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Traditional Chinese medicine (TCM) usually plays therapeutic roles on complex diseases in
the form of formulas. However, the multicomponent and multitarget characteristics of
formulas bring great challenges to the mechanism analysis and secondary development
of TCM in treating complex diseases. Modern bioinformatics provides a new opportunity for
the optimization of TCM formulas. In this report, a new bioinformatics analysis of a
computational network pharmacology model was designed, which takes Chai-Hu-Shu-
Gan-San (CHSGS) treatment of depression as the case. In this model, effective intervention
space was constructed to depict the core network of the intervention effect transferred from
component targets to pathogenic genes based on a novel node importance calculation
method. The intervention-response proteins were selected from the effective intervention
space, and the core group of functional components (CGFC) was selected based on these
intervention-response proteins. Results show that the enriched pathways and GO terms of
intervention-response proteins in effective intervention space could cover 95.3 and 95.7% of
the common pathways and GO terms that respond to the major functional therapeutic
effects. Additionally, 71 components from 1,012 components were predicted as CGFC, the
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targets of CGFC enriched in 174 pathways which cover the 86.19% enriched pathways of
pathogenic genes. Based on the CGFC, two major mechanism chains were inferred and
validated. Finally, the core components in CGFC were evaluated by in vitro experiments.
These results indicate that the proposed model with good accuracy in screening the CGFC
and inferring potential mechanisms in the formula of TCM, which provides reference for the
optimization and mechanism analysis of the formula in TCM.

Keywords: Chai-Hu-Shu-Gan-San, depression, network pharmacology model, effect propagation space,
intervention-response proteins, contribution index

INTRODUCTION

Depression belongs to the mental health disorder, which is an
emotional disorder that causes persistent sadness and loss of
interest, and is the leading cause of worldwide disability (Malhi
and Mann, 2018). Previous reports have estimated that one in six
people will develop the disorder during their lifetime (Kessler
et al., 2005). Many studies show that depression may be
associated with genetic, environmental, psychological factors,
and environmental factors (Virtanen et al., 2019). Currently,
western medicine mainly adopts selective serotonin reuptake
inhibitor (SSRI) (Bondar et al., 2020), serotonin
norepinephrine reuptake inhibitor (SNRI) (Bondar et al.,
2020), norepinephrine, noradrenergic and specific serotonergic
antidepressants (NaSSA), tricyclic antidepressants, and
monoamine oxidase inhibitor (MAOI) for treating depression
(Delgado and Moreno, 2000; Narasingam et al., 2017). However,
western medicine, as the mainstream drug for treating
depression, has a single mechanism of action, which leads to
certain side effects and drug resistance. Traditional Chinese
medicine (TCM), as a new antidepressant, can make up for
the deficiency of western medicine because of its
multicomponent, multitarget, and multi-mechanism
pharmacological mechanism, with relatively small side effects
and can be used for a long time (Shi et al., 2019; Zong et al., 2019;
Ren et al., 2021).

Chai-Hu-Shu-Gan-San (CHSGS) is comprised of seven
botanical drugs and were extracted with water solution:
Bupleurum scorzonerifolium Willd. (Bupleuri Radix, Chaihu)
(6 g), Citrus reticulata Blanco (Pericarpium Citri Tangerinae,
Chenpi) (6 g), Ligusticum striatum DC. (Rhizoma Ligustici
Chuanxiong, Chuanxiong) (4.5 g), Cyperus rotundus L.
(Rhizoma Cyperi, Xiangfu) (4.5 g), Citrus × aurantium L.
(Fructus Aurantii, Zhiqiao) (4.5 g), Paeonia lactiflora Pall.
(Radix Paeoniae, Shaoyao) (4.5 g), and Glycyrrhiza uralensis
Fisch. ex DC. (Glycyrrhrizae Radix, Gancao) (1.5 g). CHSGS
has been widely applied in treating depression and has
achieved remarkable results (Meng et al., 2018; Wang et al.,
2019a; Huang et al., 2019). Previous pharmacological studies
have indicated that CHSGS treatment markedly prevented the
ethological changes in the chronic variable stress (CVS)–induced
depression rat model, including the open-field test, body weight
changes, and sucrose preference test (Su et al., 2011). It has been
found that CHSGS treatment can alleviate depression behavior by
improving sugar water consumption and the ERK1/2 mRNA

expression in the hippocampus of chronic unpredictable mild
stress (CUMS) depression model rats (Wang et al., 2011). In
addition, the pharmacological experimental study has found that
orally administered CHSGS to depression mice models had
higher SOD and catalase CAT activities, lower
malondialdehyde MDA values, and higher glutathione GSH
levels compared with those of the mice in the model group,
suggesting that antioxidant activity of CHSGS should make
contributions to its antidepression effect (Li et al., 2010).
These experimental pharmacology results showed that CHSGS
had evident beneficial effects in treating depression.

TCM usually plays therapeutic roles in the form of formulas in
treating complex diseases. The formula has a multicomponent
and multitarget mode of action during the therapy process, and
these components and targets constitute the all-to-all effect
network of TCM formulas in treating diseases. In the
treatment procedure, some components in the effect network
have auxiliary function, while others have major therapeutic
actions, which were defined as the core group of functional
components (CGFC). It refers to the components with suitable
pharmacological features and closely associated with the effectual
response to diseases. Detecting the CGFC that takes fundamental
function in treating complex diseases is a big challenge due to the
incomplete comprehending of the complex mechanism of
multicomponents and multitargets in TCM. Optimizing
formulas and obtaining CGFC are the key steps to reduce
components with side effects or without activity and analyze
the treatment mechanism of Chinese botanical drug formulas.
Several network pharmacology–based formula optimization
models have been proposed. However, these models mainly
focus on the analysis of the component–target network and
ignore the construction of the effect propagation space which
links the drug targets to the pathogenic genes (Lee et al., 2018;
Wang et al., 2018; Li et al., 2019). Studies showed that the
components of Chinese medicine could play pharmacological
roles through protein–protein interactions (PPI), which means
the therapeutic effect of components in TCM can be transmitted
through the PPI network (Chen and Cui, 2017; Gan et al., 2018;
Guo et al., 2019b). Thus, it is reasonable to design a strategy to
capture the CGFC based on component analysis, target
prediction, and effect propagation space construction.

Currently, a new system pharmacology strategywas developed to
capture the CGFC and clarify the molecular mechanisms of CHSGS
in treating depression. The potential pathogenic genes of depression
were extracted by analyzing the literature reports and published
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databases. All components of CHSGS were obtained from the
database and literature and were further screened to obtain the
potential active components. Three prediction tools were utilized to
predict the targets of these active components. And then, the
potential pathogenic genes and active component–target networks
were utilized to establish effective intervention space to identify the
intervention-response proteins. The intervention-response proteins
selected from the effective intervention space were utilized to screen
the CGFC by using the cumulative contribution coefficient (CCC)
module. The CGFC was utilized to speculate the mechanisms of
CHSGS in the therapy of depression.

