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Background: The dysfunctional blood-brain barrier (BBB)-glymphatic system is
responsible for triggering intracerebral amyloid-beta peptide (Ap) accumulation and
acts as the key link between ischemic stroke and dementia dominated by Alzheimer’s
disease (AD). Recently, pyroptosis in cerebral ischemia and reperfusion (I/R) injury is
demonstrated as a considerable mechanism causing BBB—glymphatic dysfunctions and
AP acute accumulation in the brain. Targeting glial pyroptosis to protect BBB-glymphatic
functions after cerebral I/R could offer a new viewpoint to prevent Ap accumulation and
poststroke dementia. Yi-Zhi-Fang-Dai formula (YZFDF) is an herbal prescription used to
cure dementia with multiple effects of regulating inflammatory responses and protecting
the BBB against toxic Ap-induced damage. Hence, YZFDF potentially possesses
neuroprotective effects against cerebral I/R injury and the early pathology of poststroke
dementia, which evokes our current study.

Objectives: The present study was designed to confirm the potential efficacy of YZFDF
against cerebral I/R injury and explore the possible mechanism associated with alleviating
AP acute accumulation.

Methods: The models of cerebral I/R injury in rats were built by the method of middle
cerebral artery occlusion/reperfusion (MCAQO/R). First, neurological function assessment
and cerebral infarct measurement were used for confirming the efficacy of YZFDF on
cerebral I/R injury, and the optimal dosage (YZFDF-H) was selected to conduct the
experiments, which included Western blotting detections of pyroptosis, AB+.42 oligomers,
and NeuN, immunofluorescence observations of glial pyroptosis, aquaporin-4 (AQP-4),
and AB locations, brain water content measurement, SMI 71 (a specific marker for BBB)/
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AQP-4 immunohistochemistry, and Nissl staining to further evaluate BBB-glymphatic
functions and neuronal damage.

Results: YZFDF obviously alleviated neurological deficits and cerebral infarct after cerebral
I/Rinrats. Furthermore, YZFDF could inactivate pyroptosis signaling via inhibiting caspase-
1/11 activation and gasdermin D cleavage, ameliorate glial pyroptosis and
neuroinflamsmation, protect against BBB collapse and AQP-4 depolarization, prevent
AB acute accumulation and ApB4.42 oligomers formation, and reduce neuronal damage
and increase neurons survival after reperfusion.

Conclusion: Our study indicated that YZFDF could exert neuroprotective effects on
cerebral I/R injury and prevent Ap acute accumulation in the brain after cerebral I/R
associated with inhibiting neuroinflammation-related pyroptosis and BBB-glymphatic
dysfunctions.

Keywords: Yi-Zhi-Fang-Dai formula, cerebral ischemia and reperfusion injury, dementia, neuroinflammation,

pyroptosis, blood-brain barrier-glymphatic system, aquaporin-4, amyloid-beta peptide

INTRODUCTION

Alzheimer’s disease (AD), a common neurodegenerative disease,
comprises the major type of dementia and is causing a high
socioeconomic impact with the advancement of world population
aging (Alzheimer’s Association, 2021). It is known that amyloid-
beta peptide (AP) accumulation acts as a core factor among the
multifaceted etiology of AD, which is closely associated with the
cerebrovascular dysfunctions, especially brain microcirculation
disturbance (Bell and Zlokovic, 2009; Yamazaki and Kanekiyo,
2017; Jack et al., 2018; Hampel et al,, 2021; Kim et al., 2021).
Experimental and clinical research is emerging to indicate that
cerebral ischemia and reperfusion (I/R) can trigger both acute
and chronic accumulation of AP in the brain which exacerbates
cerebral I/R injury and accounts for the occurrence of dementia
induced by ischemic stroke (van Groen et al., 2005; Song et al.,
2013; Liu et al., 2015; Martins et al., 2019). Thus, maintaining the
clearance of A after cerebral I/R could offer a new therapeutic
approach to prevent poststroke cognitive impairment and
development into dementia (Goulay et al., 2020).

The normal blood-brain barrier (BBB) is an essential
condition for keeping the balance of intracerebral and extra-
cerebral AP, and accordingly BBB breakdown has been
demonstrated as an early biomarker prior to appearance of
cognitive impairment (Nation et al, 2019; Hussain et al,
2021). In addition to the BBB, the glymphatic system is
another considerable pathway for the clearance of AP in the
brain (Tarasoff-Conway et al., 2015). Endfeet of astrocytes are the
main components of both the BBB and glymphatic system which
contribute to maintain the homeostasis of brain
microenvironments, and aquaporin-4 (AQP-4) on astrocytic
endfeet is a water channel protein with high polarization and
essential for neurovascular coupling and glymphatic flow to
facilitate the clearance of metabolites such as AP (Nakada
et al., 2017). Thus, in cerebral I/R injury, the loss of AQP-4
polarization on astrocytic endfeet is considered as an important
factor of BBB-glymphatic dysfunctions that are the vital

pathological change causing the onset and development of
dementia (Verheggen et al., 2018; Goulay et al., 2020).
Inflammation is inherent across the whole course of both
ischemia and  reperfusion stages, and accordingly
neuroinflammation acts as the fundamental cause and
meanwhile as the consequence of cerebral I/R injury (Liu
et al, 2014; Du et al, 2021). Recently, pyroptosis, a pro-
inflammatory cell death, has been demonstrated as a crucial
pathological link and gasdermin D (GSDMD) as its key
effector in cerebral I/R injury (Zhang et al.,, 2019). Canonical
pyroptosis was deemed to rely on the activation of
inflammasomes represented by nucleotide-binding
oligomerization — domain-like receptors pyrin domain-
containing 3 (NLRP3)/apoptosis-associated speck-like protein
containing a caspase activation and recruitment domain
(ASC)/caspase-1 to cleave GSDMD, causing the secretion of
pro-inflammatory mediators such as cleaved interleukin-1p
(IL-1B) (Shi J. et al, 2015). However, in the noncanonical
pyroptosis pathway, GSDMD is the direct substrate of caspase-
11 (orthologous caspase-4/5 in humans), and the N-terminal
fragment (GSDMD-N) from the cleavage of full length GSDMD
(GSDMD-FL) is critical for the formation of membrane
nanopores leading to cell death. Meanwhile, as the upstream
signaling, GSDMD-N activates the NLRP3/ASC/caspase-1
pathway and then results in the maturation and secretion of
cleaved IL-1B (Kayagaki et al., 2015; Yi, 2018; Matikainen et al.,
2020). Our recent study (Lyu et al., 2021) indicated that caspase-
11-mediated pyroptosis after cerebral I/R focuses on glial cells
(microglia and astrocytes) and is a considerable factor
aggravating BBB-glymphatic dysfunctions and Ap accumulation.
As one hallmark of cerebral I/R injury, BBB breakdown in the
ischemic period is exacerbated by reperfusion and followed by a no-
reflow phenomenon of capillaries (Mohamed Mokhtarudin and
Payne, 2015; Burrows et al, 2016; Huang et al, 2020). In
addition to intracerebral Af retention caused by microcirculation
disturbance, activated platelets contained in microthrombosis during
the ischemic period and after I/R are demonstrated as the potential
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TABLE 1 | Components of Yi-Zhi-Fang-Dai formula.

