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Tanshinone IIA (Tan IIA) is an important characteristic component and active ingredient in
Salvia miltiorrhiza, and its various aspects of research are constantly being updated to
explore its potential application. In this paper, we review the recent progress on
pharmacological activities and the therapeutic mechanisms of Tan IIA according to
literature during the years 2015–2021. Tan IIA shows multiple pharmacological effects,
including anticarcinogenic, cardiovascular, nervous, respiratory, urinary, digestive, and
motor systems activities. Tan IIAmodulates multi-targets referring to Nrf2, AMPK, GSK-3β,
EGFR, CD36, HO-1, NOX4, Beclin-1, TLR4, TNF-α, STAT3, Caspase-3, and bcl-2
proteins and multi-pathways including NF-κB, SIRT1/PGC1α, MAPK, SREBP-2/Pcsk9,
Wnt, PI3K/Akt/mTOR pathways, TGF-β/Smad and Hippo/YAP pathways, etc., which
directly or indirectly influence disease course. Further, with the reported targets, the
potential effects and possible mechanisms of Tan IIA against diseases were predicted by
bioinformatic analysis. This paper provides new insights into the therapeutic effects and
mechanisms of Tan IIA against diseases.

Keywords: tanshinone IIA, molecular mechanism, pharmacological effects, pharmacokinetics, bioinformatic
analysis

INTRODUCTION

S. miltiorrhiza has been used for thousands of years as a traditional Chinese medicine in Asia.
Modern science also has a considerable attention on the study of the various components of S.
miltiorrhiza. Tanshinone IIA (Tan IIA) is the main fat-soluble component of the dried root of S.
miltiorrhiza, which is widely used clinically. Sodium Tan IIA sulfonate, a water-soluble derivative of
Tan IIA, has been approved by China State Food and Drug Administration (CFDA) for the treatment
of cardiovascular diseases. Moreover, studies on the pharmacodynamics and pharmacological
mechanism of Tan IIA are ongoing. Recent reviews introduced the role of Tan IIA in various
diseases. Fang et al. (2020) mainly introduce the effect of Tan IIA in anti-cancer, Shi et al. (2019)
described the effects of Tan IIA in the treatment of liver disease, Guo et al. (2020) summarized the
anti-inflammatory and anti-oxidant, anticoagulant, antithrombotic and neuroprotective roles, and
related effect mechanisms against cardiovascular disorders (i.e., atherosclerosis, hypertension)
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alzheimer’s disease and carcinoma progression. A recent review
(Ansari et al., 2021) also summarized the effects of Tan IIA in
treatment of cardiovascular diseases, cerebrovascular diseases,
cancer, diabetes, obesity and neurogenic diseases with a special
convergence on nano-based drug delivery formulations. These
suggests that Tan IIA is a multi-target and multi-pathway active
ingredient, which could have promise potentials in clinical usage.
However, up to now, an integrative and systematic pharmacology
analysis for Tan IIA’s multi-target and multi-pathway is still
lacked, which is undoubtedly unfavorable for understanding the
comprehensive therapeutic effects and mechanisms of Tan IIA
against diseases.

In this paper, we retrospect the recent progress mainly during
2015–2021 on the investigation of Tan IIA’s pharmacokinetics,
pharmacological activities and mechanisms towards cancers and
cardiovascular, nervous, respiratory, urinary, digestive and motor
systems diseases. Further, based on the reported effect targets and
pathways, an integrative and systematic prediction on the
possible mechanisms of Tan IIA against diseases was
performed through Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway and disease ontology semantic and
enrichment (DOSE) analyses. This paper provides
comprehensive insights into the therapeutic effects and
mechanisms of Tan IIA against diseases, which will
undoubtedly promote the development and usage of Tan IIA
and the S. miltiorrhiza products in the clinic.

BASIC PROPERTIES

miltiorrhiza is the dry root and rhizome of Salvia miltiorrhiza Bge.
The traditional usage of Salviamiltiorrhiza includemaking decoction,
tablet, powder, compatibility with other traditional Chinesemedicine,
etc. The main active components of S. miltiorrhiza can be divided
into two parts, water-soluble salvianolic acids and lipid soluble
tanshinones. The lipid soluble components mainly include
tanshinone I, Tan IIA, dihydrotanshinone I, cryptotanshinone, etc.
The water-soluble components include Danshensu, salvianolic acid
B, protocatechualdehyde, etc. The major active components of S.
miltiorrhiza have cardiovascular protective effects and may have
synergistic effects with each other (Li ZM. et al., 2018), among
which Tan IIA has been widely reported due to its powerful
pharmacological activity in the treatment of cardiovascular
diseases (Gao et al., 2012; Fang et al., 2018c). Tan IIA (Molecular
Formula：C19H18O3,MW：294.3), is a diterpenoid quinone from S.
miltiorrhiza with red needle crystal. The reported gastrointestinal
absorption properties (the in vitro bidirectional permeability in Caco-
2 cell monolayers from literature) and the predicted physiochemical
properties, including Papp(basolateral→apical) (0.98 × 10−6 cm/s),
Papp(apical→basolateral) (11.81 × 10−6 cm/s), solubility in water
(0.0104mg/ml) and octanol–water partition coefficient (cLogP,
4.16), hint its poor oral bioavailability (Yao et al., 2018).

Potential Toxicity
The cell viability of H9c2 cells treated with Tan IIA at 0–10 µM
for 24 h (Gu et al., 2016) and the apoptosis rate of cells treated
with Tan IIA at 50 µM for 2 h in myocardial microvascular

endothelial cells (Cui et al., 2016) were not significantly
different from those in the normal control group. The in vitro
potential toxicity was also evaluated by the zebrafish embryo
model and found no teratogenic effects when the concentration of
Tan IIA was below 5 µM in both the chorionic and dechorionated
embryo groups. At high concentration, it exhibited severe growth
inhibition, developmental deformity and cardiac toxicity (Wang
T. et al., 2017). The practical preparation of Tan IIA is sodium
tanshinone IIA sulfonate (STS). There have been many clinical
trials. In a clinical trial of the potential cardioprotective effect of
STS in patients with non-ST elevation acute coronary syndrome,
192 patients were given STS and 180 were given saline, and the
results showed that 30-days major adverse cardiac events
occurred in 18.8% of the STS group and 27.2% of the control
group, and the incidence of bleeding was similar between patients
receiving STS and control group. The STAMP trial indicated that
STS decreasing the amount of myocardial injury in patients
without any detrimental side effects (Mao et al., 2021).

Tissue Distribution and Herb-Drug
Interactions
Tan IIA is mainly administered orally and intravenously in
previous reports. After oral administration, the distribution of
Tan IIA in rat tissues was determined by liquid chromatography
tandem mass spectrometry (LC/MS/MS). Its tissue
concentrations decreased in the order of stomach > small
intestine > lung > liver > fat > muscle > kidneys > spleen >
heart > plasma > brain > testes. It had a wide tissue distribution
but the oral bioavailability was extremely low (Bi et al., 2007).
Improving the type of preparation, such as the use of lipid
nanocapsules (Ashour et al., 2020) or interactions among
different active components of S. miltiorrhiza and herb-drug
interactions can increase the bioavailability and plasma
concentrations of Tan IIA obviously. For example, compared
with oral administration of pure Tan IIA, the AUC0-∞ of Tan IIA
was significantly higher in the prostate, liver, and heart of rats
receiving Salvia miltiorrhiza extract (Wang D. et al., 2020).
Therefore, other ingredients in Salvia miltiorrhiza extract may
promote the distribution of Tan IIA. After intravenous injection
of Xiangdan injection to rats, Jiangxiang can inhibit the
metabolism and excretion of diterpenoid quinones then
improve the bioavailability of Tan IIA (Shi B. et al., 2020). In
addition, other traditional Chinese medicines such as Panax
Notoginseng saponins extracts and borneol combined with
Salvia miltiorrhiza enhance Tan IIA and salvianolic acid B
transport to the brain, shortened tmax of Tan IIA in plasma
and brain. (Zhang et al., 2021).

Metabolism
The main metabolic pathway of Tan IIA is hydroxylation, which
is responsible for CYP2A6 in liver microsomes (Liu et al., 2009),
Studies have shown that Tan IIA exhibited different modes of
inhibitory effects on the metabolism of model probe substrates,
referring to CYP2C8, CYP1A2, CYP2C9 (Wang et al., 2010; Xu
MJ. et al., 2018). And Tan IIA can activate human PXR and
consequently induce the expression of the CYP3A4 gene.
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Therefore, it should be cautious to taking drugs metabolized by
CYP3A4 when using S. miltiorrhiza products (Yu et al., 2009).
And the major phase II metabolism pathway of Tan IIA is
glucuronidation and the metabolites are excreted via bile (Sun
et al., 2007). Wei et al. described that zebrafish could successfully
imitate regular phase Imetabolism. In combinationwith usingHPLC/
IT-MSn analysis, they found two monohydroxy Tan IIA (MW 310)
and one dihydroxy Tan IIA (MW 326), suggesting that Tan IIA
underwent a metabolic transformation in a zebrafish model, which
was extensively similar to that in rats (Wei et al., 2012). In addition,
some novel metabolites of Tan IIA were putatively identified by
UHPLC-Q-Exactive Orbitrap mass spectrometry, such as
methylation, dehydration, decarbonylation,reduction reaction,
glucuronidation, and glycine linking products (Liang et al., 2019).