METHODS

Pathogenic Genes Collection and
Protein–Protein Interaction Data Integration
Genes related to depression reported in DisGeNET (Pinero
et al., 2017), GeneCards (Safran et al., 2010), and OMIM
(Amberger et al., 2015) databases were extracted, and the
number of published reports was recorded as the number of
evidence, which was used to indicate the correlation between a
gene and depression. The comprehensive PPI data were
downloaded and integrated from Dip (Salwinski et al.,
2004), HPRD (Keshava Prasad et al., 2009), Intact (Kerrien
et al., 2012), Mint (Licata et al., 2012), BioGRID (Oughtred
et al., 2019), and STRING (Szklarczyk et al., 2019), which were
used for mapping the pathogenic genes and targets of active
components.

Collect Chemical Components of CHSGS
All chemical components of CHSGS were extracted from the
TCMSP Database (Ru et al., 2014) (http://lsp.nwsuaf.edu.cn/
tcmsp.php), TCM@Taiwan (Chen, 2011) (http://tcm.cmu.edu.
tw/zh-tw), TCMID (Huang et al., 2018b) (http://www.
megabionet.org/tcmid/), SymMap (Wu et al., 2019) (https://
www.symmap.org/), and ETCM (Xu et al., 2019) (http://www.
nrc.ac.cn:9090/ETCM/index.php/Home/Index/index.html).
The concentration of chemical components of the botanical
drugs in CHSGS was extracted from the published reports
(Supplementary Table S2). The Open Babel toolkit (version 2.
4.1) was employed to convert the chemical structure of
components to the canonical SMILES format for further
analysis (O’Boyle et al., 2011).

Select Potential Active Components of
CHSGS Based on ADMET Models
Nine ADMEmodels, including Lipinski’s rules of five Daina et al.,
2017, oral bioavailability (OB (%F)), GI absorption Daina and
Zoete, 2016, human Ether-à-go-go-Related Gene (hERG)
inhibition, and carcinogenicity evaluation of components were
utilized to select the active components from CHSGS. The
Lipinski’s rules specifically includes molecular weight <500 Da,
number of donor hydrogen bonds <5, number of acceptor
hydrogen bonds <10, −2 <the log P < 5, and meets only the
criteria of 10 or fewer rotatable bonds. Components that met OB
≥ 30% were kept as candidate components. The screening
criterion of GI absorption was defined as high. The hERG
inhibition was calculated by a toxicity model which was
proposed in the PreADMET webserver (Lee et al., 2012);
components with a high level of hERG inhibition were
removed. Here the carcinogenicity of each component in
CHSGS was evaluated by the PreADMET webserver (Lee
et al., 2012); the components with the negative feature of
carcinogenicity were kept for further analysis.

Targets Prediction
Similarity Ensemble Approach (SEA) (Keiser et al., 2007),
HitPick (Liu et al., 2013), and SwissTargetPrediction (Daina
et al., 2019) were utilized to predict the targets of active
components in CHSGS. The Open Babel toolkit (version 2.4.1)
was employed to convert canonical SMILES.

Network Construction
The component–target (C-T) networks of CHSGS were
established by utilizing Cytoscape software (Version 3.7.0)
(Shannon et al., 2003). NetworkAnalyzer (Assenov et al.,
2008) was utilized to analysis the topological parameters of
networks.

Construct the Effective Intervention Space
and Evaluate the Intervention-Response
Proteins
Constructing effect intervention space from complex networks
acted by TCM can retain highly correlated small molecular
targets and pathogenic genes to the greatest extent. We map
the component–target network to the PPI network which
integrated from Biogrid, String, DIP, HPRD, INTACT, and

TABLE 1 | Analysis of documentary evidence of the pathogenic genes of depression.

Interval of literature
support number

Number of genes distributed
in literature support

Average number of pathways related
to each pathogenic gene

Average number of GO terms related
to each pathogenic gene

1–2 882 0.21 3.77
2–3 191 0.92 13.46
3–5 93 1.85 26.52
5–10 96 1.74 27.17
10–15 25 2.16 55.64
15–20 11 9.73 78.18
20–40 19 6.16 75.37
Over 40 12 2.25 69.08
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MINT, and then, map the pathogenic genes with the literature
support to the PPI network to establish the
component–target–pathogenic gene–disease network. The
importance of nodes in the network is the main basis for
analyzing the key components of the network.

There are many reported methods for calculating node
importance, such as degree, closeness centrality, betweenness
centrality, clustering coefficient, neighborhood connectivity, and
average shortest path length. Here, we design a new method to
characterize the importance of nodes; we definedNetctpd � N,E}{ ,
where N means nodes which represent components, targets,
pathogenic genes, and disease. E means edges which represent
component–target–pathogenic gene–disease interactions:

∅ � max
i<n

(d1→ 2, d1→ 3, d1→ 4/di→ j/d((n(n−1))
2 −1)→((n(n−1))

2 ))
IMi �

��������������������������������
(∅ + 1) −∑ djk(i)/m

∅
× ∑n

j∑n
kgjk(i)/gjk

n(n − 1)/2

√
IMmedian � median{IM1, IM2, IM3,/, IMn}

EIS � ∪
n

i�1
IM(Netctpd)i> IMmedian

IMi means the significance of node i in the network; The∅ is the
largest distance between two nodes in the network. If a network is
disconnected,∅ is themaximum distance among all the connected
components. gjk represent the number of paths between node j
and k. gjk(i) is the number of paths from node j to node k and
through node i. djk(i) is the number of shortest paths from node j
to node k and through node i; m is the number of total shortest
paths in the whole network which pass the node i; nmeans the total
number of nodes in the network. EIS represent the effective
intervention space. The nodes in the effective intervention space
were identified as intervention-response proteins. And then, we
performed functional pathway analysis using intervention-
response proteins and depression pathogenic genes to evaluate
whether the intervention-response proteins could cover the
pathogenic genes of depression at the functional level.

