between post-vaccine and background rates for the
identification of safety signals. We tested strategies for background
rate estimation (unadjusted, age-sex adjusted, and anchored around

Historical Comparisons for Vaccine Safety

a healthcare visit), and studied the impact of empirical calibration on

type 1 and type 2 error.

MANUSCRIPT TEXT
Background

One of the most common study designs in vaccine safety surveillance
is the use of a cohort study with a historical comparison as a
benchmark. This design allows the observed incidence of adverse
events of the studied vaccine following immunization (AEFI) to be
compared with the expected incidence of AEFI projected based on
historical data (Belongia et al, 2010). Alleged strengths include
greater statistical power to detect rare AEFIs, as well as improved
timeliness in detecting potential safety signals by leveraging
retrospective data for analysis. There are, however, also caveats
with this study design (Mesfin et al., 2019). Firstly, the historical
population must be similar to the vaccinated cohort to obtain
comparable estimates of baseline risk. Secondly, the design is
subject to various temporal confounders such as seasonality,
changing trends in the detection of AEFIs, and variation in
diagnostic or coding criteria over time. Thirdly, the design is
highly dependent on an accurate estimation of background
incidence rates of the AEFIs for comparison.

Historical rate comparison has been suggested for use in several
vaccine safety guidelines, including the European Network of
Centres of Pharmacoepidemiology and Pharmacovigilance
(ENCePP), Council for International Organizations of Medical
Sciences (CIOMS), and Good Pharmacovigilance Practices
(GVP). It has also been applied extensively in various clinical
domains, including the Center for Disease Control and
Prevention (CDC)’s Vaccine Safety Datalink (VSD) project,
which used background rates to detect safety signals for the
human papillomavirus vaccine (HPV) (Gee et al, 2011), adult
tetanus-diphtheria-acellular pertussis (Tdap) vaccine (Yih et al,
2009), and a broad range of paediatric vaccines (Lieu et al., 2007;
Yih et al., 2011). Historical data were used in Australia to detect
signals for the rotavirus vaccine (Buttery et al., 2011), and in Europe
to detect signals for the influenza A HIN1 vaccine (Black et al., 2009;
Wijnans et al., 2013; Barker and Snape, 2014). While this study
design is widely implemented, there is high variability in the specifics
of methods used to calculate historical rates, including selection of
target populations, time-at-risk windows, observation time and
study settings.

Uncertainties and Limitations With the use
of Historical Rate Comparisons for Vaccine
Safety Monitoring

Several studies have acknowledged uncertainties associated with the
use of background rates relating to temporal and geographical
variations. In one study that applied both historical comparisons
and self-controlled methods, a signal of seizure in the 2014-2015 flu
season was detected in the latter analysis but not the former. The
authors explained that one possible reason was that the historical
rates used might not reflect the expected baseline rate in the absence
of vaccination. A second explanation was a falsely elevated
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background rate because of the inclusion of events induced by a
previous vaccine season. Other studies have highlighted the
importance of accounting for demographic, secular and seasonal
trends to appropriately interpret historical rates (Buttery et al., 2011;
Yih et al,, 2011). Nevertheless, the influence of such trends has not
been studied systematically despite observed heterogeneity in
historical incidence rates (Yih et al., 2011).

It is also essential to consider the data source since there are
differences in case ascertainment. This might lead to uncertainty
in background rate estimates, especially in rare events (Mahaux
etal,, 2016). In addition, there might also be differences in the use
of dictionary or codes to define an AEFI. For example, the
spontaneous reporting system generally uses the Medical
Dictionary for Regulatory Activities (MedDRA), while in
observational databases different codes are wused (e.g.,
International Classification of Diseases (ICD), SNOMED-CT,
READ) and the granularity of available coding can impact the
sensitivity and specificity of phenotype algorithms.

There have been suggestions on how to mitigate some of the
differences between the historical and observed populations,
including stratifying by age, gender, geographical or calendar
time (Gee et al., 2011; Yih et al., 2011). While these approaches
may reduce some differences, the distribution of the observed
population is rarely known unless the study uses the spontaneous
case’s demographic characteristics (of which the cases may be
identified through the adverse event spontaneous system) as a
proxy of the demographic characteristics of the observed
population. This could potentially lead to a bias due to the
estimation misclassification in each stratum based on the
reporting rate (i.e., high vs. low reporting rates).