ANTI-CANCER

Despite medical advances in surgical technology, radiation,
chemotherapy and gene targeted therapy, the development of
monomeric components from traditional Chinese medicines has

always been the focus of cancer treatment research. Tan IIA has a
cytotoxic effect on cancer cells, inhibits cancer cell proliferation
and activates cancer cell apoptosis by promoting autophagic and
inducing cell cycle arrest, and restrains cancer invasion,
migration and metastasis (Zhang et al., 2019b). The
summarized mechanism of Tan IIA against cancers is shown
in Figure 1 and Table 1.

Cell Proliferation
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways are the
twomost common abnormally regulated kinase cascade signaling
pathways in tumor progression. Both pathways represent
important signal transduction mechanisms that promote the
proliferation and survival of cancers driven by growth factor
receptors such as factor 1 receptor (IGF1R), vascular endothelial
growth factor receptor (VEGFR) and epidermal growth factor
receptor (EGFR) or human epidermal growth factor receptor 2
(Her2) (Su, 2018a). Tan IIA induces cell apoptosis by decreasing
the expression of EGFR, IGF1R, Her2 and VEGFR in a time and
dose-dependent manner and by double blocking the Ras/Raf/
MEK/ERK and PI3K/AKT/mTOR pathway in vitro and in vivo

FIGURE 1 | The mainly affected targets and pathways by Tan IIA against cancer. Tan IIA can inhibit cancer cell proliferation and metastasis, induce cell cycle arrest
and autophagy, as well as induced ER stress and block energy supply, etc. The orange red symbols (↓), ┤ and p represent down-regulation, inhibition and
phosphorylation of proteins respectively, and green line-arrow “→” means singal transduction.
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(Su and Chiu, 2016; Su, 2018b). Furthermore, studies have
confirmed that Tan IIA can be used as an EGFR inhibitor to
reduce the level of myeloid cell leukemia 1 (Mcl-1) protein by
ubiquitin, and target EGFR-Akt-Mcl1 axis to inhibit non-small

cell lung cancer (NSCLC) (Gao et al., 2020). By down-regulating
VEGFR2/Akt pathway, Tan IIA can improve the sensitivity of
drug-resistant NSCLC cells to Gefitini (Wang R. et al., 2019).
Molecular docking showed that the mechanism of action of Tan

TABLE 1 | Summary of the anticancer effects and mechanisms of Tan IIA.

Cancers Animal/Cell Mechanism Effects References

Cervical cancer SiHa, HeLa and C33a cells mice ↓Akt/mTOR ,HIF-1α ↓cancer cell viability and
induced apoptosis

Liu et al. (2019b)

Gastric carcinoma AGS cells ↓VEGFR and HER2 ↑cancer cells apoptosis Su, (2018b)
↑ PARP and caspase-3

Pancreatic cancer MiaPaCa-2 cells ↓ EGFR, IGFR and VEGFR, Ras/Raf/MEK/
ERK and PI3K/AKT/mTOR pathways

↑cancer cell apoptosis Su, (2018a)

Gastric cancer AGS cells ↓ EGFR, IGFR, PI3K, AKT and mTOR ↑cancer cell apoptosis Su and Chiu,
(2016)

Non-small cell lung
cancer

HCC827, H1975, and A549 cells ↓EGFR-Akt ↓tumor growth Gao et al. (2020)
HBE, NL20, MRC5 cells
Athymic nude mice

Ovarian cancer TOV-21G cells ↑miR-205 ↑apoptosis Li et al. (2018c)
↓survivin

Nasopharyngeal
carcinoma

Human nasopharyngeal carcinoma cells ↑ PARP, p53, cyclin B1/CDC2 and
caspase-3

↓proliferation and induces
apoptosis

Liu et al. (2019a)

Hepatocellular
carcinoma

HepG2 and Hep3B cells ↑p53, SHP2 ↑cell death Ren et al. (2017)
↓miR30b

Gastric cancer BGC-823 and NCI-H87 cells ↑ p53,ROS ↓cell proliferation Guan et al.
(2020)↓SLC7A11,GSH

Oral squamous cell
carcinoma

SCC-9 cells ↑ Beclin-1/Atg7/Atg12-Atg5 ↑cell death Qiu et al. (2018)
BALB/c-nu mice ↓PI3K/Akt/mTOR signaling

Glioma Glioma cells ↓p-PI3K and p-Akt ↓cell viability Ding et al. (2017)
↑LC3B and Beclin-1 ↑apoptosis, autophagy

Osteosarcoma 143B, MG63 cells A549 cells ↑ SESN2/AMPK-α ↑autophagy Yen et al. (2018)
Oral squamous cell
carcinoma

Human oral squamous cell carcinoma
SCC090

↑ Beclin-1, Atg5, LC3-II ↑sensitize SCC090 to
radiation

Ding et al. (2016)

Prostate cancer PC-3 cells ↑ Beclin-1, and LC3 II,cleaved caspase-3 ↑apoptosis and Autophag Li et al. (2016a)
Osteosarcoma MG-63 cells ↑ROS,caspase−3, −8 and −9, and cleaved-

PARP
↓cell proliferation Ma et al. (2016)

colorectal cancer HCT-116 cells ↓HIF-1α ↓angiogenesis Zhou et al. (2020)
Nasopharyngeal
carcinoma

HNE-1cell ↓ MMP-2 and MMP-9 ↓the migration and invasion Zhou et al. (2018)
↑p65 and p50

Cervical cancer Hela cells, C33 A, and healthy primary
normal cervical epithelial cells HcerEpic

↓ YAP transcriptional activity ↓CC stem cells formation,
migration and invasion

Qin et al. (2018)

Gastric cancer SGC-7901 cells ↓MMP-2, MMP-9 and FOXM1 ↓SGC-7901 cell proliferation
and migration

Yu et al. (2017)

Bladder Cancer BCa cell lines, 5,637, BFTC and T24 ↓STAT3-CCL2 Signaling ↓Epithelial-Mesenchymal
Transition

Huang et al.
(2017b)

Gastric cancer SNU-638, MKN1 and AGS cells nudemouse ↓STAT3, Bcl-2 ↓cancer cell proliferation Zhang et al.
(2018b)↑ Bax and cleaved caspase-3

Liver cancer liver cancer tissues ↓ Bcl2, p-SMAD2, p-SMAD3, and YAP ↓cell proliferation, migration,
and invasion

Ma et al. (2019)

HL-7702,Bel-7404 and SMMC-7721 cells
mice

↑SMAD7 ↑apoptosis

Esophageal carcinoma Eca-109 cells ↑CytC and caspase-9, CHOP ↓Cell viability Zhang et al.
(2017)↓BIP ↑apoptosis rate

Osteosarcoma NOD-SCID mice implanted with 143B cells ↓ Mfn1/2,Opa1 ↑apoptosis Huang et al.
(2017a)↑Drp1

Pancreatic cancer Immunodeficiency mice BxPC-3 cells ↑PERK, ATF6, caspase-12, IRE1α, eIF2α,
p-JNK, CHOP and caspase-3

↑ER stress and apoptosis Chiu and Su,
(2017)

↓Bcl-2
Colorectal cancer SW837 and SW480 cells ↑p-JNK, Mff ↑apoptotic Jieensinue et al.

(2018)
Osteosarcoma MG63 cells ↓ AMPK,Nrf2 ↓survival, migration, and

proliferation
Xie et al. (2020a)

Colorectal cancer SW837 and SW480 cells ↓AMPK/Skp2/Parkin pathway ↓protective mitophagy He and Gu,
(2018)↑mitochondrial apoptosis and

cancer cell death
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IIA as DNA intercalator and topoisomerase II inhibitor was
similar to that of its reference drug doxorubicin (Ghanem
et al., 2020). Therefore, Tan IIA also can enhance the
sensitivity of doxorubicin to drug-resistant gastric cancer cells
(Xu Z. et al., 2018). More evidence suggests that noncoding RNAs
such as miRNAs and lncRNAs play key roles in many biological
processes. Tan IIA may directly upregulates miR-205 and in turn
downregulate survivin, and eventually induce ovarian carcinoma
TOV-21G cells apoptosis (Li N. et al., 2018).