Develop CCC Model to Select CGFC
The CGFC is hidden in the components of the effective
intervention space. We define the network coverage of each
component i in the effective intervention space aswi. The
contribution rate of targeted to pathogenic genes isvi. The
maximum expected network coverage rate of CGFC is R. In
these variables, R> 0, wi > 0, vi > 0, 1≤ i≤ n, GCFC is required to
be found from n components, so that the cumulative contribution
rate of targeted to pathogenic genes is the largest. The specific
calculation formula is as follows:

CCC � max∑n
i�1

vixi

∑n
i�1

wixi ≤Rxi ∈ {0, 1}, 1≤ i≤ n

Therapeutic Mechanisms of CHSGS for Depression
Set the subproblems of the given question as:

CCCsub � max∑n
k�1

vkxk

∑n
k�1

wkxk ≤Rsub xk ∈ {0, 1}, 1≤ k≤ n

m(i, Csub) is the optimal solution when the expected network
coverage is Rsub, and the optional component is y. From the
optimal substructure properties, the recursive formula for
calculating m(i, Csub) can be established as follows:

m(i, Rsub) � {max{m(i + 1, Rsub), m(i + 1, Rsub − wi) + vi} Rsub ≥wi

m(i + 1, Rsub) 0≤Rsub <wi

m(n, Rsub) � { vn Rsub ≥wn

0 0≤ j<wn

Gene Ontology and Pathway Analysis
The clusterProfiler (Yu et al., 2012) package of R software was
utilized to perform Gene Ontology (GO) analysis. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(Kanehisa and Goto, 2000) was employed to perform KEGG
pathway enrichment analyses. The p-values of GO and KEGG
analyses were set at 0.05 as the cut-off criterion. The ggplot2
package was used to create graphs in the R statistical
programming language (version 3.4.2). The above results were
annotated by Pathview (Luo and Brouwer, 2013) in the R
Bioconductor package (https://www.bioconductor.org/).

Maximum Targeting Weight Model
Calculation
We defined G � (V, E) as a weighted directed graph; V and E
represents the set of set of proteins and relationships in the
integrated pathway. TG and PG represent the set of target genes
and pathogenic genes, respectively. For each protein pairs (s↔t),
we use the Dijkstra method to calculate the shortest distance
between them directly in the integration pathway. The maximum
target weight score can be calculated as follows:

Score (s↔t) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i�1

(IMi + Ri +Di + Ravg +Davg) Notei ∈ TG,Notei ∈ PG

∑n
i�1

(IMi + Ri +Di + Ravg −Davg) Notei ∉ TG,Notei ∈ PG

∑n
i�1

(IMi + Ri +Di − Ravg +Davg) Notei ∈ TG,Notei ∉ PG

∑n
i�1

(IMi + Ri +Di − Ravg −Davg) Notei ∉ TG,Notei ∉ PG

IMi, Ri, and Di indicate the topological importance, strength
of documentary evidence, and strength of regulated by multiple
components of node i, respectively. Ravg and Davg means the
average strength of documentary evidence of all nodes that
represent pathogenic genes and the average strength of nodes
that represent target genes which are regulated by multiple
components. The IMi can be calculated by our proposed
methods, the Ri and Di were calculated by NV−min(PG)

max(PG)−min(PG) and
NC−min(TG)

max(TG)−min(TG), NV means the evidence number of one node,
min(PG) and max(PG) means the minimum and maximum
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number of document supports in pathogenic genes. NC represent
the number of components that regulates a node, min(TG) and
max(TG) means minimum and maximum number of
compounds which could regulate the node.

Experimental Validation
Reagents
Vanillic acid (S98% purity by HPLC) was obtained from Jingzhu
Biotechnology Co., Ltd. (Nanjing, China), and corticosterone (purity
S98%) was purchased from TCI Shanghai (Shanghai, China).
RPMI-1640 medium, fetal bovine serum (FBS), 0.25% trypsin,
and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT) were purchased from Shanghai Sangon Biotechnology Co.
Ltd. (Shanghai, China). Poly-L-polylysine (PLL) was purchased from
Sigma-Aldrich Co. (St. Louis, United States). The commercial kit for
measuring the lactate dehydrogenase (LDH) was purchased from
Nanjing Jiancheng Bioengineering Co., Ltd. (Nanjing, China).

Cell Culture and Treatment
The differentiated PC12 cells were purchased from the Cell Bank
of the Chinese Academy of Sciences (Shanghai, China). Cells were
cultured in an incubator at 37°C with an RPMI-1640 medium
containing 10% FBS. When the cells reached 80% confluency, the
cells were treated with vanillic acid for 3 h; then, the cells were
treated with corticosterone (400 μM).

Cell Viability Assay
PC12 cells (2 × 104 per/well) were seeded in 96-well plates,
which were coated with PLL (0.01%). After 24 h incubation,
PC12 cells were treated with 0.1, 1, 10, 25, 50, and 100 μM
vanillic acid and corticosterone. MTT was superinduced to a
96-well plate for 4 h; then, the culture supernatant was
removed. Finally, DMSO was utilized to dissolve the purple
crystals. The plate reader was utilized to detect the absorbance
at 570 nm.

Measurement of LDH Release
The release of LDH was detected by utilizing the assay kits
according to specifications.

Statistical Analysis
All data were expressed as mean ± SEM. The differences were
analyzed by one-way ANOVA for multiple comparisons. Results
were considered as statistically significant if the p-value was <0.05.

RESULTS

A new bioinformatics analysis of the network pharmacology
model was designed to investigate the core functional
components of CHSGS in treating depression and to speculate
its potential mechanism of action (Figure 1).

Extraction and Analysis of the Pathogenic
Genes of Depression
The process of depression is related to an intricate series of
changes in gene expressions and phenotypes. These different

phenotypic changes are accompanied by a large number of gene
expression changes, which could be marked as the pathogenic
genes both at the diagnosis and intervention level. In order to
extract comprehensive pathogenic genes with confirmed evidence
of depression, the DisGeNET and OMIM databases were used to
collect the genes associated with depression. 1,329 genes and
3,069 documentary evidences have been reserved as pathogenic
genes with confirmed evidence for further construction of the
effective intervention space (Supplementary Table S1). Most of
these pathogenic genes have less documentary evidence, 882 genes
have only one documentary evidence (Table 1), and 42 genes have
more than 15 documentary supports. In order to test whether genes
with more documentary support have more extensive functions,
we performed KEGG and GO analyses on all pathogenic genes and
found that genes with more literature support are associated with
more pathways and GO terms. Genes with more than or equal to
15 and less than 20 literature support have the largest average
pathways and GO term association numbers (Table 1). The genes
with the top 10 literature reports are SLC6A4, BDNF, APOE,
HTR1A, COMT, HTR2A, MAOA, NR3C1, TPH2, and CRH
(Figure 2A). These genes are mainly related to depression in
single nucleotide polymorphism and expression regulation.
Among the top 30 enriched pathways the neuroactive
ligand–receiver interaction, dopaminergic synapse, MAPK
signaling pathway, and PI3k-akt signaling pathway have been
widely reported to be related to depression (Figure 2B).

Chemical Analysis of CHSGS
Chemical analysis exerts pivotal effects for clarifying substance
basis and the molecular mechanism of formulas. The
concentration of specific chemical components in CHSGS was
captured by extracting from the published reports
(Supplementary Table S2). The concentration of components
in botanical drugs from chemical analysis provides a reliable basis
for optimizing active components.