Latin name English name

Ginkgo biloba

Panax ginseng C. A. Meyer
Cistanche deserticola Ma
Acorus tatarinowii

Ginkgo biloba leaves
Ginseng

Cistanches Herba
Grassleaf sweetflag rhizome

peripheral source of acute AB accumulation in blood vessels
including capillaries and nearby brain tissues (Martins et al,
2019; Carbone et al, 2021). AP accumulation in the brain can
raise the formation of a toxic Ap-like AP, 4, oligomer, cause swelling
in astrocytic endfeet, and also lead to dysregulation of capillaries by
acting on pericytes, impairing energy supply for neurons (Merlini
et al,, 2011; Cavallucci et al., 2012; Nortley et al., 2019). Therefore,
early protection of microcirculation and elimination of
thromboinflammation in microcirculation after cerebral I/R are
both crucial therapeutic strategies for the clearance of metabolites
such as AP and the prevention of poststroke dementia.

According to traditional Chinese medicine (TCM) theories,
blood stasis in brain collaterals with stagnancy of collateral-Qi in
a deficiency condition is regarded as the basic pathogenesis of
cerebral I/R injury (Wang B. et al, 2021), thus invigorating Qi
and dredging brain collaterals are basic TCM therapeutic principles
which consist of current therapeutic strategies emphasizing on
microcirculation protection and removal of obstructions. Herbs
have been widely used for thousands of years and are suitable for
treating complex diseases such as ischemic stroke and dementia with
the multicomponent and multitarget advantages (Yu et al,, 2020;
Singh et al, 2021). Yi-Zhi-Fang-Dai formula (YZFDF) is an
experiential herbal prescription (Chan et al, 2020) commonly
used to cure dementia cases by multiple efficacies of invigorating
Qi, dredging brain collaterals, and promoting neurological function
recovery. YZFDF is purely composed of herbal medicines with
various bioactive ingredients, such as bilobalide, ginkgolide A,
ginsenoside Rgl, cistanoside A, and a-asarone (Liu et al., 2016a).
Our previous work showed that YZFDF and EGDb761, the extracts
from its main herb (Ginkgo biloba leaves), can inhibit microglial
activation, regulate inflammatory responses, and protect the BBB
against toxic AP-induced damage in vitro and in vivo (Wan WB.
et al., 2014; Wan et al., 2016; Chan et al., 2020). Therefore, based on
our previous studies, the present study was designed to confirm the
potential therapeutic effects of YZFDF against cerebral I/R injury
and further preliminarily explore the possible mechanism associated
with  alleviating AP  acute  accumulation by  anti-
neuroinflammation-related  pyroptosis and BBB-glymphatic
dysfunctions.

MATERIALS AND METHODS

Components and Drug Powder Preparation
of YZFDF

YZFDF comprises four herbs as shown in Table 1, including
Ginkgo Biloba leaves, Ginseng, Cistanches Herba, and grassleaf
sweetflag rhizome, which were purchased from Shanghai

YZFDF Prevents Cerebral I/R-Induced Dementia

Chinese name Part used Ratio (%)
Yinxingye Dry leaves 30
Renshen Root and rhizome 30
Roucongrong Succulent stem 30
Shichangpu Rhizome 10

Honggiao Pharmaceutical Co., Ltd. (Shanghai, China). These
herbal medicines were identified by the TCM Preparation
Room of Shanghai Geriatric Institute of Chinese Medicine,
Shanghai University of Traditional Chinese Medicine. The
main active ingredient analysis of YZFDF by the methods of
high-performance liquid chromatography (HPLC) and mass
spectrometry (MS), as well as the chemical structures of each
ingredient were introduced in detail in our previous work (Liu
et al, 2016a). The YZFDF drug powder was prepared as
previously described (Liu et al, 2016a; Chan et al., 2020). In
brief, four herbal medicines were subjected twice to extraction
with 75% ethanol for 2 h. The herbal dregs of the extract solution
were removed after filtering. Subsequently, the filtered liquid was
concentrated using a rotary evaporator (BUCHI Labortechnik
AG, Flawil, Switzerland) and then dried to get a drug powder by
the freeze-drying method. The YZFDF power was kept in an
airtight container in the deep freezer (-36°C) for long-term
storage, and the powder was made into a suspension liquid
nearing usage and then stored at 4°C.

Animals

All animal experiments in this study were approved by the Ethics
Committee of Shanghai Jiao Tong University Affiliated Sixth
People’s Hospital and performed in accordance with the relevant
guidelines and regulations. Efforts were made as well to minimize
animal suffering during the whole experiments. Specific
pathogen-free (SPF) male Sprague-Dawley (SD) rats, weighing
200-230g, were purchased from the Shanghai Laboratory
Animal Research Center (Shanghai, China). The rats were
housed in a SPF barrier environment under standard
conditions at a controlled temperature (23 + 1°C) on a 12:12h
light-dark cycle. Experimental operations were carried out after
the acclimation of animals for several days with free access to food
and water.