Cell Cycle Arrest
It has been proved that upregulation of p53 can lead to cell cycle arrest
and the expression of numerous apoptosis-associated genes (Liu B.
et al., 2019). Research shows that upstream of p53 is miR30b, and its
specific transcription factor is PTPN11. Tan IIA stimulating both
PTPN11 and its encoded protein SHP2 induces HepG2 cell death
and cell cycle arrest at G1/G0 checkpoints (Ren et al., 2017). p53
upregulation by Tan IIA also causes down-regulated SLC7A11, a target
gene of p53, increasing GSH consumption then lead to increased
intracellular ROS levels, which induce ferroptosis. P53 knockdown and
Ferrostatin-1, an inhibitor of lipid peroxidation, attenuated Tan IIA-
induced lipid peroxidation and ferroptosis in gastric cancer cells BGC-
823 xenograft model (Guan et al., 2020). Combined application of Tan
IIA and Andro can promote the crosstalk between ROS and p53, thus
promoting cell apoptosis (Li et al., 2020c).

Autophagy
Tan IIA promotes the autophagy process in a multipronged manner.
Tan IIA treatment can trigger the generation of autophagy in a
classical Beclin-1-dependent manner and upregulate the expressions
of autophagy-associated proteins LC3B and Beclin-1 (Ding et al.,
2017). Knockdown of the Beclin-1 blocked the effect of Tan IIA on
oral squamous cell carcinoma cell SCC-9 cells both in vivo and in vitro
(Qiu et al., 2018). Autophagy plays an important role in the
mechanism of damage repair when treated with a low dose of Tan
IIA for a shorter time.While treated with a high dose of Tan IIA for a
long time, autophagic cell death contributed to apoptosis (Ma et al.,
2016). Tan IIA induced the accumulation of intracellular ROS in
human prostate cancer PC-3 cells, which further induced apoptosis
and autophagy. The ROS scavenger N-acetyl-L-cysteine (NAC)
efficiently inhibited the expression of Beclin-1, LC3-II, and cleaved
caspase-3whichwere apoptosis and autophagy-associated proteins (Li
C. et al., 2016). Therefore, Tan IIA can improve the sensitivity of
radiotherapy due to enhanced ROS generation and autophagy (Ding
et al., 2016). In addition, Tan IIA-mediated autophagy occurred in a
sestrin 2 (SESN2)-dependent manner. SESN2 is DNA damage - and
oxidative stress-induced protein and can inhibit mammalian target of
rapamycin complex 1 by activating AMP-activated protein kinase
(AMPK), while accelerating autophagy (Faubert et al., 2013). The
HGK (MAP4K4 or mitogen activated protein kinase kinase)-SAPK/
JNK-Jun signal axis can be recruited to the SESN2 promoter to
activate SESN2/AMPK-α and induce Tan IIA -mediated autophagy
and osteosarcoma growth inhibition (Yen et al., 2018).

Metastasis
In the process of tumor metastasis, MMPs catalyze the
decomposition of the extracellular matrix (Yang et al., 2005),

thus enhancing the migration and invasive potential of cancer
cells. Tan IIA decreases the expression of MMP-2 and MMP-9
through down-regulation of the NF- kB pathway in vitro and in
vivo (Zhou et al., 2018), and improves the sensitivity of colon
cancer cells to 5-FU treatment (Bai et al., 2016). Furthermore.
Forkheadboxm 1 (FoxM1) binds to sequence-specific motifs on
DNA through its DNA-binding domain and activates
proliferation, migration and epithelial–mesenchymal transition
(EMT) -associated genes. Overexpression of FoxM1 increased
MMP-2 and MMP-9 expression, while knockdown of FoxM1 by
siRNA inhibited gastric cancer cell proliferation and migration to
the same extent as Tan IIA (Yu et al., 2017).

STAT3 is a transcription factor that modulates many genes
related to apoptosis and EMT. STAT3 signaling is an important
pathway which is frequently activated in many tumors (Sherry
et al., 2010; Moroishi et al., 2015). Tan IIA treatment was found to
inhibit STAT3 activation in bladder cancer cells and human
gastric cancer cells (Huang SY. et al., 2017; Zhang Y. et al.,
2018). This effect can inhibit the migration and invasion of
hepatocellular carcinoma cells when combined with sorafenib/
SC-1 (Chiu et al., 2018).

The hippo pathway is conservative signaling in mammals, and
consists of MST1/2 (mammalian Sterile 20-like kinase 1/2) and
LATS1/2 (large tumor suppressor 1/2) which could
phosphorylate and inactivate the downstream transcriptional
effector’s YAP/TAZ. The activation of the oncogene YAP or
TAZ of the Hippo pathway results in liver tumorigenesis
(Moroishi et al., 2015). Tan IIA can inhibit the transcriptional
activity of YAP, a transcriptional effector at the downstream end
of the hippo pathway, and thus inhibit the progress of cancer stem
cells (Qin et al., 2018).

The transforming growth factor-β (TGF-β) signaling pathway
is usually overexpressed in many disease states, such as fibrosis,
inflammation and cancer, and the activation of TGF-β signaling
promotes cancer cell migration and invasion. Smad7 is a negative
regulator of the TGF-β signaling pathway and it can stably bind to
the cytoplasmic domain of the activated type I receptor and block
Smad2/3 phosphorylation (Sun et al., 2017). Cross-talk between
TGF-β/SMAD and hippo/Yap signaling pathways was found to
be crucial for tumorigenesis. Through experiments in vitro, and in
vivo, qRT-PCR andWB assays, it found that Tan IIA upregulated
SMAD7 to promote E3 ligase βTrcp expression resulting in
promoting YAP protein degradation in liver cancer. Therefore,
Tan IIA mediates the SMAD7-YAP expression in a TGF-
β/SMAD signaling pathway-dependent manner to induce
apoptosis and inhibit growth and migration in hepatocellular
carcinoma cells (Ma et al., 2019).

In solid tumors, Tan-IIA inhibits the formation andmetastasis
of vascular endothelial cells by down-regulating the expression of
hypoxia-inducible HIF-1α and inhibiting the secretion of the
angiogenic factor under hypoxia (Zhou et al., 2020).

Endoplasmic Reticulum Stress and Energy
Supply
The endoplasmic reticulum stress (ERS), glycolysis and
mitochondria dependent pathways are closely associated with
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cell apoptosis. Various ERS stimuli, such as oxidative stress, the
accumulation of unfolded or misfolded proteins, and viral
infection, can disturb cell homeostasis.

Tan IIA can decrease the expression of binding
immunoglobulin protein (BIP), the main molecular chaperone
in ER, and then activating C/EBP homologous protein (CHOP)
which has been demonstrated to inhibit the protein expression of
Bcl-2 (Zhang et al., 2017). Overexpression of Bcl-2 is often
considered as a protective effect of various apoptotic stimuli,
while down-regulation of Bcl-2 may induce apoptosis of tumor
cells (Huang et al., 2020). Western blotting analysis indicated that
Tan IIA activated the upstream elements, such as inositol-
requiring enzyme (IRE) 1α and protein kinase RNA-like
endoplasmic reticulum kinase (PERK), consequently resulted
in an increase in their downstream targets eukaryotic initiation
factor (eIF) 2α, p-JNK and CHOP in a dose-dependent manner in
BxPC-3-derived xenograft tumors (Chiu and Su, 2017). These
results indicated that Tan IIA induced ER stress in vitro and
in vivo.

Mitochondria homeostasis can supply sufficient ATP to the
cancer cell. Mitochondrial damage can initiate a caspase-9-related
mitochondrial apoptotic pathway. Studies have identified
mitochondrial homeostasis as a novel target for controlling
tumor survival, migration, and proliferation. On the one hand,
Tan IIA increased JNK phosphorylation and Mff expression in
sw837 colorectal cancer cells, resulting in mitochondrial damage
mediated by activation of mitochondrial fission via the JNK-Mff
pathway (Jieensinue et al., 2018). On the other hand, After Tan
IIA administration, mitochondrial fusion proteins Mfn1/2 and
Opa1 were significantly decreased, while the fission protein Drp1
was significantly increased. So mitochondrial dysfunction was
related to Tan IIA induced apoptosis and anti-angiogenesis in
both osteosarcoma 143B cells and 143B cell xenograft mice
(Huang ST. et al., 2017). Moreover, Tan IIA/IL-2 cotreatment
amplified INF2-related mitochondrial fission via the Mst1-Hippo
pathway (Qian et al., 2018), evoking cell death.

AMPK, an important kinase that regulates energy
homeostasis, is one of the central regulators of cellular energy
metabolism. Meanwhile, Nrf2 is associated with decreased
oxidative stress. Investigations illustrated that the
transcriptions, expressions, and activities of AMPK and Nrf2
were inhibited by Tan IIA, which significantly reduced survival,
migration and invasion in MG63 osteosarcoma (Xie Z. et al.,
2020). The functional assay showed that Tan IIA inhibited AMPK
pathway and resulted in S-phase kinase associated protein 2
(Skp2) inactivation. The decreased Skp2 level failed to activate
Parkin, resulting in the inhibition of mitophagy and enhancing
colorectal cancer apoptosis (He and Gu, 2018).