Select Active Components in CHSGS
A total of 1,012 components from seven botanical drugs in CHSGS
were extracted from TCM@Taiwan, TCMID, TCMSP, SymMap,
and ETCM databases (Supplementary Table S3). Previously
proposed ADME screening methods were applied to capture
potential active components. After ADME screening, 249 active
components in CHSGS passed the combined filtering criteria
which were integrated by Lipinski’s rule, OB, GI, hERG, and
carcinogenicity (Table 2, Supplementary Table S4).

By analyzing these active components, we found that 29 of them
were shared by two or more botanical drugs (Figure 3). Kaempferol
(CHSGS20) was a common component in CH, XF, SY, and GC.
Vanillin (CHSGS26) was another common component in CH, CP,
and CX. Naringenin was shared by CH, ZQ, and GC.

Except the shared components, most of the botanical drugs
play therapeutic roles through their specific ingredients.
Bupleurum scorzonerifolium Willd. (CH), Citrus reticulata
Blanco (CP), Ligusticum striatum DC. (CX), Cyperus rotundus
L. (XF), Citrus × aurantium L. (ZQ), Paeonia lactiflora Pall. (SY),
and Glycyrrhiza uralensis Fisch. ex DC. (GC) have 55, 7, 22, 21, 4,
36, and 75 specific active components, respectively. These results
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FIGURE 1 | The work scheme of our network pharmacology approach. Firstly, the pathogenic genes of depression, components of CHSGS and protein–protein
interactions (PPI) were extracted from the published literature reports and databases. Previously proposed ADMET models were used to select potential active
components. Targets of these active components were predicted to establish the C-T network. Then, the pathogenic genes with frequency of evidence and active
components-targets network were mapped to the integrated PPI to construct components-targets-pathogenic genes-disease (CTPD) network. This complex
network contains a large amount of redundant information. In order to obtain the most useful treatment information, find out the parts with greater contribution to
intervention and have higher correlation between targets of active components, we developed a new node importance characterization method. Based on this method,
we select the effective intervention space from the CTPD network. In the effective intervention space, we predicted CGFC by using the CCC model. Finally, the CGFC
was used to infer the underlying molecular mechanism of CHSGS in treating depression.

FIGURE 2 |Number of evidence and function analysis of pathogenic genes. (A): The list of top 10 genes with the highest number of evidences. (B): Top 30 enriched
pathways of pathogenic genes.
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show that different components in CHSGS act as a synergistic
mode; in this process, the specific components play a leading
role.

Predict Targets of Active Components and
Establish the Components-Targets
Network
We used three tools to predict the target genes of the active
components and got 1,286 predicted target genes. To probe the
therapeutic mechanism of CHSGS in treating depression, 249
active components and 1,286 targets (Supplementary Table S5)
were utilized to establish the C-T network. Most of these active
components are associated with multiple targets, resulting in

9822 component–target associations between active components
and targets. The average number of targets of per component is
39.39. It indicates themulticomponent andmultitarget features of
CHSGS for treating of depression. Among these components,
vanillic acid (CHGSG4, degree � 258) has the highest number of
targets.

Moreover, we previously described that the common
components shared by two or more botanical drugs and
specific components of certain botanical drugs, kaempferol
(CHSGS20), vanillin (CHSGS26), naringenin (CHSGS137),
limetin (CHSGS158), L-Menthone (CHSGS35), and patchouli
alcohol (CHSGS29) also have higher targets number. The degrees
of these components are 78, 95, 36, 61, 16, and 16, respectively.
These results suggested that the pivotal roles of these components

TABLE 2 | The number of components collected in the published databases and active components screened by ADMET models in CHSGS.

Botanical drugs #Components #Active components

Bupleurum scorzonerifolium Willd. (CH) 354 79
Citrus reticulata Blanco (CP) 74 14
Ligusticum striatum DC. (CX) 193 35
Cyperus rotundus L. (XF) 104 29
Citrus × aurantium L. (ZQ) 17 6
Paeonia lactiflora Pall. (SY) 166 45
Glycyrrhiza uralensis Fisch. ex DC. (GC) 283 82
Total (remove duplication) 1,191 (1,012) 290 (249)

FIGURE 3 | Specific and common components of botanical drugs in CHSGS.
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in treating depression and further confirmed that CHSGS has the
effect of multi-targets treatment of depression.

In the component–target network, the mean degree of targets
for different components is 7.63. Interestingly, majority of these
targets are confirmed related to the pathogenesis of depression
and that may indicate potential therapeutic mechanisms of
CHSGS on depression. These results indicated that CHSGS act
synergistically to treat depression in a multi-component manner.

Intervention-Response Proteins Selection
and Validation From Effective Intervention
Space
The process of drug action is a complex process which is
responded by series of different proteins or genes. These
proteins and genes are regulated by or co-occurred with other
proteins or genes in the process of disease occurrence and
development, which constitute a complex network related to
disease progression. The therapeutic effect could be
propagated through the network. Here, we map the
pathogenic genes and targets of C-T network to the integrated
PPI network to construct the component–target–pathogenic
gene–disease (CTPD) network. This complex network contains
2,548 nodes and 41,378 edges. In this huge network, the
correlation and transmission of target genes to pathogenic
genes is the fundamental part. Thus, we take
targets–pathogenic genes (T-P) subnetwork in the CTPD
network for further analysis. Importance of nodes in a
network is the key topological property that can be used to
evaluate the roles of nodes in the network. For each node i in
the T-P network, if the important score of a node is more than the
median important score of all nodes in the network, such node is
believed to play a pivotal role in the network structure and can be
treated as a hub node (Liu et al., 2016). Following this rule, the
important score of each node in the T-P network was calculated
and then compared with the median important score of all nodes
in the network; the passed nodes and their edges in the T-P
network were kept and defined as effective intervention space.
The effective intervention space contains 1,019 nodes and 18,466
edges; each node represents one therapeutic protein, and thus, we
identified 1,019 intervention-response proteins from the effective
intervention space. To test whether the intervention-response
proteins we selected from effective intervention space could cover
the pathogenic genes of depression at the functional level, we used
all target genes of active components and pathogenic genes of
depression to do pathway and GO analysis and found that there
are 150 and 1991 common enriched pathways and GO terms,
respectively. These enriched pathways and GO terms are the
functional basis of CHSGS in treating depression, which we
selected for evaluating effective intervention space and
intervention-response proteins. The number of intervention-
response proteins enriched pathways and GO terms were 143
(p < 0.05) and 1905 (p < 0.05). The intervention-response
proteins enriched pathways and GO terms were found to
cover 95.3 and 95.7% of the 150 common pathways and 1991
common GO terms (Figure 4A). These results prove that we
proposed effective intervention space based on the novel

importance calculation method of nodes which is reliable. We
compare the performance of proposed models by using the
coverage of 150 common KEGG enriched pathways and 1991
common GO terms with other widely used methods on the
calculation of node importance, including betweenness
centrality, closeness centrality, clustering coefficient, degree,
and neighborhood connectivity. Results show that our model
has the highest coverage both at enriched pathways and GO
terms. These results further prove the reliability and accuracy of
our novel node importance calculation method.