Drug Administration and Experimental
Design

The common human daily dosage of raw YZFDF herbs is 100 g/
75 kg bodyweight. According to the formula (Lan et al., 2013) d,
= dpyman X 0.7/0.11, the common dosage of raw YZFDF herbs in
rats should be 8.48 g/kg/day, and the corresponding drug powder
dosage is 2.69 g/kg/day. The drug tolerance of a rat is generally
higher than that of the human, and thus we selected 2.8, 5.6, and
11.2 g/kg/day as the low, medium, and high drug powder dosages
of YZFDF in the present study, respectively. Accordingly, at the
first stage of this study, forty rats were randomly divided into five
groups: sham group (Sham), ischemia and reperfusion group (I/

Frontiers in Pharmacology | www.frontiersin.org

December 2021 | Volume 12 | Article 791059


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Lyu et al.

YZFDF Prevents Cerebral I/R-Induced Dementia

Sham

/R
YZFDF-L
YZFDF-M
YZFDF-H

Surgeries

TTC
Staining
3
Neurological Deficits Score ‘

5 ., |

M Administration: 3 days

MCAO or Sham: 1.5h

Oh 24h 72 h

First stage: Efficacy assessment
B

Reperfusion
Sustaining Administration

Sh:
e . Western Blotting )
Groups IR SuzesEies Immunofluorescence Brains
YZFDF-H Immunohistochemistry Collection
” Etc )
....... - >
Acclimati - .
COaO00 | Administration: 3 days Oh 24h
MCAO or Sham: 1.5 h

Second stage: Mechanism exploration

preliminarily exploring the possible mechanism.

FIGURE 1 | Schematic diagram of this study. (A) First stage aiming at the efficacy assessment of YZFDF against I/R injury. (B) Second stage of this study for further

Reperfusion
Sustaining Administration

R), YZFDF low-dosage group (YZFDF-L), YZFDF medium-
dosage group (YZFDF-M), and YZFDF high-dosage group
(YZEDEF-H). The rats in the YZFDF-treated groups were orally
administered with the corresponding drug powder dosage of
YZFDF (dissolved in distilled water), and the other rats were
given the same volume of distilled water. Drug administration
was performed twice a day at 9:00 and 16:00 for 3 days before the
surgery and lasted 3 days after the surgery until animal sacrifice.
According to the results of neurological function assessment and
measurement of cerebral infarct area, the optimal dosage of
YZFDF (YZFDF-H) was selected to conduct the following
experiments.

At the second stage of this study, forty-five rats were randomly
divided into three groups: sham group (Sham), ischemia and
reperfusion group (I/R), and YZFDF high-dosage group (YZFDEF-
H). Drug administration was performed as previously mentioned
for 3 days before the surgery and lasted until animal sacrifice for
24 h after reperfusion. The schematic diagram of this study is
exhibited in Figure 1.

Focal Cerebral I/R Injury Models

The models of focal cerebral I/R injury were built by the method
of left middle cerebral artery occlusion/reperfusion (MCAO/R) as
described in our previous studies (Yu et al., 2016; Yu et al., 2018).
In brief, rats were anesthetized with pentobarbital sodium (0.5%,
1 ml/100 g). After the skin disinfection and incision, the left

common carotid artery (CCA) was identified and exposed by
separation from surrounding tissues. Subsequently, the external
carotid artery (ECA) and internal carotid artery (ICA) were
dissected and exposed carefully. At first, the ICA was occluded
using a microvascular clip and the far end of the ECA was
fastened, followed by the ECA being cut at 1cm away from
the bifurcation between the ECA and ICA. Then, a nylon
monofilament (Beijing Sunbio Biotech, China) was inserted
into the ICA from the incision of the ECA with the
microvascular clip removed. At last, resistance could be felt
when the rounded tip of the monofilament reached the origin
of the middle cerebral artery (MCA) at the length of
18.5-19.5mm from the bifurcation, and then the
monofilament was fastened at ECA stump. After MCAO of
1.5h, the monofilament was withdrawn to implement
reperfusion. In the present study, the rats in I/R and YZFDEF-
treated groups were subjected to blinded MCAO/R surgeries,
while rats in the Sham group only underwent the same operation
with no insertion of the monofilament. During the whole course,
the cardiovascular rate and rectal temperature of all rats were
monitored and maintained.

Neurological Function Assessment

Neurological examinations were performed after reperfusion. In
order to exclude the interference of surgery failures, the rats
subjected to MCAO/R with no detectable neurological deficits
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were eliminated. The neurological deficit scores of rats at 24 and
72 h after reperfusion in the present study were evaluated on a 5-
point scale as previously described (Longa et al., 1989; Cai et al.,
2016): 0 = no deficit; 1 = failure to extend right forepaw; 2 =
circling to the right; 3 = falling to the right; 4 = no spontaneous
walking with a depressed level of consciousness.

Measurement of the Cerebral Infarct Area
The measurement of the cerebral infarct area by 2, 3, 5-triphenyl
tetrazolium chloride (TTC; Nanjing Jiancheng Bioengineering
Institute, Nanjing, Jiangsu, China) staining was carried out as
previously described (Yu et al, 2016). In brief, at 72 h after
reperfusion, the rats under deep anesthesia went through
cardiac perfusion with 200 ml normal saline. Subsequently,
their brains were taken out quickly and placed at —20°C for
20 min. Then, each brain was sliced into five coronal slices (2 mm
thickness) from the rostral to the caudal on the frozen ice pack,
and then the slices were stained with TTC solution away from
light for 20 min at 37°C. As a result, the infarct brain tissue was
stained to the white-colored area distinguished from the red-
colored non-infarct area. After the fixation of stained brain slices
with 4% paraformaldehyde for 24h, the percentages of the
cerebral infarct area were calculated by microscope image
analysis software (Image-Pro Plus, United States) according to
the following formula (Yu et al., 2016): [contralateral hemisphere
area-(ipsilateral hemisphere area-infarct area)/2xcontralateral
hemisphere area] x 100%.

Brain Water Content Measurement

The dry-wet weight method was used to measure the brain water
content. In Brief, the rats were sacrificed under deep anesthesia,
and their brains were quickly taken out. Then, ischemic and
nonischemic cerebral hemispheres were separated, immediately
weighed to obtain the wet weight (WW), and then placed in an
oven at 60°C for 24 h to obtain the dry weight (DW). The brain
water content was calculated with the following formula (Lan
et al, 2013): 100% x (WW-DW)/WW.