The energy required for cancer cell proliferation can be
obtained through glycolysis and is associated with the
upregulation of key enzymes involved in glycolysis and glucose
transporters. Tan IIA treatment inhibited glucose uptake and
extracellular lactate production in SiHa cells. Glucose transporter
1 (GLUT1), an important glucose transporter, is a rate limiting
enzyme in glucose transport. Pyruvate kinase M2(PKM2), a key
and final enzyme in glycolysis, is highly expressed in tumor cells.
GLUT1 and PKM2 were downregulated in response to Tan IIA

treatment (Liu Z. et al., 2019). Further study on the microRNAs
regulation of PKM2 showed that upregulated miR-122 expression
could suppress PKM2 expression (Zhang et al., 2016). Thus, it
leads to cancer cell apoptosis.

CARDIOVASCULAR SYSTEM

Tan IIA exhibits potent cardioprotective effects. Clinical studies
have shown that STS has a good effect in the treatment of
cardiovascular diseases, reduces the level of highly sensitive
C-reactive protein and other circulating inflammation markers
in patients with coronary artery disease (Li S. et al., 2017). In the
animal or cell model of doxorubicin induced cardiotoxicity, Tan
IIA pretreatment decreased the activity of myocardial enzymes,
increased the activities of antioxidant enzymes superoxide
dismutase, catalase and glutathione, and induced the nuclear
accumulation of Nrf2 and its downstream genes in mice heart
tissue and H9c2 cells. (Guo et al., 2018). In the model of H2O2 or
DOX simulating oxidative stress, by regulating the miR-133a-3p/
EGFR axis in H9c2 cells, the reduction of G0/G1 arrest induced
by H2O2 was reversed (Xu H. et al., 2020). And it was found that
Tan IIA could up-regulate miR-133 and inhibit caspase-9
signaling cascade, which improved myocardial apoptosis (Feng
et al., 2016b; Song et al., 2017). Tan IIA can promote cardiac
differentiation and improve cell motility by regulating Wnt/
β-catenin signaling pathway (Li K. et al., 2020). Moreover,
Tan IIA attenuates β-catenin and IGF-2R pathways and
reduces subsequent apoptosis and remodeling while increasing
survival proteins in AngII induced H9c2 cells (Chen et al., 2017).

The mainly affected targets and pathways by Tan IIA against
cardiovascular system diseases were summarized in Figure 2 and
Table 2.

Atherosclerosis
Atherosclerosis (AS) is the main cause of cardiovascular disease
in the world. The underlying pathogenesis of AS involves
endothelial dysfunction, imbalanced lipid metabolism and
chronic inflammation caused by maladaptive immune response.

A clinical trial found that STS increased serum soluble potassium
levels in patients on maintenance hemodialysis, and soluble
potassium was able to decrease peroxide induced endothelial cell
apoptosis and reduce the incidence of cardiovascular events in
patients (Xu Q. et al., 2020). Injection of STS to atherosclerotic
mice revealed a significant upregulation of eNOS phosphorylation
and Akt phosphorylation, and contributed to the synthesis and
release of endogenous nitric oxide by activating the TGF- β/PI3K/
Akt/eNOSpathway, thereby serving as a component of the protection
of endothelial cells (Wang et al., 2020c). Besides, studies shown that
Tan IIA prevents endothelial inflammation by attenuating the
expression of Pentraxin 3, a novel diagnostic biomarker for
atherosclerosis, and Pentraxin 3 dependent monocyte adhesion to
endothelial cells (Fang et al., 2018b).

Whether plaques are stable depends on the proportion of
extracellular lipids, collagen, macrophages, or vascular smooth
muscle cells (VSMCs). Tan IIA significantly lower serum lipid
level, attenuate lipid deposition, and stabilize atherosclerotic
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plaque by anti-inflammatory and immunomodulatory damage
repair effects (Wang et al., 2020c).

On the one hand, Tan IIA inhibits miR-33a overexpression and
modulates SREBP-2/Pcsk9 signaling pathway proteins to regulate
cholesterol metabolism in hyperlipidemic rats (Jia et al., 2016). A
previous study found that an intronic microRNA, miR-33, located
within the SREBF2 gene, suppressed the expression of the cholesterol
transporter ABC transporter A1 (ABCA1) and reduced HDL levels.
Conversely, inhibition of miR-33 increased ABCA1 and circulating
HDL levels (Rayner et al., 2011). Tan IIA treatment attenuated lipid
deposition in the livers of hyperlipidemic rats and suppressed the
expression of miR-33a, upregulated the protein expression levels of
ABCA1, SREBP-2 and Pcsk9. These suggest that miR-33 antagonism
may be atheroprotective. On the other hand, Tan IIA downregulates
the key inflammation and immunity protein expression in the TLR4/
MyD88/NF-κB pathway in ApoE−/−mice (Chen Z. et al., 2019). Tan
IIA could inhibit miR-375 then activate KLF4 to inducemacrophages
in atherosclerotic plaque toM2 type while attenuating polarization of
M1 type to attenuate atherosclerosis in mice and ox-LDL induced
Raw264.7 cells (Chen W. et al., 2019).

In addition to inhibiting macrophage migration, Tan IIA also
inhibits apoptosis, hyperproliferation, and autophagy in VSMCs
(Lu et al., 2019). Tan IIA not only has obvious anti-inflammatory
properties, but also inhibits ERK1/2 MAPK signal transduction,

thus inhibiting VSMCs cell proliferation and migration induced
by advanced glycation end products (Wang B. et al., 2017; Lu
et al., 2018). miR-145 can effectively restrain the proliferation of
VSMCs. Tan IIA up-regulates the expression of miR-145 and
down-regulates its target gene CD40 to inhibit VSMCs
proliferation (Li et al., 2020b). The combination of Tan IIA
and astragaloside IV may stabilize vulnerable plaques in the
ApoE−/− mice, visibly reducing the cytoplasmic lipid droplet
accumulation induced by ox-LDL (Wang N. et al., 2020). For the
treatment of atherothrombosis, platelet activation studies in vitro
demonstrated that Tan IIA prevented platelet-derived
microvesicles induced platelet activation by down-regulating
CD36 and MKK4/JNK2 signaling pathway (Wang H. et al.,
2020). It is worth mentioning that the exploration of the
combination of experimental design and computer technology
is more and more popular. Bioinformatics result showed that the
most significant pathways regulated by Tan IIA were associated
with inflammation, and involved in the signaling pathways of Ras,
Rap1, MAPK, cAMP, T cell receptor, and so on (Chen W. et al.,
2020).

Ischemia/Reperfusion (IR)injury
Myocardial ischemia refers to the myocardial tissue without
blood flow, resulting in oxygen supply and demand imbalance,

FIGURE 2 | Themainly affected targets and pathways by Tan IIA against various system disorders. The orange red symbols (↓), ┤ and p represent down-regulation,
inhibition and phosphorylation of proteins respectively, and green line-arrow “→” means singal transduction.
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eventually leading to tissue dysfunction or injury, known as
myocardial ischemia-reperfusion injury (MIRI). The
pathogenic factors of MIRI include reactive oxygen species
(ROS), endothelial dysfunction and inflammation.

Tan IIA enhanced the expression of eNOS andmTOR through
the activation of the PI3K/AKT pathway, thereby promoting the
production of endogenous NO to relieve MIRI in rats (Li Q. et al.,
2016). Inhibiting the expression of p-JAK2, p-STAT3, p53, Bax,
Caspase-3 and Bcl-2 can reduce myocardial apoptosis (Cui et al.,
2016). Pretreatment with Tan IIA sustaining the mitochondrial

functions, it may associate with upregulation of 14-3-3η and
SIRT1/PGC1α pathway activation. Upregulation of 14-3-3η
promotes Bcl-2 translocation to the outer mitochondrial
membrane, prevents mitochondrial permeability transition pore
opening, reduces cytochrome c release, prevents Caspase-3
activation, and inhibits cardiomyocyte’s apoptosis. The
activation of SIRT1/PGC1α pathway maintains mitochondrial
energy metabolism, which is beneficial to keep mitochondrial
function, cardiac microvascular endothelial cell survival and
microvascular homeostasis (Zhang et al., 2018c; Zhong et al., 2019).

TABLE 2 | Summary of the therapeutic effects and mechanisms of Tan IIA on cardiovascular system disorders.

Cardiovascular
system disorders

Animal/cell Mechanisms Effect References

Atherosclerotic Apoe−/− mice ↑TGF-β/PI3K/Akt/eNOS
pathway

↓serum lipids, stabilize atherosclerotic plaques Wang et al.
(2020c)

↓MMP-9, VEGF, and HIF1-α ↓endothelial injury, inflammatory damage
Atherosclerotic Apoe−/− mice C57bl/6 mice ↓TLR4/MyD88/NF-κB Signal

pathway
stabilize vulnerable AS plaque Chen et al.