There are three categories of intervention-response proteins in
effective intervention space. The first category is the direct
interactions between the component targets and pathogenic
genes. We defined this category as the essential common
targets. The second category is the interactions of disease-
specific targets. The third category is the interactions of
component-specific targets. In order to test whether the
effective intervention space can be replaced by essential
common targets, disease-specific targets or component-specific
targets for further optimization. We performed pathway analysis
on essential common targets, disease-specific targets,
component-specific targets, respectively. Results show that the
coverage proportion of enriched pathways of three categories
compared with the enrichment pathways of pathogenic genes is
90.7, 82, and 84.7%, respectively, (Figure 4B). The coverage
proportion of enriched GO terms of three categories compared
with the enrichment pathways of pathogenic genes is 81.5, 73.3,
and 55.9%, respectively, (Figure 4B). Far less than that of the
intervention-response proteins, these results confirmed the
accuracy and reliability of our proposed effective intervention
space and further demonstrated that the intervention-response
proteins selected in the effective intervention space play a key role
in the pathogenesis of depression.

CGFCExtracted Form Effective Intervention
Space
The CCC module was established to optimize effective
components and get the CGFC, which would be used to
clarify the molecular mechanism of CHSGS in the therapy of
depression. According to the contribution accumulation results,
the top eight components including vanillic acid (CHSGS4),
DTR (CHSGS163), apocynin (CHSGS109), isovanillic acid
(CHSGS79), phenylacetic acid (PAC, CHSGS149), Karenzu
DK2 (CHSGS177), benzoic acid (BOX, CHSGS11), and
quercetin (CHSGS2) contribute to 53.23% target coverage of
effective proteins. For further analysis, 61 components can
contribute to 90.08% target coverage of effective proteins,
while the target coverage of effective proteins quickly
increased to 95.12% after the 71 components were taken in
the CCC model. Thus, we selected the 71 components as the
CGFC (Figure 5 and Table 3). Higher target coverage of
effective proteins proved that the CGFC may play the leading
role and generate combination effects in the treatment of
depression.

For the analysis of CHSGS in the treatment of depression at
the functional level, we performed pathway analysis using CGFC
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targets and depression pathogenic genes, respectively. Among
them, the number of CGFC target–enriched pathways was 174
(p < 0.05), and the number of pathogenic gene–enriched
pathways was 181 (p < 0.05). The CGFC target–enriched
pathways were found to cover 86.19% of the pathogenic
gene–enriched pathways (Figure 6A). To our surprise, the
number of enriched pathways of full target is 184 (p < 0.05),
compared to the pathogenic genes, the coverage of enriched
pathway on CGFC targets and full targets was 83.7 and 81.5%,
respectively. This result indicates that the CGFC selection model
could effectively select key targets and remove noise. These major
targets of CGFC were frequently involved in the PI3K-Akt
signaling pathway (hsa04151), MAPK signaling pathway
(hsa04010), cAMP signaling pathway (hsa04024), Rap1
signaling pathway (hsa04015), calcium signaling pathway
(hsa04020), oxytocin signaling pathway (hsa04921),
phospholipase D signaling pathway (hsa04072), sphingolipid
signaling pathway (hsa04071), relaxin signaling pathway
(hsa04926), thyroid hormone signaling pathway (hsa04919),
ErbB signaling pathway (hsa04012), and VEGF signaling

pathway (hsa04370), etc. (Figure 6B). Among these pathways,
the PI3K-Akt signaling pathway (hsa04151), MAPK signaling
pathway (hsa04010), and cAMP signaling pathway (hsa04024)
were widely reported to be related to the onset and treatment of
depression. These results demonstrate that CHSGS can exert a
therapeutic role in the treatment of depression through
cooperation of multi-signaling pathways.

Potential Mechanisms Analysis of CGFC
Treats Depression
In order to further clarify the potential mechanism of CGFC-
mediated CHSGS in treating depression, we compared and
analyzed the pathways enriched by CGFC targets and
pathogenic genes and found that 17 of the top 30 pathways
were overlapped (Figure 7), and among these 17 pathways, the
cAMP signaling pathway (HSA 04024), dopaminergic synapse
(HSA 04728), PI3K-Akt signaling pathway (HSA 04151), and
MAPK signaling pathway (HSA 04010) are widely reported to be
related to the pathogenesis and treatment of depression. For

FIGURE 4 | Validation of effective intervention space. (A): Compare our proposed methods with other widely used methods. (B): The proportion histogram of
component-specific targets, disease-specific targets, essential common targets, and therapeutic proteins in common enriched pathways and GO terms.
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exploring the mechanism of CHSGS in treating depression at the
system level, we constructed a comprehensive signaling pathway
using these four important molecular pathways (Supplementary
Figure S1).

In this comprehensive pathway, we use the maximum targeting
weight (MTW) model to calculate the cascade pathways, which
indicate drug enter cells through extracellular receptors to cause a
cascade effect of downstream genes. 13 Cascade pathways with
scores greater than 0.7 were retained for further analysis (Table 4).

These cascade pathways are integrated, two main cascade
targeting modules can be obtained (Figure 8). The first module
controls the downstream GRIA1, GRIN2A, GSK3A, CREB3,
BDNF, FOS, ATF2, MAPK8, MAPK14, JUND, RHOA, and
other genes to treat depression through ADCYAP1R1--GNAS--
ADCY1—Camp--PRKACA/RAPGEF3 cascade reactions. In this
module, ADCYAP1R1, PRKACA,MAPK8,MAPK14, GRIA1, and
FOS are both targeted genes of CGFC and pathogenic genes of
depression; RHOA is a specific targeted gene of CGFC, and most
of these genes are related to the pathogenesis or treatment of
depression. The second module control downstream FOS to treat
depression by targeting the DRD1/DRD5--GNAQ--PLCB1--
DAG--PRKCA cascade reaction. In this module, DRD1, DRD5,
PRKCA, and FOS are both pathogenic genes and targeted genes of
CGFC. Most of these targeted genes are related to the pathogenesis
or treatment of depression. The above results show that the
components in CGFC play a therapeutic role in treating
depression through a synergistic way.