Large databases that link medical outcomes with vaccine
exposure data provide a means of assessing signals identified,
as well as estimates of a true incidence of clinical events after
vaccination. However, these systems can be affected by relatively
small denominators (given the rarity of the event) of vaccinated
subjects, and a time lag in the availability of data. Very rare events
or outcomes affecting a subset of the population might still be
under-powered to assess a safety concern even when the data
reflect the experience of millions of individuals (Black et al,
2009). Heterogeneity in background rates across databases and
age-sex strata may also persist even after robust data
harmonization using common data models (Li et al., 2021).

We therefore aimed to study the bias, precision, and timeliness
associated with the use of historical comparisons between post-
vaccine and background rates for the identification of safety
signals. We evaluated strategies for estimating background
rates and the effect of empirical calibration on type 1 and type
2 error using real-world outcomes presumed to be unrelated to
vaccines (negative control outcomes) as well as imputed positive
controls (outcomes simulated to be caused by the vaccines).

METHODS

Data Sources and Data Access Approval
We aimed to fill a gap in the existing literature by estimating the
bias, precision and timeliness associated with the use of historical/

Historical Comparisons for Vaccine Safety

background compared to post-vaccination rates of safety events
using “real world” (electronic health records and administrative
health claims) databases from the US. Our study protocol is
available in the EU PAS Register (EUPAS40259) (European
Network of Centres of Pharmacoepidemiology and
Pharmacovigilance, 2021), and all our analytical code is in
GitHub  (https://github.com/ohdsi-studies/Eumaeus).  These
data were previously mapped to the OMOP common data
model (OHDSI, 2019). The list of included data sources, with
a brief description, is available in - Supplementary Appendix
Table S1.

The use of Optum and IBM Marketscan databases was
reviewed by the New England Institution Review Board (IRB)
and was determined to be exempt from broad IRB approval, as
this research project did not involve human subjects research.

Exposures

We used retrospective data to study the following vaccines within
the corresponding study periods: 1) HIN1 vaccination (Sept 2009
to May 2010), 2) different types of seasonal flu vaccination (Sept
2017 to May 2018), 3) varicella-zoster vaccination (Jan 2018 to
Dec 2018), and 4) HPV 9-valent recombinant vaccine (Jan 2018
to Dec 2018). Vaccines were captured as drug exposure in the
common data mode. Specific CVX codes and RxNorm codes,
follow-up periods, and cohort construction details are available in
- Supplementary Appendix Table S2. Post-vaccination rates
were obtained for the period of 1-9 months for HIN1 and
seasonal flu, and 1 to 12 for varicella-zoster and HPV
vaccines. Background (historical) rates were obtained from the
general population, for the same range of months 1 year
preceding each of these vaccines (Unadjusted). To minimise
confounding, three additional variations of background rates
were estimated: 1) age-sex adjusted rates; 2) visit-anchored
rates; and 3) visit and age-sex adjusted rates. In the first,
background rates were stratified by age (10-years bands) and
sex. In the second option, background rates were estimated using
the time-at-risk following a random outpatient visit (visit-
anchored). The third combined the two above to account for
differences in socio-demographics and for the impact of
anchoring (similar to anchoring post-vaccination in the
exposed group).

Outcomes

We employed negative control outcomes as a benchmark to
estimate bias (Schuemie et al., 2016; Schuemie et al., 2020).
Negative controls are outcomes with no plausible causal
association with any of the vaccines. As such, negative control
outcomes should not be identified as a signal by a safety
surveillance method, and any departure from a null effect is
therefore suggestive of bias due to type 1 error. A list of negative
control outcomes was pre-specified for all four vaccine groups. To
identify negative control outcomes that match the severity and
prevalence of suspected vaccine adverse effects, a candidate list of
negative controls was generated based on similarity of prevalence
and percent of diagnoses that were recorded in an inpatient
setting (as a proxy for severity). Three clinical experts manually
reviewed the list, which led to a final list of 93 negative control
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outcomes to be included. Details of the selection process,
including the candidate outcomes, reasons for exclusion, and
the final negative control outcomes list are available in -
Supplementary Appendix Table S3.