(2019c)
Hyperlipidemia Hyper lipidemia rats ↓ miR-33a ↓lipid deposition Jia et al. (2016)

↑ABCA1,SREBP-2, Pcsk9 ↑histopathology in the rat liver tissue
Atherosclerosis Apoe−/− mice ↓miR-375↑ KLF4 induced macrophages in atherosclerotic

plaque to M2 type
Chen et al.
(2019b)

Atherosclerosis Apoe–/– mice Raw264.7 cells ↓Bax and Cleaved-caspase-
3 up-regulation

↓ox-LDL-induced apoptosis of VSMCs
↓ox-LDL-induced proliferation andmigration of
RAW264.7 cells

Wang et al.
(2017a)

↓levels of MMP-2, MMP-9
↓overexpression of TNF-a, IL-
1β, IL-6, and MCP-1

Angiotensin II-induced proliferation
and autophagy

Vascular smooth muscle cells ↓MAPK signaling pathway ↓ Ang II-induced proliferation and autophagy of
VSMCs

Lu et al. (2019)

Ages-induced proliferation and
migration of VSMCs

Vascular smooth muscle cells ↓ERK1/2 MAPK signaling
pathway

↓ AGEs-induced proliferation and migration of
VSMCs

Lu et al. (2018)

Homocysteine-induced proliferation
of vascular smooth muscle cells

Vascular smooth muscle cells ↑miR-145 ↓ viability of VSMCs Li et al. (2020b)
↓CD40 ↓VSMCs proliferation induced by Hcy

Ischemia reperfusion injury Sprague-Dawley rats
cardiomyocytes from neonatal
rats

↑PI3K, p-Akt/Akt, mTOR and
p-eNOS/eNOS

↓apoptotic cells Li et al. (2016b)

Hypoxia/reoxygenation Myocardial microvascular
endothelial cell

↓p-JAK2, p-STAT3, p53, Bax
and Caspase-3

attenuate H/R-induced MMEC apoptosis Cui et al. (2016)

Ischemia-reperfusion injury C57bl/6 mice cardiac
microvascular endothelial cells

↑SIRT1-PGC1α signaling
pathway

↓CMEC apoptosis, preserving microvascular
structure and function

Zhong et al.
(2019)

Anoxia/reoxygenation injury H9c2 cell ↑14-3-3η ↓cell apoptosis Zhang et al.
(2018c)↓cyt c,Caspase-3

Ischemia re-perfusion injury Mouse H9c2 cells ↑AK003290 alleviated H/R induced apoptosis, oxidative
stress and loss of mitochondrial membrane
potential

Chen et al.
(2020a)

Pressure overload-induced heart
failure

Sprague-Dawley rats ↓serum BNP alleviating ventricular remodeling Li et al. (2019b)
↓ IL-6, serum CRP level, Bax
protein

↓cardiomyocyte apoptosis

Heart failure post-myocardial Sprague-Dawley rats ↑ AMPK ↑cardiac function Zhang et al.
(2019a)H9c2 cell ↓ mTOR ↓ apoptosis, induce autophagy ↑ cellular

viability
Atrial fibrillation and chronic heart
failure

Rabbits ↑ aERP ↓ inducibility of AF He et al. (2016)
↑interatrial conduction time
↑atrial post-repolarization
refractoriness

Cardiac fibrosis C57bl/6 mice ↓NADPH oxidase2 ↓ myocardial fibrosis Huang et al.
(2018)

Cardiac fibrosis Neonatal rat cardiac fibroblasts ↓TGF-β1/Smad signaling ↓ high glucose-mediated collagen synthesis Tsai et al.
(2018)

Cardiac hypertrophy in
spontaneously hypertensive

Spontaneously hypertensive
rats

↑ p-eNOS、eNOS protective effect on cardiac hypertrophy Feng et al.
(2016a)

Wistar-Kyoto rats ↓Cys-C and Wnt expressions
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Moreover, bioinformatic tools exert more effect on the
predicted target genes. It was reported that bioinformatics
tools predicted lncRNA AK003290 as a potential target of
miR-124-5p, and experiments further confirmed that miR-124-
5p directly targeted AK003290. According to the qPCR results,
AK003290 was found to be downregulated by hypoxia/
reoxygenation treatment, while Tan IIA up-regulated the
expression of AK003290. Both AK003290 knock down and
miR-124-5p overexpression can reverse the effect of Tan IIA
(Chen L. et al., 2020).

Heart Failure (HF)
Heart failure is a syndrome that causes circulatory dysfunction
due to absolute or relatively insufficient cardiac output when the
venous blood flow is sufficient. Heart failure is the final stage of
heart disease development and may be accompanied by
ventricular remodeling, arrhythmia, autophagy, myocardial
fibrosis, and cardiac hypertrophy.

After establishing a pressure overload heart failure model in
rats by abdominal aortic constriction, the left ventricular ejection
fraction (LVEF), left ventricular fractional shortening (LVFS) and
the left ventricular end diastolic diameter (LVIDd) were
significantly increased, and the left ventricular end systolic
diameters (LVIDs) were significantly decreased in the Tan IIA
treated group. Its changes may be associated with attenuating the
inflammatory response and cardiomyocyte apoptosis (Li X. et al.,
2019).

In the chronic heart failure whole heart model, Tan IIA had no
effect on the atrial action potential duration (AAPD) time course
but increased the refractory period (AARP), resulting in a
significant increase in the refractory period after atrial
repolarization. Therefore, it can effectively reduce atrial
fibrillation inducibility, and the main reasons for
antiarrhythmic are prolongation of the atrial repolarization
refractory period and a moderate increase in atrial conduction
time (He et al., 2016).

Tan IIA can up-regulate the expression of LC3 and Beclin1
and inhibit the expression of p62 in HFmodel induced by ligation
of left anterior descending branch and H9c2 cell injury model
induced by H2O2, Further experiments suggesting that Tan IIA
can enhance autophagy and inhibit apoptosis via activation of the
AMPK-mTOR signaling pathway (Zhang et al., 2019a).

The anti-fibrosis effect of Tan IIA is partly related to the
reduction of ROS production by inhibiting NADPH oxidase 2,
partly by reducing the expression of TGF-β1and inhibiting TGF-
β1–Smad2/3 signal transduction. The NOX family proteins are
enzymes dedicated to the generation of O2− and/or H2O2 and
NOX2 may mediate LPS-induced cardiac fibrosis. TGF-β1 is a
key regulator of cell proliferation, differentiation, migration,
immune regulation and extracellular matrix (ECM)
transformation in fibrotic diseases. In silicosis fibroblasts, it
was observed that TGF-β1 induced the expression of p-Smad2
and p-Smad3, downregulated the expression of Smad7 in a dose-
dependent manner. Consequently, the left ventricular collagen
fraction area and the activation of fibrosis related genes were
reduced, and the proliferation and collagen synthesis of cardiac
fibroblasts were inhibited (Huang et al., 2018; Tsai et al., 2018).

Activation ofWnt signaling pathway leads to hypertrophy and
growth of cardiomyocytes, Cys-C plays a promoting role in
cardiac hypertrophy. Tan IIA had a positive effect on cardiac
hypertrophy by reducing Cys-C and Wnt expression, and it
decreased the extent of cardiomyocyte swelling and the area of
individual cardiomyocytes in the treatment group (Feng et al.,
2016a). The combination of Tan IIA and puerarin exhibited
favorable effects on improving hemodynamics and immersion
of inflammatory cells (Gao et al., 2019). In conclusion, Tan IIA
can improve hemodynamic and electrophysiological parameters,
has a protective effect on myocardial fibrosis and hypertrophy
and slow down the progress of heart failure.

NERVOUS SYSTEM

Literatures have reported the effects of Tan IIA on Alzheimer’s
disease (AD) and neuroprotective. The mainly affected targets
and pathways by Tan IIA against nervous system diseases were
summarized in Figure 2 and Table 3.

Alzheimer’s Disease (AD)
Intravenous injection of STS reduced the leakage and injury of the
blood-brain barrier and improve the neurological prognosis of
patients with acute ischemic stroke after recombinant tissue
plasminogen activator treatment (Ji et al., 2017). Morris water
maze test showed that Tan IIA significantly ameliorated the
spatial learning and memory impairment of rats, and
improved the cognitive impairment of AD model. The
underlying mechanisms are related to reducing Tau protein
phosphorylation, attenuating the neurotoxicity of amyloid beta
(Aβ), anti-inflammatory and antioxidant stress, and protecting
neurons.