Experimental Evaluation of Important CGFC
To validate the accuracy and reliability of our model, the
important CGFC predicted were experimentally validated in
PC12 cells. The effect of vanillic acid was evaluated in PC12
cells. The results showed that 0.1, 1, 10, 25, and 50 μM vanillic
acid had almost no effects to PC12 cells (Figure 9A). MTT results
showed that vanillic acid (10 and 25 μM) markedly increased the
cell viability as compared with that of the corticosterone group
(Figure 9B). LDH was utilized to evaluate the damage and
toxicity of cells. As shown in Figure 9C, the level of LDH
release was markedly increased after corticosterone treatment,
and vanillic acid (10 and 25 μM) significantly decreased the level

of LDH, which suggested that vanillic acid possesses a protective
effect against corticosterone-induced neurotoxicity in PC12 cells
by reducing LDH release.

Previous pharmacological studies have shown that vanillic
acid treatment could block oxidative damage in PC12 cells and
exert the effect of neuroprotective (Kim et al., 2007). It has been
reported that vanillic acid could improve the nervous behavior of
the depressed model mice and raise the content of 5-HT in the
mouse plasma, which may affect the metabolization of the 5-HT
loop and the activities in the hippocampus, amygdala and other
brain areas to prevent depression (Wang et al., 2013). The above
experimental results suggested that vanillic acid may possess
obvious beneficial effects in the treatment of depression.

DISCUSSION

TCM plays therapeutic roles in treating complex diseases with the
characteristics of multi components and multi targets. These
components and targets form a complex intervention network.
How to find the most effective intervention relationship in this
intervention network and find CGFC is the key to understand the
material basis and molecular mechanism of TCM and is also the
basis for the secondary development of TCM. At present, the
main purpose of formulas optimizing based on network
pharmacology is to improve the curative effect of the formula
and reduce the nonpharmacological factors. According to the
principle of compatibility of TCM, each formula consists of
several botanical drugs, each of which contains hundreds of
chemical components. Whether botanical drugs or ingredients
in the formula are necessary, especially when treating a specific
disease, still needs analysis and verification. Through compound
optimization, these botanical drugs and components with a better
intervention effect can be screened out, while those botanical
drugs and components with the antagonistic effect and even side
effects are removed, making the compound simpler and more
effective (Wang et al., 2020a; Wang et al., 2020b; Gao et al., 2020;
Yang et al., 2021).

In order to better optimize the classical formulas with clinical
efficacy, network pharmacology methods and bioinformatics

FIGURE 5 | The accumulative CCC of active components in effective intervention space.
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TABLE 3 | The information of CGFC in CHSGS.

ID molecule_name MW Hdon Hacc RBN logP OB (%)

CHSGS2 quercetin 302.24 5 7 1 1.07 46.43
CHSGS3 4-Hydroxybenzoic acid 138.12 2 3 1 1.58 30.15
CHSGS4 vanillic acid 168.15 2 4 2 1.7 35.47
CHSGS5 Nonanal 142.24 0 1 7 3.81 40.28
CHSGS11 benzoic acid 122.12 0 2 1 1.72 31.55
CHSGS13 Jaranol 314.29 2 6 3 2.8 50.83
CHSGS17 isorhamnetin 316.26 4 7 2 1.31 49.6
CHSGS18 formononetin 268.26 1 4 2 3.01 69.67
CHSGS19 Calycosin 284.26 2 5 2 2.82 47.75
CHSGS20 kaempferol 286.24 4 6 1 1.23 41.88
CHSGS26 vanillin 152.15 1 3 2 1.31 52
CHSGS51 Polyhydric alcohols 92.09 3 3 2 -1.93 72.87
CHSGS52 Indole-3-carboxylic acid 161.16 2 2 1 1.79 33.86
CHSGS54 adenine 135.13 3 4 0 -0.38 62.81
CHSGS56 salicylic acid 138.12 2 3 1 1.96 32.13
CHSGS60 Dibutylphenol 206.32 1 1 2 4.9 38.9
CHSGS63 Methylgallate 184.15 3 5 2 1.01 30.91
CHSGS67 albiflorin_qt 318.32 2 6 4 0.53 66.64
CHSGS68 (3R,3aR,6S,7aR)-6-hydroxy-3,6-dimethyl-3a,4,7,7a-tetrahydro-3H-benzofuran-2,5-dione 198.22 1 4 0 0.02 104.94
CHSGS76 scoparone 206.19 0 4 2 1.91 74.75
CHSGS78 hexanoic acid 116.16 1 2 4 1.88 73.08
CHSGS79 Isovanillic acid 168.15 2 4 2 1.81 39.42
CHSGS81 Valerophenone 162.23 0 1 4 2.94 42.58
CHSGS82 Isobutyrophenone 148.2 0 1 2 2.54 80.37
CHSGS85 Perlolyrine 264.28 2 3 2 2.66 65.95
CHSGS86 senkyunolide-C 204.22 1 3 2 3.49 46.8
CHSGS87 senkyunolide-E 204.22 1 3 2 1.93 34.4
CHSGS89 1-Acetyl-beta-carboline 210.23 1 2 1 2.53 67.12
CHSGS93 WLN: 2VR 134.18 0 1 2 2.15 60.17
CHSGS96 3-cyclohexen-1-ol 98.14 1 1 0 0.96 70.57
CHSGS97 4,7-Dihydroxy-3-butylphthalide 222.24 2 4 3 2.69 106.09
CHSGS109 Apocynin 166.17 1 3 2 1.62 31.71
CHSGS114 Chryseriol 300.26 3 6 2 2.53 35.85
CHSGS116 m-Methylacetophenone 134.18 0 1 1 2.08 40.63
CHSGS118 Lupiwighteone 338.35 3 5 3 3.23 51.64
CHSGS119 7-Methoxy-2-methyl isoflavone 266.29 0 3 2 3.48 42.56
CHSGS121 Visnagin 230.22 0 4 1 1.92 44.25
CHSGS128 Isodalbergin 268.26 1 4 2 3.76 35.45
CHSGS130 Khell 260.24 0 5 2 1.78 33.19
CHSGS134 Hyndarin 355.43 0 5 4 3.09 73.94
CHSGS141 Nonenoic acid 156.22 1 2 6 3.53 65.17
CHSGS143 3,5,6,7-tetramethoxy-2-(3,4,5-trimethoxyphenyl)chromone 432.42 0 9 8 2.59 31.97
CHSGS145 Ayapanin 176.17 0 3 1 2.06 41.55
CHSGS146 8-NONENOIC ACID 156.22 1 2 7 2.84 52.31
CHSGS149 Phenylacetic acid 136.15 1 2 2 1.72 72.35
CHSGS151 cis-2-Undecenal 168.28 0 1 8 4.93 47.07
CHSGS154 Ethyl protocatechuate 182.17 2 4 3 1.83 35.77
CHSGS160 (E)-non-2-en-4-one 140.22 0 1 5 2.98 37.78
CHSGS161 Cumic acid 164.2 1 2 2 2.86 45.78
CHSGS163 (2R)-2-amino-3-(1H-indol-3-yl)propionic acid 204.23 4 3 3 -1.1 75.63
CHSGS164 Veratryl alcohol 168.19 1 3 3 1.27 71.49
CHSGS171 (E)-1-(2,4-dihydroxyphenyl)-3-(2,2-dimethylchromen-6-yl)prop-2-en-1-one 322.35 2 4 3 4.46 39.62
CHSGS177 Karenzu DK2 224.25 0 2 4 3.14 62.26
CHSGS181 Gancaonin B 368.38 3 6 4 3.14 48.79
CHSGS184 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-(3-methylbut-2-enyl)chromone 354.35 4 6 3 2.99 44.15
CHSGS201 (-)-Medicocarpin 432.42 4 9 4 1.26 40.99
CHSGS206 3-(4-hydroxyphenyl)-7-methoxychromen-4-one 268.26 1 4 2 2.92 38.37
CHSGS207 1-Methoxyphaseollidin 354.4 2 5 3 3.66 69.98
CHSGS208 Quercetin der. 330.29 3 7 3 2.55 46.45
CHSGS209 (Z)-1-(2,4-dihydroxyphenyl)-3-phenylprop-2-en-1-one 240.25 2 3 3 3.3 73.18
CHSGS211 3′-Methoxyglabridin 354.4 2 5 2 3.76 46.16
CHSGS223 Glycyrrhiza flavonol A 370.35 4 7 1 2.18 41.28
CHSGS226 Phaseol 336.34 2 5 2 4.59 78.77
CHSGS227 Mipax 194.18 0 4 4 1.96 57.4