In addition, synthetic positive control outcomes were
generated to measure type 2 error (OHDSI, 2019). Given the
limited knowledge of such events and the lack of consistency in
the true causal association amongst other problems [6], we
computed synthetic positive controls with known (albeit in
silico) causal associations with the vaccines under study [5,7].
Positive outcomes were generated by modifying negative control
outcomes through injection of additional simulated occurrences
of the outcome, with effect sizes equivalent to true incidence rate
ratios (IRR) of 1.5, 2, and 4. With the 3 mentioned true IRR, 93
negative controls were used to construct at most 93 x 3 = 279
positive control outcomes, although no positive controls were
synthesized if for the negative control the number of outcomes
was smaller than 25. The hazard for these outcomes was
simulated to be increased for the period 1day after
vaccination until 28 days after vaccination, with a constant
hazard ratio during that time.

Performance Metrics

The estimated effect size for the association vaccine-outcome was
based on IRR by dividing the observed (post-vaccine) over
expected (historical) incidence rates. To account for systematic
error, we employ empirical calibration: we firstly compute the
distribution of systematic error using the estimates for the
negative and positive control outcomes. We then use the
distributions and their standard deviations to adjust effect-size
estimates, confidence intervals, p-values, and log likelihood ratios
(LLRs) to restore type 1 error to nominal. We used a leave-one-
out strategy for this evaluation, calibrating the estimate for a
control outcome using the systematic error distribution fitted on
all control outcomes except the one being calibrated. IRR were
computed both with and without empirical calibration (Schuemie
et al., 2016; Schuemie et al., 2018).

Bias was measured using: 1) Type 1 error, based on the
proportion of negative control outcomes identified as safety
signals according to p-value < 0.05; 2) Type 2 error, based on
how often positive control outcomes were missed (not identified)
as safety signals (p > 0.05); 3) Area Under the receiver-operator
Curve (AUC) for the discrimination of effect size estimate
between positive and negative controls; and 4) Coverage,
defined by how often the true IRR was within the 95%
confidence interval of the estimated IRR.

Precision was measured using mean precision and mean
squared error (MSE). Geometric mean precision was
computed as 1 / (standard error)2, with higher precision
equivalent to narrower confidence intervals. MSE was obtained
from the log of estimated IRRs and the log of the true HR.

To understand the time it took the analysis method to identify
a safety signal (aka timeliness), the follow-up (up to 12 months)
occurring after each vaccine was divided into calendar months.
For each month, the analyses were executed using the data
accumulated until the end of that month, and bias and
precision metrics were estimated.

Historical Comparisons for Vaccine Safety

Finally, we studied the proportion of controls for which IRR
were not estimable due to lack of participants exposed to the
vaccine of interest. We also considered as not estimable (and
therefore did not report) results for negative control outcomes
with a population-based incidence rate changing >50% over time
during the study period.

For all the estimated metrics, we reported the results for each
database — vaccine group - method group.

FINDINGS

Bias and Precision

A total of four large databases were included, most including all
four vaccines of interest: IBM MarketScan Commercial Claims
and Encounters (CCAE), IBM MarketScan Multi-state Medicaid
(MDCD), IBM MarketScan Medicare Supplemental Beneficiaries
(MDCR), and Optum®© de-identified Electronic Health Record
dataset (Optum EHR). The basic socio-demographics of
participants registered in each of these databases are reported
in Supplementary Appenix S1. All data sources had a majority of
women, from 51.1% in CCAE to 56.23% in MDCD. As expected,
data sources with older populations (e.g., IBM MDCR) had little
exposure to HPV vaccination, but high numbers of participants
exposed to seasonal influenza vaccination. All four data sources
contributed information based on healthcare encounters in
emergency rooms, outpatient as well as inpatient settings.

Historical rate comparisons were —even in their simplest
form— associated with low type 2 error (0-10%), but led to
type 1 errors ranging between 30% (HPV in MDCD) and 100%
(HIN1 and seasonal flu in Optum EHR). Adjustment for age and
sex reduced type 1 error in some but not all scenarios, and had
limited impact on type 2 error (maximum 20% in all the
conducted analyses). However, age and sex adjusted
comparisons were still prone to type 1 error, with most (12/
13) analyses still incorrectly identifying >40% negative controls as
potential safety signals. Anchoring the estimation of background
rates around a healthcare visit helped reduce type 1 error in some
scenarios (e.g., HIN1 in Optum EHR went from 100 to 50%), but
increased it in others (e.g., HIN1 in CCAE increased from 50% in
the unadjusted to 80% in the anchored analysis). In addition,
anchoring increased type 2 error in most of our analyses,
although none exceeded 20% in any of the analyses. Finally,
the analyses combining anchoring and age-sex adjustment led to
observable reductions in type 1 error (e.g., from 70 to 30% for
HPV in CCAE), with negligible increases in type 2 error in most
instances (e.g., from 10 to 20% for HPV in MDCD). Detailed
results for unadjusted, age-sex adjusted, and anchoring scenarios
are demonstrated in Figure 1.