Gsk-3β is a key kinase that plays an important role in AD-like
Tau hyperphosphorylation. ERK and JNK (MAPK family)
activation can also phosphorylate Tau protein at ser396 and
ser404 sites. Tan IIA can reduce the expression of Tau and
attenuate Tau phosphorylation in cells through
downregulation of the activity of ERK and GSK-3β (Lin et al.,
2019) and induce Tau degradation. Molecular docking and
molecular dynamic study predicted that Tan IIA could
strongly bind to the Tau binding site (Cai et al., 2020).

In addition, Tan IIA decreased Aβ plaques deposition in the
parietal cortex and hippocampus (He et al., 2020), ameliorated
Aβ-induced neurotoxicity by downregulating COX-2 expression
and PGE2 synthesis (Geng et al., 2019), and suppressing ER stress
via suppression of CHOP and JNK pathways (Yang et al., 2019).

Neuroprotection
The anti-oxidation effect of Tan IIA is reflected in the up-
regulation of Nrf2 mRNA expression, the increase of
antioxidant enzyme content and the decrease of oxidation
products (Cai et al., 2017). For example, Tan IIA increased the
activities of SOD and GSHPX, and reduced the formation of ROS
via decreasing the malondialdehyde (MDA) level and improving
the cholinergic system via restoring the AChE activity (Liu et al.,
2016; Liao et al., 2020).
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Studies found that Tan IIA has obvious anti-inflammatory activity
in vitro and in vivo (Ding et al., 2020). Pretreatment with Tan IIA can
significantly promote neutrophil apoptosis (Gong et al., 2020b) and
regulate the TLR4-mediated NF-κB/MAPKs signaling pathways,
obviously inhibit the generation of pro-inflammatory cytokines
and mRNA transcription, thereby reduce the damage of nerve
cells caused by ischemia and hypoxia (Fang C. et al., 2018; Jin
et al., 2020). Further studies found that the upregulation of
miRNA-135b by Tan IIA downregulates AMPK phosphatase
Ppm1e. Knockout of Ppm1e or forcing miRNA-135b expression
also activates AMPK and protects SH-SY5Y neuronal cells from
oxygen-glucose deprivation and re-oxygenation damage (Weng et al.,
2018).

Besides, Tan IIA inhibits hypoxia induced up-regulation of
miR-28 and activates SP1/survivin pathway to reduce cell
apoptosis (Tang et al., 2019), increase ATPase, maintain the
activity of Na+/K+-ATPase (Wen et al., 2016; Zhu et al., 2017),
save the loss of MMP and the decrease of ATP content, and
increase the expression of Rieske iron-sulfur polypeptide 1 to help
maintain and restore mitochondrial function (Li H. et al., 2017;
Dai et al., 2017). Additionally, Tan IIA enhances glucose uptake
to promote the recovery of brain function (Wang et al., 2020d).
By evaluating motor behavior and tibialis anterior muscle group,
and histological analysis of sciatic nerve and lumbar spinal cord,
Tan IIA can reduce the injury and promote the regeneration of
sciatic nerve in rats (Li M. et al., 2017; Wang et al., 2018). Diabetic

TABLE 3 | Summary of the therapeutic effects and mechanisms of Tan IIA on nervous system disorders.

Nervous system
disorders

Animal/Cell Mechanisms Effects References

Alzheimer’s disease SH-SY5Y Cells ↓COX-2 expression and PGE2 synthesis ↓Aβ-mediated cell viability reduction, apoptosis
induction and pro-inflammatory effect

Geng et al.
(2019)

Alzheimer’s disease APP/PS1mice Wild-Type
mice

↓CHOP and p-JNK ↓deposition of Aβ plaques and neuronal apoptosis He et al. (2020)
↓caspase-3 activity
↑the ratio of Bcl-2/Bax

Alzheimer’s disease SH-SY5Y cells ↓GRP78, eIF2α and ATF6, cytochrome c,
cleaved caspase-9 and cleaved caspase-3,
the activity of caspase-3/7

↓apoptosis Yang et al.
(2019)

↑the ratio of Bcl-2/Bax, MMP and ATP
content

↑cell viability

Alzheimer’s disease Sprague-Dawley rats ↓ ERK and GSK-3β activity ↓Tau hyperphosphorylation Lin et al. (2019)
Alzheimer’s disease APP/PS1 mice Wild-Type

mice BV2 Cells
↓mRNA levels of TNF-α, IL-6, and IL-1β ↓Aβ plaques,microglial and astrocytic

activation,spatial learning and memory deficits
Ding et al.
(2020)

U87 Cells ↓RAGE and the p-IκBα and NF-κB p65
Alzheimer’s disease Swiss Albino Mice ↑the SOD and GSH-Px activities ↓the MDA

level restoring the AChE activity
↑cognitive impairment,ameliorating neuronal
damage, restoring cholinergic function, attenuating
oxidative stress

Liu et al. (2016)

Cognitive dysfunction Sprague-Dawley rats ↓caspase-3, caspase-8, and caspase-
9,level of MDA

alleviated learning memory and cognitive
dysfunction

Liao et al.
(2020)

↑activity of SOD and GSH-Px
Alzheimer’s disease U87 cells ↓TLR4/NF-κB/MAPKs、IL-1β, TNF-α, and

IL-6
↓LPS-induced neurotoxicity and neuroinflammation Jin et al. (2020)

Cerebral ischemia HT-22 cells ↑PI3K/Akt/mTOR ↓autophagy、cell death Zhu et al.
(2017)↓ROS

Ischemia-reperfusion
injuries

SH-SY5Y cell ↑miRNA-135b,AMPK ↓OGDR-induced viability reduction and apoptosis Weng et al.
(2018)

Hypoxic ischemic
encephalopathy

C57BL/6J mice
Experimental mice neurons

↓TLR-4、NF-κB ↓neuronal apoptosis、infarct volume and neuronal
degeneration in mice

Fang et al.
(2018a)

Cerebral ischemia
reperfusion

GLUT1 knockdown mice ↑PI3K/mTOR/HER3 ↑viability of neurons and the recovery of brain
function

Wang et al.
(2020d)GLUT1 overexpression

mice
C57BL mice
Neuro-2a cells

Cerebral ischemia Sprague–Dawley rats ↑ATPase ↓deficits in energy metabolism cell death Wen et al.
(2016)↓microglial activation

Cerebral ischemia/
reperfusion

Nrf2 knockout mice ↑Nrf2 mRNA and the contents of Nrf2 protein ↓generation of oxidative productions Cai et al. (2017)
↑contents of antioxidant enzymes

Cerebral ischemia PC-12 Cells ↓ miR-28 ↓hypoxia induced PC-12 cell injury Tang et al.
(2019)↑Sp1/survivin

Cerebral ischemia Hippocampal neurons
from E18 embryonic rats

↑ UQCRFS1 expression ↓cells apoptosis and mitochondria dysfunction Dai et al. (2017)

Glutamate-mediated
toxicity

SH-SY5Y cells ↑ Bcl-2 protein level ↓glutamate-induced apoptosis prevents glutamate-
induced mitochondrial dysfunction

Li et al. (2017a)
↓ Bax and cleaved caspase-3 levels
↓JNK and p38 MAPK activation

Diabetic neuropathic
pain

Sprague-Dawley rats ↑Nrf2/ARE signaling pathway ↓NF-kB
signaling pathway

alleviates neuropathic pain Feng and Qiu,
(2018)
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chronic hyperglycemia and its pathophysiological changes lead to
nervous system damage and pain. It is one of the most common,
complex and serious complications in diabetic patients.
Behavioral tests showed that Tan IIA had protective effects on
the sciatic nerve, reduced diabetic neuropathic pain, and exerted
significant antiallodynic and anti-hyperalgesic effects in
experimental rats by suppressing inflammation (Zhang B.
et al., 2018; Feng and Qiu, 2018). Patch clamp recordings
revealed that in the diabetic rats, Tan IIA treatment effectively
restored a subnormal state of increased excitability of dorsal root
ganglion (DRG) nociceptive neurons by preventing increases in
both Tetrodotoxin-resistant (TTX-resistant) and Tetrodotoxin-
sensitive (TTX-S) sodium currents. Furthermore, protein
expression of voltage gated sodium channel (VGSCs) α-
Subunits Nav1.3, Nav1.7 and Nav1.9 increased in DRG and
normalized by Tan IIA (Ri-Ge-le et al., 2018). Other literature
reported that Tan IIA could promote Treg cell differentiation
(Gong et al., 2020a) and improve depression like behavior in mice
(Lu et al., 2020).

RESPIRATORY SYSTEM

Tan IIA has therapeutic effects on respiratory diseases, especially
acute lung injury with pulmonary fibrosis. The mainly affected
targets and pathways by Tan IIA against respiratory system
diseases were summarized in Figure 2.