(Continued on following page)
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algorithms are used to screen the key corresponding relationships
from component targets to pathogenic genes. In this process, we
established a new node importance calculation method. Based on
this method, we constructed the effective intervention space and
traced the CGFC from the effective intervention space, then
inferred the possible mechanism using the maximum target
weight model based on the CGFC. It provides methodological
reference for the secondary development of TCM and the
development of new drugs.

At present, how to optimize and obtain the CGFC and analyze
their mechanism of action is the basis for quantification of TCM.
TCM emphasizes a holistic and systematic view and regards the
integrated treatment of different botanical drugs and ingredients
as a coordinated whole. Network pharmacology has the
characteristics of systematisms and integrity and conforms to
the core theory of TCM. Network pharmacology emphasizes
multitarget regulation of signal pathways to improve drug efficacy
and reduce toxic and side effects. Network pharmacology is

widely used to speculate the potential mechanism in treating
complex diseases in TCM (Wang et al., 2021). For example, to
determine the potential mechanism of the formula in TCM for
treating complex diseases and infer the mechanism of “treating
the same disease with different methods” and “treating different
diseases with the same method,” but there are few reports on
optimization research of TCM based on network pharmacology.
To address this issue, we proposed a novel bioinformatics analysis
of the network pharmacology model to obtain the CGFC of
CHSGS in the treatment of depression and analyze the potential
mechanism of CGFC, which were verified by published literature
reports. Our method has several advantages:

In the process of analyzing the therapeutic mechanism,
network pharmacology formed a fixed analysis rule. In this
rule, the first step is to collect the components of botanical
drugs, do ADME/T screening for selecting the active
components, then predict targets and infer the molecular
mechanism. The flow chart really solves the molecular

TABLE 3 | (Continued) The information of CGFC in CHSGS.

ID molecule_name MW Hdon Hacc RBN logP OB (%)

CHSGS228 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one 302.28 3 6 2 2.52 47.74
CHSGS234 Citromitin 404.41 0 8 7 2.61 86.9
CHSGS237 nobiletin 402.39 0 8 7 2.61 61.67
CHSGS238 7-Demethylsuberosin 230.26 1 3 2 3.41 41.19
CHSGS241 N-Methyltyramine 151.21 2 2 3 0.48 75.52
CHSGS245 Nerylacetone 194.31 0 1 6 4.59 45.53
CHSGS247 Cubebin 356.37 1 6 4 2.54 57.13

FIGURE 6 | Pathway enrichment analysis of the targets of CGFC. (A). Venn diagram shows the coincidence of enrichment pathways of full targets, pathogenic
genes, and CGFC targets. (B). The top 30 enriched pathways of CGFC targets, the size of the circle represents the number of genes enriched in the pathways, and the
color change of the circle represents the significance of the enrichment of genes in the pathways.
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mechanism of some formulas for treating complex diseases in
TCM, such as decoding the synergistic mechanism of zhi-zhu
wan for functional dyspepsia (Wang et al., 2018), analyzing the
underlying mechanism of Kaixin powder in treating Alzheimer’s
disease (Luo et al., 2020), investigating the mechanism of
Oryeong-san formula for the treatment of hypertension (Kim
et al., 2019). However, there are also exist two problems. One is
the redundancy and interference of component target networks.

The other is that most network pharmacological analysis ignores
that the intervention effect of components is a cascade
transmission process, specifically refers to the transmission of
the intervention effect from target genes to pathogenic genes. In
order to solve these two problems, we have adopted some new
strategies. The first strategy is to construct a new node importance
calculation method. Comparison results show that our proposed
node importance calculation method has better performance on
function coverage than several commonly used node importance
calculation methods. Another strategy is that we consider that the
intervention effect of component targets can be transmitted to
pathogenic genes through the PPI network, and based on this, we
construct a complex network of components–targets–pathogenic
genes–diseases, and then, use our proposed node importance
calculation method to obtain the relatively important partial
relationship between targets and pathogenic genes to construct
and verify the effective intervention space. We found that the
ratio of the EIS gene–enriched pathways and GO terms to the
reference both reached above 95%, which also confirmed the
reliability and accuracy of the constructed EIS. In order to further
verify the EIS, we divide the relationships in the EIS into three
categories. The first category is the direct interactions linking the
component targets to pathogenic genes and was defined as the
interactions of essential common targets. The interactions of

FIGURE 7 | Enriched pathways of CGFC targets and pathogenic genes. The red part represents the shared pathways of CGFC targets and pathogenic genes.

TABLE 4 | Cascade pathways predicted by the MTW model.