Western Blotting Analysis

After 24 h reperfusion, the rats were deeply anesthetized and went
through cardiac perfusion. The brains were taken out, and the
ischemic core and normal brain tissue were obviously visible to
the naked eye. Then, the transition zone neighboring the ischemic
core (ischemic penumbra) and the equivalent area under sham
were quickly peeled off and stored at —80°C. Western blotting
(WB) analysis was used to detect the expression levels of
neuroinflammation-related pyroptosis signaling molecules,
Ap,_4, monomer/oligomers, and NeuN (a marker of neurons).
In brief, the brain tissues from ischemic penumbra and the
equivalent area under sham were prepared for protein samples
followed by the concentration measurement. Subsequently,
corresponding protein samples with equal amounts were
separated by 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis and then electrotransferred onto the poly-
vinylidnene fluoride membranes. Then, the membranes were
blocked by 5% bovine serum albumin (BSA) at room
temperature for 1h and incubated at 4°C overnight with the

YZFDF Prevents Cerebral I/R-Induced Dementia

following primary antibodies (Supplementary Table S1 for
details): caspase-11 (Santa Cruz, United States), GSDMD
(CST, United States), NLRP3 (ProteinTech, United States),
ASC (Santa Cruz), caspase-1 (ProteinTech), IL-6 (Santa Cruz),
IL-1pB (Santa Cruz), ionized calcium-binding adapter molecule-1
(Iba-1) (Abcam, United Kingdom), AP; 4, (Abcam), NeuN
(ProteinTech), and B-actin (CST). Then, the membranes were
washed and incubated with the corresponding secondary
antibodies (Signalway Antibody, United States) for 1h at
room temperature. Finally, the enhanced chemiluminescence
kit (Millipore, United States) was used to develop WB bands,
and the intensities of bands were analyzed with Image] software
(National Institutes of Health, United States).

Immunofluorescence

After deep anesthetization, the rats went through cardiac
perfusion with 200ml normal saline and then 4%
paraformaldehyde. Subsequently, the brains were taken out
and immersed in 4% paraformaldehyde for 24 h fixation and
then prepared for paraffin slices. The procedure for
immunofluorescence (IF) staining of proteins colocalization
was as follows: after dewaxing and rehydration with gradient
ethanol (100% ethanol for 5 min, 95% ethanol for 5 min, 80%
ethanol for 5 min, 60% ethanol for 5 min, and H,O for 5 min), the
slices further went through antigen retrieval and permeation by
0.3% triton-X 100 followed by blockage with 5% BSA.
Subsequently, the slices incubated with the first
antibodies (Supplementary Table S1 for details) mixed with
GSDMD/Iba-1, GSDMD/glial fibrillary acidic protein (GFAP),
AQP-4/GFAP, and AP/GFAP overnight at 4°C followed by
incubations with corresponding mixed secondary antibodies
(Beyotime, China) for 1h at room temperature. After DAPI
staining, the laser scanning confocal microscope (Leica
Wetzlar, Germany) was used for capturing fluorescent pictures
in the same brain area with blinding. Three fields were randomly
selected for the analysis of double-positive staining cell number or
fluorescent density by ImageJ software.

were

Immunohistochemistry

An endothelial barrier antigen (EBA, clone: SMI 71) is a specific
marker for the BBB, and AQP-4 polarization loss is an important
cause of BBB-glymphatic dysfunctions responsible for AP
accumulation. Thus, we further made evaluations of
BBB-glymphatic functions by immunohistochemistry (IHC)
staining of SMI 71 and AQP-4. In brief, after dewaxing and
rehydration, the slices were subjected in sequence to antigen
retrieval, permeation, inactivation of the endogenous catalase, and
then blockage by 5% BSA. Subsequently, the slices were incubated
with the anti-rat BBB antibody (SMI 71) (BioLegend, United States)
and AQP-4 antibody (Santa Cruz) overnight at 4°C (Supplementary
Table S1 for details), followed by incubations with the corresponding
secondary antibodies for 1h at room temperature. Then, 3,3-
diaminobenzidine tetrahydrochloride and hematoxylin were used
for visualizing the slices. Finally, the light microscope was used for
observing the slices and capturing the pictures in the same brain area
with blinding. Three fields were randomly selected for the analysis of
SMI 71 and AQP-4 staining density by Image] software.
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FIGURE 2 | YZFDF alleviated neurological deficits at 24 and 72 h after
cerebral I/R in rats, n = 5-8. *p < 0.01 vs. Sham group; *p < 0.05, **p < 0.01
vs. I/R group.

Nissl Staining
Nissl staining was used to evaluate neuronal damage as described

in our previous study (Yu et al., 2016). In brief, after dewaxing
and rehydration, the slices were stained with Nissl staining
solution (Sangon Biotech, China) for 20min at room
temperature. Subsequently, the slices were rinsed in graded
ethanol, transparentized by xylene, and coverslipped under
Permount. Finally, the pictures in the same brain area were
captured with blinding using the light microscope. Four fields
were randomly selected for the analysis of damaged neurons.

Statistical Analysis

All data were expressed as the mean + standard deviation (SD) or
standard error of the means (SEM). GraphPad Prism 8.0
(GraphPad Software Inc. United States) was used for statistical
analysis. The differences among groups were analyzed by one-
way ANOVA or unpaired Student’s t-test. A value of p < 0.05 was
considered to be statistically significant.

RESULTS

Yi-Zhi-Fang-Dai Formula Alleviated
Neurological Deficits After Cerebral I/R in
Rats

First, the effects of YZFDF on neurological deficits were assessed
at 24 and 72 h after reperfusion in the present study. As exhibited
in Figure 2, the rats in the Sham group had no performance of
neurological deficits, and the rats in the I/R group showed
obvious neurological deficits at both 24 and 72h after
reperfusion. However, compared with that of the I/R group,
YZFDF-treated groups showed significantly low neurological
deficit scores at 24h (YZFDF-M group, p < 0.05; YZFDF-H
group, p < 0.01) and 72 h (YZFDF-L and YZFDF-M groups, p <
0.05; YZFDF-H group, p < 0.01) after reperfusion. Thus, the
result of neurological deficit assessment indicated that YZFDF
could alleviate neurological deficits after cerebral I/R in a dosage-
and time-dependent manner.