Historical rates comparison had overall good discrimination
to distinguish true safety signals (i.e., positive control outcomes),
with AUCs of 80% or over in all the analyses and databases. Age-
sex adjustment and anchoring had little impact on this.
Conversely, coverage was low, with many analyses failing to
accurately measure and include the true effect of our negative
and positive control outcomes (Supplementary Appendix S2).
Coverage in unadjusted analyses ranged from 0 (HINI vaccines
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FIGURE 1 | Type 1 and Type 2 error in unadjusted, age-sex adjusted, and anchored background rate analyses CCAE: IBM MarketScan Commercial Claims and
Encounters; MDCR: IBM Health MarketScan Medicare Supplemental; MDCD: IBM Health MarketScan Multi-state Medicaid; Optum EHR: Optum®© de-identified
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FIGURE 2 | Type 1 and type 2 error before vs after empirical calibration *CCAE: IBM MarketScan Commercial Claims and Encounters; MDCR: IBM Health
MarketScan Medicare Supplemental; MDCD: IBM Health MarketScan Multi-state Medicaid; Optum EHR: Optum®© de-identified Electronic Health Record Dataset.

in Optum EHR) to 0.51 (seasonal influenza vaccine in MDCR).
Age-sex adjustment and anchoring had overall a positive effect on
coverage, with little or no effect on discrimination
(Supplementary Appendix S2). Precision, as measured by

mean precision and MSE, varied by database and vaccine

exposure as

reported in Supplementary Appendix S2.

Adjustment for age and sex and anchoring improved precision
in most scenarios.
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The Effect of Empirical Calibration

Empirical calibration reduced type 1 error substantially, but
increased type 2 error in all the tested scenarios (see
Figure 2). In addition to this, calibration improved coverage
without impacting AUC, and decreased precision in most
scenarios (Supplementary Appendix S3).

Timeliness

Most observed associations were unstable in the first few months
of study, and stabilised around the true effect size in the first
2-3 months after campaign initiation for vaccines with rapid
uptake like HINI1 or seasonal influenza. This stability was,
however, not seen until much later, and sometimes not seen at
all in the 12-months study period for vaccines with slower uptake
like HPV or varicella-zoster. This is depicted in Figure 3 using
data from CCAE as an illustrative example, and for all other
databases in Supplementary Figures S1-S3.

DISCUSSION
Key Results

Our study found that unadjusted background rates comparison had
low type 2 error of <10% in all analyses but unacceptably high type 1
error, up to 100% in some scenarios. The method is positively biased

and uncalibrated estimates and p-values cannot be interpreted as
intended; while it may be encouraging that most positive effects can
be identified at a decision threshold of p < 0.05, this threshold will also
yield a substantial proportion of false positive findings. Age-sex
adjustment and anchoring background rate estimation around a
healthcare visit were useful strategies to reduce type 1 error to around
50%, while maintaining sensitivity. Empirical calibration led to
restoration of type 1 error to nominal but correction for positive
bias necessitates increasing type 2 error. In terms of timeliness,
background rate comparisons were sensitive methods for the early
identification of potential safety signals. However, most associations
were exaggerated and unstable in the first few months of vaccination
campaign. Vaccines with higher uptake, such as HIN1 or seasonal
flu, were associated with earlier identification of safety outcomes after
launch in the analyses of vaccines with rapid uptake like HINI or
seasonal influenza.

Previous studies have shown that background incidence rates of
AESI vary between age and sex (Black et al.,, 2009). For example, the
incidence of Bell’s palsy in adults aged over 65 years is 4 times that in
paediatric population in the United Kingdom; whereas the risk of
optic neuritis is higher in females than males with the same age group
in Sweden. Therefore, it is crucial that age and sex are adjusted for
when using background incidence rates for comparison. Nonetheless,
Lietal. (Lietal, 2021) found considerable heterogeneity in incidence
rates of AESI within age-sex stratified subgroups. This suggests that

Frontiers in Pharmacology | www.frontiersin.org

November 2021 | Volume 12 | Article 773875


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Lietal

residual patient-level differences in characteristics such as
comorbidities and medication use remained. Background rates
comparison assumes that the background incidence in the overall
population is similar to the vaccinated population. This assumption
may not be valid because of confounding by indication, where the
vaccinated population has more chronic conditions than the
unvaccinated population. Conversely, the healthy vaccinee effect
could occur, where on average healthier patients are more likely
to adhere to annual influenza vaccination (Remschmidt et al., 2015).