Acute Lung Injury (ALI)
ALI is a clinical disease in which pulmonary capillary endothelial
cells and alveolar epithelial cells are damaged, followed by
pulmonary edema, leading to hypoxemia. Tan IIA had an
obvious ameliorative effect on alveolar structure destruction
and exudative edema in mice with LPS induced ALI by
reducing inflammatory factors. It is possible that Tan IIA
could enhance the expression of Sirt1, thereby promoting
cellular p65 protein deacetylation, inhibiting NF-kB
transcriptional activation, then inhibit the NF-kB mediated
inflammatory process (Quan et al., 2019). Amelioration of
acute lung injury by Tan IIA can also inhibit proinflammatory
factors by inhibiting the expression of TRPM7 and reducing
calcium influx in lung interstitial macrophages (Li J. et al., 2018),
as well as preventing nucleotide-binding oligomerization domain
(NOD)-like receptor family protein 3 (NLRP3) inflammasome
activation (Chen T. et al., 2019).

Silicosis
Silicosis is caused by long-term exposure to free crystalline silica
(SiO2) particles, disease progression includes persistent
pulmonary inflammation and excessive production of
extracellular matrix, which eventually leads to irreversible
destruction of normal lung structure and pulmonary fibrosis.
At present, there is no effective drug treatment (Lian et al., 2017).
It is recognized that TGF-β1-Smad signaling axis is the main way
to induce pulmonary fibrosis. In a silicosis rat model, Tan IIA
significantly relieved silica-induced lung fibrosis by histological
and immunohistochemical analyses, ameliorate destructive

pathological alterations and collagen deposition, and
downregulate the expression of the ECM proteins collagen I,
α-SMA, and FN1 in rats. Tan IIA attenuates silica induced
pulmonary fibrosis is associated with Nrf2, NOX4 and TGF-
β1/Smad signaling pathway. Tan IIA treatment effectively
inhibited TGF-β1-induced phosphorylation of Smads,
especially the continuous phosphorylation of Smad3 in the
nucleus, and up-regulated the expression of Smad7 in silico
cells, resulting in decreased ECM deposition (Feng et al.,
2020b). Nrf2 is a positive regulator of antioxidant enzymes
and genes. Tan IIA increased the induction of Nrf2 by
promoting the degradation of Keap1 and weakening the
binding of Keap1 to Nrf2. By activating Nrf2, Tan IIA reduced
the availability of glutamate in the tricarboxylic acid cycle by
transferring glutamine hydrolysis to GSH production. Thus, Tan
IIA activated Nrf2/GSH signaling pathway to limit glutaminolysis
in myofibroblast proliferation (An et al., 2019). Besides, Nrf2
knockdown by siRNA partly blocked the effects of Tan IIA on
EMT and TGF-β1/Smad signaling activation induced by silica. So
Tan IIA may attenuate silica-induced pulmonary fibrosis via
Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling
(Feng et al., 2020a).

Additionally, TGF-β1 promotes ROS formation mainly by
inducing the expression and activity of NOX4 in many cell types,
while Tan IIA reduced NOX4 upregulated mRNA and protein
levels in silico rats (Feng et al., 2019). Therefore, the anti-fibrosis
effect of Tan IIA can also be attributed to the reduction of
oxidative stress. Moreover, it is reasonable to think that the
antioxidant potential of Tan IIA is associated with its ability
to alter the composition of the AP-1 heterodimer. AP-1 is
composed of Jun and Fos proteins that combine to form a
functional dimer and are activated through MAPKs (JNK,
ERK, and p38), which are signaling under hypoxia. Tan IIA
activated JNK and ERK pathway that induced c-jun/c-fos, c-jun/
fosB, junD/c-fos, and junD/fosB heterodimers to increase cells
survival. This in turn leads to cell cycle progression through
activation of cyclins (D and B), as further confirmed by lower
levels of p53 and its downstream genes (p16, p21 and p27) (Yadav
et al., 2020). Taken together, Tan IIA might be a potential
therapeutic remedy for pulmonary fibrosis and injury repair.

URINARY SYSTEM

Tan IIA can attenuate ischemia/reperfusion induced kidney
injury (Xu et al., 2016), renal fibrosis, as well as renal injury
from various other causes. Administration of Tan IIA
significantly reduced renal dysfunction on days 7 and 14 after
experiencing folate induced acute kidney injury in mice. In
addition, it markedly reduced the tubuloid interstitial
accumulation of fibronectin and collagen I (Jiang et al., 2016)
and reversed the HG-induced increase in α-SMA and decrease in
E-cadherin, thereby reducing renal proximal tubular fibrosis (Cao
et al., 2017). Tan IIA treatment increased immune cell
precipitation in renal cells and improved the lipid and glucose
metabolism, insulin resistance, and body weight in type 2 DM
Rats (Yuan et al., 2018), attenuates renal injury by reducing
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excessive oxidative stress and inflammation, and the mechanisms
include activating Nrf2, and upregulating heme oxygenase-1
(HO-1) expression (Liang et al., 2018), and enhancement of
glutathione mediated detoxification pathways (Li W. et al.,
2019). Summarily, the affected targets by Tan IIA against
urinary system diseases were shown in Figure 2.

DIGESTIVE SYSTEM

Tan IIA treatment can promote the repair and regeneration of
damaged liver (Ze et al., 2016). It is used to treat liver cirrhosis,
nonalcoholic fatty liver disease and rifampicin induced cell
damage.

Tan IIA could alleviate ECM accumulation, attenuate the
proliferation and activation of hepatic stellate cells, and
effectively improve liver fibrosis. Network pharmacology-based
predictions found that the possible molecular mechanisms
include MAPK, Wnt, PI3K/Akt signaling pathways through
inhibition of c-Jun, p-c-Jun, c-Myc, CCND1, MMP9, P65,
P–P65, PI3K and P38, which are validated by in vitro and in
vivo experiments (Shi MJ. et al., 2020). Another study also
confirmed that Tan IIA inhibiting fibrosis and reducing
inflammation and oxidative stress via HO-1, Akt, and p38
MAPK signaling pathways in a rat model of cirrhosis (Shu
et al., 2016).

In studies of nonalcoholic fatty liver disease (NAFLD), Tan
IIA was found to improve NAFLD by targeting PPAR-γ and
TLR4, thereby reducing lipids and oxidative stress, a strategy that
may form the basis for novel NAFLD therapies (Huang et al.,
2019).

Rifampicin (RFP)—induced biliary homeostatic liver injury is
characterized by impaired hepatic bile acid (BA) transport. Bile
salt efflux pump (BSEP) and Na +/taurocholate cotransporter
(NTCP) are the main transporters of BA. The mRNA expression
of NRF2, BSEP and NTCP was strongly induced by Tan IIA
combined with RFP. Nrf2 plays an important role in directly
activating BSEP and NTCP expression, The expression of
epigenetic modification-related proteins in terms of DNA
methylation was investigated and it found that Tan IIA
activated Nrf2 through ten-eleven translocation two
demethylations at specific CpG sites. And Nrf2 knockout mice
were more susceptible to RFP induced liver injury, while BA
transporters on Nrf2 signaling pathway were changed to some
extent. This suggests that NRF2 activation by Tan IIA may favor
RFP induced cholestatic liver injury (Yang et al., 2020).
Summarily, the affected targets by Tan IIA against digestive
system diseases were shown in Figure 2.

MOTOR SYSTEM

Tan IIA has been used to treat arthritis as well as post fracture
healing (Wang Y. et al., 2019), mainly through anti-inflammatory
effects. Fibroblast-like synoviocytes from patients with RA are
termed RAFLS, the major component of synovial tissues
associated with joint damage. Dysregulated RAFLS

proliferation is responsible for synovial hyperplasia and
proinflammatory cytokine production, which exacerbates joint
destruction. Tan IIA promotes fibroblast-like synoviocytes in
rheumatoid arthritis apoptosis by upregulating lncRNA GAS5.
(Li G. et al., 2018). In addition, Tan IIA reduces inflammatory
injury of cells by downregulating miR-203a and inhibiting JAK/
STAT and JNK pathways (Luan and Liang, 2018), and
ameliorates the severity of arthritis in AIA mice (Du et al.,
2020). From the perspective of metabolism and redox
regulation, Tan IIA reduces HIF-1α induction by inactivation
of succinate dehydrogenase, and preserves Sirt2 activity by
downregulating glycolysis. It is helpful to inhibit the activation
of NLRP3 inflammasome (Liu et al., 2021).

In the diabetic mouse model, Tan IIA was found to reduce the
level of AngII in vivo circulation and bone by potentially targeting
renin, thus improving the bone mineral density and
microstructure of proximal tibia and increasing the trabecular
bone area of the distal femoral end. It is beneficial for Tan IIA in
the treatment of diabetic osteoporosis and the drug development
of renin inhibitors (Zhang et al., 2020). Summarily, the mainly
affected targets and pathways by Tan IIA against motor system
diseases were shown in Figure 2.