YZFDF Prevents Cerebral I/R-Induced Dementia

Yi-Zhi-Fang-Dai Formula Reduced Cerebral
Infarct After Cerebral I/R in Rats

The effects of YZFDF on cerebral infarct were measured
following neurological deficit assessment at 72h after
reperfusion. The result (Figures 3A,B) showed that the rats
in the Sham group had no cerebral infarct, and the rats in the
I/R group exhibited obvious cerebral infarct (white-colored
area). However, compared with that of the I/R group, YZFDF-
treated groups showed significantly little cerebral infarct area
with the YZFDF-H group exerting optimal effects (YZFDF-L
and YZFDE-M groups, p < 0.05; YZFDF-H group, p < 0.01),
which was consistent with the result of neurological deficit
assessment.

Based on the outcomes at the first stage of this study and our
previous work, the following experiments selected the optimal
dosage of YZFDF (YZFDF-H) to further explore the potential
effects of YZFDF against the fundamental and crucial links in
cerebral I/R injury represented by neuroinflammation-related
pyroptosis, BBB-glymphatic dysfunctions, and AP acute
accumulation and thus to preliminarily probe into its
neuroprotective mechanism for preventing early pathological
changes of poststroke dementia.

Yi-Zhi-Fang-Dai Formula Alleviated
Cerebral I/R-Induced Pyroptosis via
Inhibiting the Activation of Caspase-11/1
and Cleavage of GSDMD

Our previous study revealed that cerebral I/R activates the
caspase-11/GSDMD-mediated pyroptosis pathway. In the
present study, the result showed that YZFDF could obviously
downregulate the increased protein levels of GSDMD-FL/N (the
key effector of pyroptosis) and the related upstream or
downstream  signaling including pro/cleaved-caspase-11,
NLRP3, ASC, and pro/cleaved-caspase-1 after cerebral I/R
(Figures 4A-D), indicating that YZFDF could exert inhibitory
effects on cerebral I/R-induced pyroptosis.

Yi-Zhi-Fang-Dai Formula Blocked
Overactivation and Pyroptosis of Microglia
and Alleviated Inflammatory Responses
After Reperfusion

The inflammatory microenvironment mediated by microglial
activation is inherent across the whole course of cerebral I/R
injury and deteriorated by pyroptosis after reperfusion, which can
be reflected by the expressions of Iba-1 (microglial biomarker),
IL-6, and pyroptosis-related pro-inflammatory factors such as IL-
1P. The result in the present study showed that YZFDF treatment
could reduce the raised immunofluorescent co-staining of
GSDMD and Iba-1 in ischemic cortex and hippocampus-CA1l
areas (Figures 5A,B) and downregulate the expression levels of
Iba-1, IL-6, and cleaved IL-1p after reperfusion (Figures 5C,D),
indicating that YZFDF could exert inhibitory effects on
inflammatory responses during cerebral I/R by regulating
microglial overactivation and pyroptosis.
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FIGURE 3 | YZFDF reduced cerebral infarct at 72 h after cerebral I/R in rats. (A) Representative pictures of cerebral infarct by TTC staining in each group. The red-
colored area represents normal cerebral tissue with non-infarct, and the white-colored area represents cerebral infarct. (B) Comparative analysis of the cerebral infarct

Yi-Zhi-Fang-Dai Formula Inhibited
Astrocytic Pyroptosis and Protected
Against BBB Collapse After Reperfusion

Astrocytic endfeet envelop the cerebral capillaries that form the
BBB. Our previous study indicated that astrocytic pyroptosis after
I/R is the considerable pathological factor of BBB disruption and
shriveled ~capillaries leading to brain microcirculation
disturbance. The result in the present study showed that
YZFDF treatment could reduce the GSDMD-positive
immunofluorescent staining in astrocytes in ischemic cortex
and hippocampus-CA1l areas (Figures 6A,C), indicating that
YZEDF could exert inhibitory effects on cerebral I/R-induced
astrocytic pyroptosis. Accordingly, YZFDF protected against BBB
collapse and reduction after reperfusion which could be observed
by immunohistochemical staining of SMI 71 in cortex and

hippocampus-CA1l areas of the ischemic hemisphere (Figures
6B,D,E), potentially promoting blood flow circulation in
capillaries of ischemic cerebral tissues.

Yi-Zhi-Fang-Dai Formula Restored AQP-4
Polarization and Reduced Astrocytic
Endfeet Swelling and Brain Edema After

Reperfusion

The loss of AQP-4 polarization on astrocytic endfeet is closely
associated with BBB-glymphatic dysfunctions which promote
accumulation of metabolites and brain edema. In the present
study, our results exhibited the loss of AQP-4 polarization with
obvious dispersion, perturbed expressions, and astrocytic endfeet
swelling in the ischemic brain tissues, which could be observed by
immumohistochemical staining of AQP-4 (Figures 7A-C) and
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FIGURE 4 | YZFDF inhibited the activation of caspase-11/1 and cleavage of GSDMD at 24 h after cerebral I/R in rats. (A) Representative Western blots for pro/
cleaved-caspase-11 and GSDMD-FL/N. (B) Representative Western blots for NLRP3, ASC, pro-caspase-1, and caspase-1 p10. (C) Quantitative analysis of pro/
cleaved-caspase-11 and GSDMD-FL/N, n = 6. (D) Quantitative analysis of NLRP3, ASC, pro-caspase-1, and caspase-1 p10, n = 6. #p < 0.01 vs. Sham group; *p <

0.05, *p < 0.01 vs. I/R group.

double fluorescence staining of AQP-4 and GFAP in ischemic
cortex and hippocampus-CAl areas (Figure 7D, Supplementary
Figure S6), while YZFDF intervention could restore AQP-4
polarization and accordingly reduce astrocytic endfeet swelling
and brain edema in the ischemic hemisphere after reperfusion
(Figures 7A-E).

Yi-Zhi-Fang-Dai Formula Promoted Ap
Clearance and Prevented the Formation of

AB1.42 Oligomers After Reperfusion

Based on the above results in the present study, our study further
exhibited that AP accumulates in the sites of swelling astrocytic
endfeet, which was consistent with the situation of AQP-4
polarization loss (Figures 8A-C). However, YZFDF treatment
could alleviate AP acute accumulation around astrocytes within
24 h after reperfusion in ischemic cortex and hippocampus-CA1l

areas (Figures 8A-C). Furthermore, YZFDF could prevent the
formation of AP, 4, oligomers (the main form of toxic Af) in
ischemic brain tissues after reperfusion (Figures 8D,E).