Research in Context

Post-marketing surveillance is required to ensure the safety of
vaccines, so that the public do not avoid getting life-saving
vaccinations because of concerns that vaccine risks are not
monitored, and that any potential risks do not outweigh the
vaccine’s benefits. The goal of these surveillance systems is to
detect safety signals in a timely manner without raising excessive
false alarms. There is an implicit trade-off between sensitivity (type 2
error) and specificity (type 1 error). Claims extending from a false
positive result that is suggestive of an adverse event of a vaccine,
fueled by sensationalism and unbalanced reporting in the media,
could have devastating consequences on public health. A classic
example of harm is the link between the MMR vaccine and autism.
Although the fraudulent report by Wakefield has been retracted and
many subsequent studies found no association, its lasting effects can
be seen in falling MMR vaccination rates below the recommend levels
from the World Health Organization (Godlee et al., 2011). Expert
consensus alleged that this was a contributing factor in measles being
declared endemic in the United Kingdom in 2008 (Jolley and
Douglas, 2014) and sporadic outbreaks in the United States in
recent years (Benecke and DeYoung, 2019). On the other hand,
missing safety signals could put patients at risk as well as dampen
public confidence in vaccination. Transparency is needed when
communicating vaccination results to the public. However, it is a
tricky balance to put both the benefits and harms of vaccination in
context. The urgency to act quickly on the basis of incomplete real-
world data could lead to confusion about vaccination safety. Negative
perceptions about vaccination can be deeply entrenched and difficult
to address. A starting point could be to include relevant background
rates to provide comparison to other scenarios. As reported in our
study, age and sex-adjusted rates are crucial to minimise false positive
safety signals. Another form of communication could be using
infographics to weigh harms versus benefits, illustrating the
differential risks in various age groups as was shown by
researchers from the University of Cambridge who contrasted the
prevention of ICU admissions due to COVID-19 against the risk of
blood clots due to the vaccine in specific age groups (Winton Centre
for Risk and Evidence Communication, 2021).

Strengths and Limitations

The strength of this study lies in the implementation of a
harmonised protocol across multiple databases, which allows
us to compare the findings across different healthcare systems.
The use of a common data model allows the experiment to be
replicated in future databases while maintaining patient privacy
as patient-level data will not be shared outside of each institution.
Use of real negative and synthetic positive control outcomes

Historical Comparisons for Vaccine Safety

provides an independent estimate of residual bias in the study
design and data source. The fully specified study protocol was
published before analysis began and dissemination of the results
did not depend on estimated effects, thus avoiding publication
bias. All codes used to define the cohort, exposures, and outcomes
as well as analytical code are made open source to enhance
transparency and reproducibility.

In our analysis, while using negative control outcomes can
reflect the real confounding and measurement error, the
approach of simulating positive control outcomes relied on
assumptions about systematic error. It is assumed that the
systematic error does not change when the true effect size is
greater than 1, rather than as a function of the true effect size.
Furthermore, positive control synthesis assumes the positive
predictive value and sensitivity of the outcomes is the same
for background outcome events and the outcome events
simulated to be caused by the vaccine, which may not be true
in the real world (Schuemie et al., 2020).

For the Optum EHR data, we may miss the care episodes when
patients seeking care outside the respective health system, this will
cause bias towards the null. All these limitations needed to be
considered while interpreting our results.

Future Research and Recommendations
When using background rate comparison for post-vaccine safety
surveillance, age-sex adjustment in combination with anchoring
time-at-risk around an outpatient visit resulted in somewhat
reduced type 1 error, without much impact on type 2 error.
Residual bias, nonetheless, remained using this design, with very
high levels of type 1 error observed in most analyses. Calibration
is useful for reducing Type 1 error but at the expense of
decreasing precision and consequently increasing type II error.
Future studies using cohort and SCCS self-controlled cased series
methods with empirical calibration will be evaluated.
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