Potential mechanism chain Score

ADCY1--cAMP--PRKACA--RHOA 0.962
ADCY1--cAMP--PRKACA--GRIA1 0.939
ADCY1--cAMP--PRKACA--GRIN2A 0.916
DRD1--GNAQ--PLCB1--DAG--PRKCA--FOS 0.867
ADCY1--cAMP--PRKACA--GRIA1--GSK3A 0.801
DRD5--GNAQ--PLCB1--DAG--PRKCA--FOS 0.793
ADCY1--cAMP--PRKACA--CREB3--BDNF 0.790
ADCY1--cAMP--PRKACA--CREB3--FOS 0.754
ADCYAP1R1--GNAS--ADCY1--cAMP--PRKACA--RHOA 0.735
ADCYAP1R1--GNAS--ADCY1--cAMP--PRKACA--GRIA1 0.720
ADCY1--cAMP--PRKACA--MAPK14--ATF2 0.710
ADCY1--cAMP--RAPGEF3--MAPK8--JUND 0.710
ADCYAP1R1--GNAS--ADCY1--cAMP--PRKACA--GRIN2A 0.705
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pathogenic genes were defined as the second category. The
interactions of component-specific targets belong to the third
category in order to test whether the effective intervention space
can be replaced by interactions of essential common targets, the
interactions of pathogenic genes or the interactions of component-
specific targets. In the functional pathways and GO terms
enrichment analysis, we found that the genes in the effective
intervention space had the highest coverage proportion compared
to the enrichment pathways of pathogenic genes. This confirmed
once again the accuracy and reliability of our proposed EIS and

further demonstrated that the intervention-response proteins
selected in the EIS play a key role in the pathogenesis of depression.

We used a dynamic programming algorithm to infer the
CGFC from the genes in the effective intervention space and
made functional analysis and verification. It was found that the
target genes of the CGFC were enriched to 174 pathways, with
156 pathways coinciding with the enriched pathways of
pathogenic genes, accounting for 86.19%, while the enriched
pathways of the whole CHSGS target genes only have 150
pathways coinciding with the pathogenic genes, accounting for

FIGURE 8 | Two cascade targeting modules merged by MTW-predicted cascade pathways. Red nodes mean the genes are both the targets of CGFC and
pathogenetic genes of depression. Light green nodes mean the CGFC specific target genes. Gray nodes represent the specific pathogenetic genes.

FIGURE 9 | Effect of vanillic acid aloneonPC12cells (A) and effect of vanillic acid on corticosterone-induced apoptosis in PC12 cells (B), effect of vanillic acid on LDH leakage
on corticosterone-treated PC12 cells (C). **p < 0.01, ***p < 0.001 compared with that of the control group. #p < 0.05, ##p < 0.01 compared with the corticosterone group.
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82.87% of the pathogenic gene enrichment pathways. This result
indicates that after optimization, invalid or weak effect
relationships were removed, and the functional coverage rate
was improved. It also shows the reliability of our effective
intervention space and the strategy of selection of CGFC.

The CGFC contains 71 components and is extracted from the
effective intervention space; after that the enrichment pathway of
these component target genes is combined for decoding the potential
mechanism. To address this issue, we design a maximum target
weight model to make mechanism speculation. The core idea of the
model is to ensure that drugs enter cells from outside and target as
many pathogenic genes as possible with the lowest cost. We
predicted 13 functional cascade chains and after summarizing
these cascade chains. We found that they were mainly
concentrated in two major cascade signal modules. The first
module controls the downstream GRIA1, GRIN2A, GSK3A,
CREB3, BDNF, FOS, ATF2, MAPK8, JUND and other genes to
treat depression through the cascade reaction of ADCYAP1--
ADCYAP1R1--GNAS--ADCY1--cAMP--PRKACA. The second
module is target to the DRD1/5-GNAQ-PLC B1-DAG-PRKCA
cascade signal to control the downstream FOS to treat
depression. Both modules start from typical receptors and
regulate downstream genes through protein kinase A or C to
treat depression after cascade signal changes. Particularly,
ADCYAP1R1 encodes the type I adenylate cyclase activated
polypeptide receptor, which is a member of g protein coupled
receptor (GPCRs). The receptor mediates various biological
actions of adenylate cyclase-activated polypeptide 1 (ADCYAP1).
ADCYAP1 is the main regulator of central and peripheral stress
responses needed to restore and maintain internal balance (Mustafa,
2013). It can stimulate adenylate cyclase which is encoded by
ADCY1 and increase cyclic adenosine monophosphate (cAMP)
levels (Fimia and Sassone-Corsi, 2001; Mustafa, 2013); cAMP
regulates pivotal physiologic processes including metabolism,
secretion, calcium homeostasis, muscle contraction, cell fate, and
gene transcription. cAMP acts directly on protein kinase A
(PRKACA), PRKACA modulates, via phosphorylation, a number
of cellular substrates, including transcription factors, ion channels,
transporters, exchangers, intracellular Ca2+ -handling proteins, and
the contractile machinery (Lizcano et al., 2000; Voglis and
Tavernarakis, 2006; Gerlo et al., 2011). Dopamine (DA) is an
important and prototypical slow neurotransmitter in the
mammalian brain, where it controls a variety of functions
including locomotor activity, motivation and reward, learning and
memory, and endocrine regulation. Dopamine D1 and D5 receptors
(DRD1 and DRD5) are typical G protein-coupled receptors (GPCR)
mainly expressed in the neurogenic area, with high constitutive
activity and belong to the D1-like receptors (D1Rs), D1 and D5
receptors, both positively coupled to adenylyl cyclase and cAMP
production, D1-like receptor stimulation activates PKA to potentiate
subthreshold L-type Ca2+ currents, yet it acts via PKC to suppress
large amplitude Ca2+ spikes, thereby tuningCa2+ currents to have the
greatest activation in the voltage range necessary to produce spikes.
Coupled with the D1 receptor–mediated increase in INap and
decrease in K+ currents, D1 receptor activation greatly prolongs
the output of prefrontal pyramidal neurons (Neve et al., 2004;
Beaulieu and Gainetdinov, 2011).

CONCLUSION

A network pharmacology model–based bioinformatics
algorithm was established to extract the core components
group and decode the mechanisms of CHSGS in the
treatment of depression. Compared with other published
work, the effective intervention space construction strategy
based on the novel node importance calculation method,
CGFC prediction and validation strategy, and maximum
targeting weight model for mechanism speculation were
reported. Our research is a computational mining work based
on pharmacological basic data, which provides a feasible scheme
to reduce the verification scale for the experiment, provides
methodological reference for the optimization of the core
components group and interpretation of the molecular
mechanism in the treatment of complex diseases using TCM.

However, there are some limitations in this study. Firstly,
more components from the core group of functional components
should be selected for validating the reliability of our approach.
Secondly, the precise mechanisms were speculated by maximum
targeting the weight model warrant further validation. Finally, the
undirected network was utilized in our algorithm, which ignores
the activation or inhibition effects of the targets.

In the era of big data and artificial intelligence, network
pharmacology is helpful to study the TCM formula
systematically. There are some suggestions for future research in
network pharmacology. The dose-effect relationship of TCM
components should be considered. Metabolites of TCM after
entering the body may also be the material basis for exerting
therapeutic effects, and the metabolic process of TCM in the body
also needs to be considered in the network pharmacology study. In
summary, there is still a long way to go in the quantification and
digitization of TCM.
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