Yi-Zhi-Fang-Dai Formula Alleviated
Neuronal Damage and Promoted Neuron

Survival After Reperfusion

The above results in the present study have revealed that YZFDF
could inhibit cerebral I/R-induced pyroptosis, damage of the
BBB-glymphatic system, and AP accumulation after reperfusion.
Accordingly, our study further showed that YZFDF could
alleviate neuronal damage after reperfusion (Figures 9A-C)
and promote neuron survival in ischemic cortex and
hippocampus-CA1 areas (Figures 9D,E), which was consistent
with the results of the neurological function assessment and
measurement of the cerebral infarct area.
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DISCUSSION represented by ischemic stroke have been attracting great

attention (Wang R. et al., 2021; Eskandari et al., 2021; Zupanic
AD is a chronic cerebral disease affected by multifaceted et al.,, 2021). Despite the apparent association between AD and
etiological factors, among which cerebrovascular diseases  ischemic stroke, it remains unclear how the latter induces the

Frontiers in Pharmacology | www.frontiersin.org 9 December 2021 | Volume 12 | Article 791059


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Lyu et al. YZFDF Prevents Cerebral I/R-Induced Dementia

Cortex Hippocampus-CA1l

Sham I/R YZFDF-H Sham I/R YZFDF-H

Cortex Hippocampus-CA1l
B
] Sham IR YZFDF-H Sham I/R
s o el
NGB LR - :
% 4 s / "\ 2% e
o o 4 e
SMI 71|, SR 4 : Al | : ey
(] il .
s (& N R 3
N ol AN ot RS lE s S el
» . .
. [} 0 LR
e AR \‘— sl
P Y ¢ N :
- B VN 165 v AN
~L - A LR f"', X \X# v
Q P '.“ 3 " » ' & y)/ T’ 3
Nl PR - T A AT SEORK_ aoym
C o 257 —= Sham D é 1.09 E =z 1.09 *
£ a0l i 5 o 4
E o 20 S o0sd E os 4
8= = R = : > .
& .%‘@ ok FE
22 1] 25 0.6 5 067
o) === YZFDF-H R S %
= 10 ok g 04 #it S g 041
22 s ZC s
a ® 0.21 0 0.2
7o 2 00 3 oo
o X T o) . T
Cortex and Hippocampus CA-1 area ~ Sham /R YZFDF-H = Sham /R YZFDF-H

FIGURE 6 | YZFDF inhibited astrocytic pyroptosis and protected against BBB collapse at 24 h after cerebral I/R in rats. (A) Representative pictures of double
immunofluorescence staining of GSDMD (red) with GFAP (green) in cortex and hippocampus-CA1 areas, scale bars = 50 um. Red arrows show the GSDMD positive
staining localized with the astrocytic nucleus. (B) Representative pictures of immunohistochemical staining of SMI 71 (a specific marker for BBB) in cortex and
hippocampus-CA1 areas. White arrows show smooth and intact capillaries which represent normal BBB integrity, and black arrows indicate the damage of BBB
integrity with unsmoothed, shriveled, or ruptured capillaries, scale bars = 100, 50, and 20 pm, as shown in pictures. (C) Quantitative analysis of astrocyte number with
GSDMD-positive staining, n = 3. (D) Quantitative analysis of relative SMI 71 density in the cortex (scale bar = 50 um), n = 3. (E) Quantitative analysis of relative SMI 71
density in the hippocampus-CA1 (scale bar = 50 pm), n = 3. *p < 0.01 vs. Sham group; *p < 0.05, **p < 0.01 vs. I/R group.
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onset and development of AD. However, accumulated evidence ~ accumulation in the brain and may represent key link between
has showed that the neuroinflammation-related dysfunctional  ischemic stroke and dementia (Goulay et al., 2020; Ronaldson and
BBB-glymphatic system is responsible for triggering AB  Davis, 2020).
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Restoring blood flow of the ischemic cerebral tissue in a short-time
window is the most important therapeutic measure for patients
suffering from acute cerebral ischemia. However, the potential
additional injury following ischemia/reperfusion (I/R) has a great
impact on the therapeutic efficacy of restoring blood flow (Kalogeris
et al, 2016). I/R injury is the common pathophysiological
phenomenon liable to occur in multiple organs including brain,

and deterioration of microvasculature damage after reperfusion
and the following non-reflow phenomenon of capillaries is the
basic pathological change of I/R injury (Kloner et al,, 2018). In the
brain, the BBB is the main structure of microvasculature, and
microcirculation disturbance resulting from BBB breakdown plays
a crucial role in cerebral I/R injury (Mohamed Mokhtarudin and
Payne, 2015; Huang et al., 2020; Xiao et al.,, 2020). Furthermore, BBB
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FIGURE 9 | YZFDF alleviated neuronal damage and promoted neuron survival at 24 h after cerebral I/R in rats. (A) Representative pictures of Niss! staining in
ischemic cortex and hippocampus-CA1 areas. White arrows represent normal morphology of neurons with the clear nucleolus, abundant cytoplasm, and intact
structure, and black arrows represent damaged neurons appearing shrunken and deep stained, scale bars = 50 ym. (B,C) Quantitative analysis of damaged neurons in
cortex and hippocampus-CAT1 areas, n = 4. *p < 0.01 vs. Sham group; **p < 0.01 vs. I/R group. (D) Representative Western blots for NeuN. (E) Quantitative
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breakdown is recognized as an early marker for the onset of AD (Bell
and Zlokovic, 2009; Sagare et al., 2012; Nation et al,, 2019). Therefore,
BBB protection during cerebral I/R injury is considered an important
strategy for the prevention and treatment of ischemic stroke and
poststroke dementia (Gursoy-Ozdemir et al., 2012; Goulay et al., 2020;
Ronaldson and Davis, 2020).