CONCLUSION AND PERSPECTIVES

S. miltiorrhiza contains many phenolic acids and tanshinones,
which are considered as the main ingredients responsible for its
pharmacological effects. Tan IIA, as the most important one of
the active components in S. miltiorrhiza, has been studied on the
prevention and treatment of cardiovascular diseases in China. In
zebrafish embryo at high concentrations, Tan IIA shows potential
developmental deformity and cardiac toxicity (Wang T. et al.,
2017). Tan IIA as a fat-soluble compound has poor oral
bioavailability and could mainly stay in gastrointestinal tissue
and not easily pass through biological barriers to arrive in brain
and testes tissues. Tan IIA could be hydroxylated by CYP2A6 in
liver microsomes, followed by glucuronidation and excreted via
the bile. Tan IIA can induce the expression of the CYP3A4 gene so
that it should be prudent to take drugs metabolized by CYP3A4
when co-using S. miltiorrhiza products.

Meanwhile, more importantly, the present paper reviews the
recent investigation progress during the years 2015–2021 on Tan
IIA’s multiple pharmacological effects and mechanisms involving
in multiple signaling molecules and multiple pathways
(Figures 1, 2).

Tan IIA exerts anticancer activities mainly via inhibiting
cancer cell proliferation, activating cancer cell apoptosis and
autophagy and inducing cell cycle arrest, and restrains cancer
invasion, migration and metastasis. The mechanisms refer to that
Tan IIA can reduce the expression of EGFR, IGF1R, Her2,
VEGFR, survivin, Bcl-2, Nrf2, miR30b, SLC7A11, upregulate
PERK, ATF6, IRE1α, CHOP, PARP, caspase-3, caspase-8,
caspase-9, caspase-12, Beclin-1, LC3-II, cyclin B1/CDC2,
SHP2, p-JNK, Mff, Drp1, p53 and miR-205, and block the
AMPK/Skp2/Parkin and PI3K/AKT/mTOR pathways to
inhibit cancer cell proliferation and induce cancer cell
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apoptosis, autophagy and/or ferroptosis. Moreover, Tan IIA can
decrease the expression of MMP-2, MMP-9, FOXM1 and HIF-
1α, inhibit STAT3 activation and the transcriptional activity of
YAP, and block the NF- kB, STAT3, Hippo, TGF-β signaling
pathways to prevent the metastasis of tumor. In addition, Tan IIA
could inhibit glucose uptake and extracellular lactate production,
which could be manifested in the downregulation of GLUT1 and
PKM2 in cancer cells, and ultimately results in cancer cell
apoptosis.

Tan IIA can treat a variety of systematic diseases, including
cardiovascular, nervous, respiratory, urinary, digestive, and motor
systems disorders. The involved targets genes and proteins include
miR-28, miR-33a, miR-135b, miR-145, miR-203a, miR-375, lncRNA
GAS5, p16, p21, p27, p38, p53, p62, and ABCA1, ABCG1, SREBP-2,
Pcsk9, KLF4, ERK1/2, CD40, CD36, Ras, Rap1, MAPK, 14-3-3η,
cytochrome c, Bax, Caspase-3, LC3B, Beclin1, NADPH oxidase 2,
TGF–β 1, Cys-C, Wnt, ERK, GSK-3β, COX-2, PGE2, SOD, GSHPX,
Sirt1, TRPM7, NLRP3, α-SMA, MMP-2, MMP-9, TNF-a, IL-1β, IL-

6, and MCP-1, FN1, Nrf2, NOX4, Nrf2, HO-1, CCND1, MMP9,
PI3K, PPAR, TLR4 and SDH. Therefore, Tan IIA shows its many
favorable activities in therapeutic effects containing anti-
inflammatory, anti-oxidant stress, anti-apoptosis, anti-fibrosis,
anti-ischemia/reperfusion injury, repairing immunomodulatory
damage, promoting autophagy, restoring mitochondrial function,
enhancing glucose uptake, etc., being mainly attributed to the
multiple pathway regulation of Tan IIA on the Wnt/β-catenin,
IGF-2R, SREBP-2/Pcsk9, NF-κB, MAPK, PI3K/AKT, SIRT1/
PGC1α, TGF-β1/Smad, CHOP, JNK, Nrf2 and/or JAK/STAT
signaling pathways.

Furthermore, the collection of targets genes and proteins
abovementioned for Tan IIA is without doubt a good dataset
to in depth predict the potential effects and underlying
mechanisms of the active ingredient on diseases by
bioinformatics analysis. To explore the possible relationship of
targets abovementioned for Tan IIA, the potential protein
interaction (PPI) network was contructed according to our

FIGURE 3 | PPI network using the reported targets for Tan IIA (2015–2021). Network nodes (color balls with 3D protein structure known or predicted) represent
target proteins. Edges (lines) represent protein-protein associations and line thickness indicates the strength of data support (the thicker the line, the greater the strength).
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previous report (Xie R. et al., 2020) by input the reported targets
into the online STRING webserver (https://string-db.org). As a
result, 65 nodes and 191 edges were generated in the PPI network
afer hiding disconnected nodes. Among the target nodes, MAPK1
(degree: 20), AKT1 (degree: 20), and CTTNB1 (degree: 20),

MAPK8 (degree: 17), and PIK3R1 (degree: 16) locate in the
center of the PPI diagram (Figure 3) and were predicted as the
most important roles in PPI network due to their high connective
numbers (degree) with the other targets. Subsequently, GO,
KEGG as well as DO (disease ontology) enrichment analyses

FIGURE 4 | Dotplots of GO analysis (A), KEGG analysis (B) and DO enrichment analysis (C) of proteins or genes previously reported in the literature.
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of the reported targets were futher performed by using R package
according to previous reports (Shi et al., 2020; Lin et al., 2021). Go
is used to state various attributes of genes and gene products, and
the analysis, as shown in Figure 4A, mainly involves phosphatase
binding, ubiquitin-like protein ligase binding, DNA-binding
transcription factor binding, ubiquitin protein ligase binding,
DNA-binding transcription activator activity, RNA polymerase
II-specific. KEGG is an information network connecting known
intermolecular interactions, such as metabolic pathways,
complexes, biochemical reactions, etc. As shown in Figure 4B,
the mainly predicted pathways include Lipid and atherosclerosis,
Proteoglycans in cancer, Colorectal cancer, Autophagy–animal,
and Hepatitis B. Do is an analysis method that has an important
role in the understanding of disease pathogenesis based on
genetic studies of similar relationships to disease. The main
genes were enriched in cell type benign neoplasm and
peripheral nervous system neoplasm. It is also closely related
to peripheral nervous system neoplasm, stomach cancer,
autonomic nervous system neoplasm, neuroblastoma, etc.
(Figure 4C)

According to the results of previous reports herein and the
present GO, KEGG pathway and DO enrichment analyses, we
provide the following ideas.

1) Firstly, the GO analysis results indicate that Tan IIA could
mainly affect the phosphatase binding, ubiquitin-like protein
ligase binding, and ubiquitin protein ligase binding,
suggesting that Tan IIA could regulate the phosphorylation
and ubiquitination of certain key proteins in cell biological
processes. In a word, the regulation of Tan IIA on protein
phosphorylation and ubiquitination could be pivotal
mechanisms of this ingredient against diseases. Therefore,
the roles of Tan IIA and these effects must be validated by
in vitro and in vivo experiments with comprehensive and high
throughput experimental technologies, such as
phosphorylation and ubiquitination proteomic analyses.

2) Secondly, the current KEGG analysis results demonstrate that
Tan IIA could affect the pathways including Lipid and
atherosclerosis, Proteoglycans in cancer, Colorectal cancer,
Autophagy, and Hepatitis B, which have been rarely reported

FIGURE 4 | (Continued).
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on the Tan IIA’s effect mechanisms. It may be important to
validate these predicted pathways by experimental evidence,
such as western blot and quantitative reverse transcription
PCR results for us to understand in-depth the therapeutic
effects of the active ingredient.

3) Thirdly, the results of DO enrichment analysis show that Tan
IIA could possess broad spectrum antitumor activity, mainly
referring to cell type benignneoplasm and peripheral nervous
system neoplasm. Although the literature has reported the
extensive anticancer property, it slightly mentions the effect of
Tan IIA on peripheral nervous system neoplasm, including
malignant schwannoma, ganglioneuroma, pigmented
malignant schwannoma, plexiform neurofibroma, etc.
Therefore, maybe Tan IIA is a promising anti-peripheral
nervous system neoplasm candidate, which requires further
validation by in vitro and in vivo experiments for its drug
development.

4) Ultimately, up to date, the real receptor targets of Tan IIA
are still unclear. Target fishing for Tan IIA should be
performed to extensively screen the possible target
proteins or genes, and the results should then be further
investigated by gene editing and compound-target

complex crystallization experiments to disclose the real
targets of this ingredient.

In conclusion, these ideas may provide new clues or
perspectives to further investigate the therapeutic effects and
mechanisms of Tan IIA, to promote the drug development
and clinical applications of this ingredient.
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