As for the medication of cerebral I/R injury and BBB protection,
amounts of literature indicated that various extracts or compound
medicines from natural products show beneficial effects (Li Y. et al,,
2019; Yu et al., 2020). For instance, Buyang Huanwu decoction (BHD)
and Tongxinluo (TXL), both consisting of herbal and animal
medicines, are common TCM prescriptions used for treating Qi
deficiency and blood stasis syndrome of ischemic stroke by
efficacies of invigorating Qi and activating blood circulation (Su

et al,, 2011; Wang Y. et al, 2020). Experimental studies revealed
that BHD and TXL could alleviate cerebral I/R injury and exert
protective effects on the BBB (Liu et al,, 2013; Chen et al., 2019). In
studies about the therapeutic efficacy of TCM compound medicines
or extracts, such as BHD and TXL mentioned above for cerebral I/R
injury, drug administration for 3-7 days starting before MCAO is the
common means to enhance intervention effects (Liu et al., 2013; Yu
etal,, 2018; Chen et al,, 2019; She et al., 2019; Zheng et al., 2019; Zhang
S. et al, 2021). Accordingly, based on these literatures, we select
YZFDF pretreatment to carry out the present study. However,
different from BHD and TXL, YZFDF is purely composed of
several plant-derived natural products, but the preliminary results
in the present study showed that YZFDF could also exert significant
neuroprotective effects against cerebral I/R injury by dose-
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dependently alleviating neurological deficits and cerebral infarct after
reperfusion. Our previous work revealed that pyroptosis of glial cells
(microglia and astrocytes) is a considerable pathological mechanism
causing BBB damage after cerebral I/R, and abating pyroptosis
contributes to protect against BBB breakdown and maintains the
homeostasis of brain microenvironments (Lyu et al, 2021). Our
present study further indicated that YZFDF could protect ischemic
cerebral tissues against pyroptotic cell death and accordingly exert
protective effects against BBB collapse in damaged cortex and
hippocampus areas after cerebral I/R, potentially promoting blood
flow reperfusion in microcirculation of ischemic cerebral tissues,
which probably owed to the multiple efficacies of invigorating Qi,
removing blood stasis, and dredging brain collaterals.

As pro-inflammatory programmed cell death is distinguished from
apoptosis and necrosis, pyroptosis manifests as nanopore formation
on the cytomembrane leading to cell swelling and death, which is
executed by the N-terminal fragments of gasdermin family
represented by GSDMD-N (Feng et al,, 2018). Upon stimulation,
NLRP3 recruits pro-caspase-1 through the adapter molecule ASC to
form the NLRP3/ASC/caspase-1 inflammasome, resulting in the
activation of caspase-1 to cleave GSDMD and then leads to the
secretion of pro-inflammatory cytokines, which is called canonical
pyroptosis (Patel et al,, 2017; Cong et al, 2020). However, in the
caspase-11/GSDMD-mediated noncanonical pyroptosis pathway,
GSDMD-N formed by the activation of caspase-11 acts as the
upstream  signaling that activates the NLRP3/ASC/caspase-1
inflammasome to further cause the maturation and secretion of
pro-inflammatory cytokines such as IL-1p (Kayagaki et al, 2015;
Aglietti et al, 2016). Caspase-11 is previously considered to be
activated by lipopolysaccharide in infectious diseases (Hagar et al.,
2013). Cerebral I/R injury is a noninfectious pathological process
(Dong et al, 2018), and thus previous studies attributed cerebral
I/R-induced pyroptosis to its canonical pathway (She et al., 2019).
However, emerging literature has proven that caspase-11/GSDMD-
mediated noncanonical pyroptosis is involved in acute kidney injury
and hepatic injury induced by some endogenous pathophysiological
factors including I/R injury (Miao et al,, 2019; Wang X. et al., 2020).
Our recent work revealed that caspase-11/GSDMD-mediated
noncanonical pyroptosis also involves in cerebral I/R injury (Lyu
et al, 2021). In the present study, we observed that YZFDF could
obviously inactivate caspase-11 as well as cut off NLRP3/ASC/caspase-
1 signaling and thus inhibit the cleavage of GSDMD to reduce the
formation of GSDMD-N, indicating that YZFDF could exert
inhibitory effects on cerebral I/R-induced canonical and
noncanonical pyroptosis.

BBB breakdown in the cerebral ischemic period mainly results
from the interaction between blood components (activated
leukocytes and platelets) and microvascular endothelial cells,
leading to inflammatory response and microthrombosis, which are
exacerbated by blood flow reperfusion and then followed by the no-
reflow phenomenon (Kalogeris et al., 2016). Following the initial
ischemic damage, a wave of detrimental secondary events is caused by
reperfusion such as oxidative stress and acute inflammation. Because
inflammatory response is inherent across the whole course of cerebral
I/R injury, and additionally due to the exacerbation of
thromboinflammation and no-reflow after reperfusion in
capillaries, neuroinflammation is recognized as the most vital

YZFDF Prevents Cerebral I/R-Induced Dementia

pathological factor impacting on the BBB and the fundamental
therapeutic target during both ischemic period and reperfusion
(Liu et al.,, 2014; Li WH. et al,, 2019; Stoll and Nieswandt, 2019).
The results in our present study showed that YZFDF pretreatment
could obviously downregulate the levels of IL-6 and inhibit the
aberrant activation of microglia, reflecting that YZFDF alleviated
the acute neuroinflammation during the course of cerebral I/R. There
are intimate relationships between inflammation and pyroptosis
(Kesavardhana et al, 2020). Research has proven that infectious
or sterile inflammation can stimulate occurrence of pyroptosis, while
pyroptosis reversely aggravates inflammatory responses by further
generating and releasing certain pro-inflammatory mediators (Patel
et al,, 2017). In present study, our results further indicated that
YZFDF could exert obvious inhibitory effects on microglial
pyroptosis and the generation of IL-1P, which provided evidence
for the blocking effect of YZFDF on cross talks between
neuroinflammation and pyroptosis after reperfusion.

In addition to microglia, astrocytes are as well the main locations of
cerebral I/R-induced pyroptosis which peaks at 24 h after reperfusion
(Zhang et al., 2019; Lyu et al., 2021). As the most abundant glial cells in
the mammalian brain, astrocytes are the major supporter of energy
supply and nutrition for neurons in neuro-glial-vascular coupling
(Nortley and Attwell, 2017; Allen and Lyons, 2018), and moreover
astrocytic endfeet function as essential components of both the BBB
and glymphatic system to clear metabolites such as AP and maintain
brain microenvironmental homeostasis, in which aquaporin-4 (AQP-
4) on astrocytic endfeet plays an important role (Gleiser et al., 2016;
Rasmussen et al., 2021). Thus, in our previous study (Lyu et al., 2021),
astrocytic pyroptosis was considered a vital factor causing the BBB
further disruption and AQP-4 polarization loss, which account for A
accumulation, brain edema formation, non-reflow phenomenon of
capillaries, and neuronal damage after cerebral I/R. In the present
study, our results showed that YZFDF could obviously inhibit
astrocytic pyroptosis after reperfusion which contributed to restore
AQP-4 polarization and reduce brain edema. Moreover, the results as
well showed that based on the protective effects against
BBB-glymphatic dysfunctions, YZFDF could further significantly
promote AP clearance and prevented the formation of AP
oligomers after reperfusion.

A accumulation is the essential factor in the biological definition
of AD, which can further cause tau pathology and neuron loss (Jack
et al,, 2018). Furthermore, AB accumulation in the brain can lead to
extensive damages of the neurovascular unit (NVU) which
comprises neurons, perivascular microglia, and BBB including
cerebral microvascular endothelial cells (CMECs), pericytes, and
surrounding astrocytes (Yamazaki and Kanekiyo, 2017). As
mentioned previously, accumulated A can act on pericytes via
evoking reactive oxygen species generation in the form of oligomers
to constrict capillaries which further promotes energy lack of
neurons and neurodegeneration (Nortley et al, 2019). AP
accumulation in capillaries, associated with cerebral amyloid
angiopathy (CAA), also affect NVU astrocytes to cause
mislocalization of AQP-4 expression (Wilcock et al.,, 2009), which
was consistent with the acute accumulation of AP around swelling
astrocytic endfeet as shown in our present study. Our previous study
indicated that AP, 4, oligomers are the main form of toxic AB and
that AP;_4, oligomers could damage tight junction scaffold proteins
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among CMECs to induce BBB leakage via the receptor for advanced
glycation end product (RAGE) (Wan W. et al, 2014; Wan et al,
2015; Chan et al, 2018; Chen et al., 2018). Previous studies
demonstrated that AP increasingly accumulates around astrocytes
along with both BBB breakdown and delayed neuronal death in the
hippocampus within 6 months after cerebral I/R and even deposits
as plaques with time further extension (van Groen et al., 2005; Pluta
et al, 2010), which provides experimental evidence for stroke-
inducing sporadic AD. Furthermore, recently, Martins et al.
revealed that AP oligomers potentially resulting from activated
platelets in microthrombosis massively accumulate in brain
tissues including capillaries within 24 h after cerebral I/R, and
they further demonstrated that AP oligomers are responsible for
some of the brain damage during stroke by the property of forming
ion channels on the cytomembrane (in a non-receptor—-dependent
way) to affect cellular osmotic balance and promote brain edema
formation (Martins et al,, 2019). Our recent study revealed that
pyroptosis accounts for dysfunctions of the BBB-glymphatic system
and the acute accumulation of toxic AP within 24 h after cerebral I/R
(Lyu et al,, 2021). However, on the other hand, toxic AP has been
identified as a cause of pyroptosis and neuroinflammation in
previous studies (Halle et al, 2008; Shi F. et al, 2015), which
suggests a magnified effect of AP accumulation after cerebral I/R.

Large amounts of evidence mentioned previously indicate that A
accumulation is not only the consequence but also the further cause
of the dysfunctional BBB-glymphatic system and neuronal damage
in the course of cerebral I/R injury and in the process of ischemic
stroke-inducing dementia. Therefore, maintaining A( clearance and
protecting brain tissues against AP toxicity after cerebral I/R could
offer a new viewpoint to alleviate ischemic stroke and prevent
poststroke dementia. TCM herbal formulas or extracts have
shown unique advantages in the prevention and treatment of
complex brain diseases including acute ischemic stroke and
dementia (Li Y. et al,, 2019; Yu et al, 2020). Our previous study
demonstrated that YZFDF could exert protective effects against Ap;.
4 oligomer-induced BBB and neuronal damages (Liu et al,, 2016a;
Chan et al,, 2020). The present study showed that YZFDF could
promote AP clearance to prevent AP acute accumulation and the
formation of AP; 4 oligomers and thus block the potential
interaction between the BBB-glymphatic dysfunctions and AB
accumulation. Viewed from the macro perspective of TCM
holism, the four herbal medicines of YZFDF potentially possess
the neuroprotective effects against cerebral I/R injury by
synergistically exerting efficacies of invigorating Qi, removing
blood stasis, and dredging brain collaterals based on their drug
properties. From the modern pharmacological and microcosmic
perspective, our previous study had identified the bioactive
ingredients in YZFDF, which contain bilobalide and ginkgolide A
of Ginkgo biloba leaves, ginsenoside Rgl of ginseng, cistanoside A of
Cistanches Herba, and a-asarone of grassleaf sweetflag, which have a
wide range of activities including anti-inflammation, anti-aggregation
of platelets and proteins, neurovascular protections, and neurotrophic
effects against cerebral I/R injury (Kimura et al,, 1988; Zhou et al,
2014; Liu et al,, 2016a; Zheng et al., 2019; Sarkar et al., 2020; Zhang K.
et al., 2021). Our previous studies indicated that EGb761, a product
extracted from Ginkgo biloba leaves (the main herb of YZFDF), could
regulate Ap-induced microglial inflammatory responses, BBB
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disruption, and alleviate neuronal damage (Wan WB. et al,, 2014;
Liu et al,, 2016b; Wan et al,, 2016). As a consequence, in this study,
YZFDF potentially exerted advantages of multiple bioactive
ingredients, multiple effects, and multiple targets on the whole
NVU to alleviate cerebral I/R-induced neuroinflammation,
pyroptosis, BBB-glymphatic dysfunctions, AB accumulation, and
their interactions. Nevertheless, the action on body systems of
YZFDF in this study and post-treatment and long-term effects as
well as the more detailed targets and mechanism remain to be
clarified and deserve our further explorations in future research.

CONCLUSION

In summary, we demonstrated the neuroprotective properties of
YZFDF against cerebral I/R injury at the first stage, and the following
study further indicated that YZFDF pretreatment could exert
inhibitory effects on microglial and astrocytic pyroptosis and
acute neuroinflammation, which fundamentally contribute to
restore the BBB-glymphatic functions, promote AB clearance and
prevent the formation of AP oligomers via protecting against BBB
breakdown, and AQP-4 polarization loss and thus facilitates to
maintain the homeostasis of brain microenvironments and neuron
survival after cerebral I/R.
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