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The dysregulation of transfer RNA (tRNA) expression contributes to the diversity of
proteomics, heterogeneity of cell populations, and instability of the genome, which may
be related to human cancer susceptibility. However, the relationship between tRNA
dysregulation and cancer susceptibility remains elusive because the landscape of
cancer-associated tRNAs has not been portrayed yet. Furthermore, the molecular
mechanisms of tRNAs involved in tumorigenesis and cancer progression have not
been systematically understood. In this review, we detail current knowledge of cancer-
related tRNAs and comprehensively summarize the basic characteristics and functions of
these tRNAs, with a special focus on their role and involvement in human cancer. This
review bridges the gap between tRNAs and cancer and broadens our understanding of
their relationship, thus providing new insights and strategies to improve the potential
clinical applications of tRNAs for cancer diagnosis and therapy.
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INTRODUCTION

Cancer is one of the most complex diseases caused by multiple genetic disorders and cellular
abnormalities. Its development and progression are regulated by multiple pathological processes
(Bhawe and Roy, 2018), including environmental (Pan et al., 2018; Lewandowska et al., 2019), gender
(Jara-Palomares et al., 2018), cultural (Tejeda et al., 2017; Lee, 2018), and lifestyle factors (Kerr et al.,
2017; Jara-Palomares et al., 2018), as well as genetic mutations (Pak et al., 2015; Tejeda et al., 2017;
Liew et al., 2019), epigenetic changes (Zhang and Huang, 2017; Porcellini et al., 2018; Liew et al.,
2019), and abnormal signal transduction (Farooqi et al., 2018). Tremendous efforts have been made
over the past decades with the aim of searching novel and more efficient tools in cancer therapy
(Winn et al., 2016). However, cancer incidence and mortality remain high. Therefore, there is an
urgent need to develop new strategies for early identification and more accurate diagnosis of cancer
biomarkers for disease.

Recent studies on tRNAs have revealed the unexpected complexity of their structure and function
(Schwartz et al., 2018). Besides participating in transcription and translation, tRNAs are also
involved adaptive protein synthesis and can function as non-coding RNAs involving multiple
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regulatory networks (Schimmel, 2018). Moreover, some small
RNAs previously thought as miRNAs were actually tRNA-
derived small RNA (tsRNAs). Compared with miRNAs,
tRNAs, tsRNAs, and tRNA-derived fragments (tRFs) are more
stable and richer in biological fluids in solid cancers and blood
malignant tumors (Zhang et al., 2009; Li et al., 2012). High
expression of plasma exosome tRNAs in patients with lung
cancer (Balatti et al., 2017), chronic lymphocytic leukemia
(Veneziano et al., 2019), and liver cancer (Zhu et al., 2019)
indicate that plasma exosome tRNAs may be involved in
cancer development. These findings provide evidence that
tRNAs and their derivatives may be potential diagnostic and
therapeutic molecular biomarkers of cancer (Schageman et al.,
2013; Dhahbi et al., 2014). In addition, mutation of the tRNA
itself as well as supplementary proteins produced andmodified by
tRNA physiologically, are associated with cancer (Suzuki et al.,
2011; Yao and Fox, 2013; Blanco and Frye, 2014). However, the
exact molecular mechanisms by which tRNAs and tsRNAs are
involved in cancer are unclear.

Moreover, in some cancers, the dysregulation of tRNAs can
trigger the progression and proliferation of cancer cells by
regulating transcription, translation, ribosome biogenesis and
functioning as novel epigenetic factors. Although tRNAs and
tsRNAs have been receiving increasing research attention, to date,
there is no comprehensive summary of these findings, which
would greatly be beneficial to future studies exploring tRNAs.

Herein, we detailed the current literature on tRNAs related to
cancer. We comprehensively summarize the basic characteristics
and functions of tRNAs, focusing on their involvement in various
human cancers, particularly breast cancer, lung cancer, and
melanoma. This review closes the gap between tRNAs and
cancers and deepens our understanding of them, thereby
providing new insights and strategies to guide researchers in
further exploring the potential clinical applications of tRNAs in
cancer diagnosis and treatment.

STRUCTURE AND BIOGENESIS OF TRNAS
AND THEIR DERIVATIVES

tRNAs are fundamental biological molecules that complete the
flow of genetic information from DNA to protein by reading the
cognate codons in the mRNA (Kirchner and Ignatova, 2015).
Mature tRNAs in human cells are derived from precursor tRNAs
(pre-tRNAs) containing 5′ leader and 3′ trailer sequences and
introns in the anticodon loop (Phizicky and Hopper, 2010; Raina
and Ibba, 2014). Mechanistically, pre-tRNAs are processed co-
and post-transcriptionally to acquire their mature 5′ and 3′ ends,
modified nucleosides, and the cloverleaf secondary structure,
which contains four domains organized in unpaired and
paired regions namely, acceptor arm, D arm, anticodon arm,
and TΨC arm.

Upon maturation, tRNAs obtains the L-shaped tertiary
structure (Kim et al., 1974; Stout et al., 1976; Moras et al.,
1980) by means of base build-up and non-Watson-Crick base
pairing between the receptor and TΨC arms, and with the D arm
and the anti-coding arm (Madison et al., 1966) at the other end

(Madison et al., 1966) (Figure 1). This structure allows tRNA to
enter the ribosome and convert genetic information into
polypeptides. During the translation process, mature tRNAs
bind to adenosine covalently at the tail of the unchanging
3′CCA, acting as a connection and can be catalyzed by 20
different aminoacyl-tRNA synthases (Phizicky and Hopper,
2010). Generally, mature tRNAs are highly modified by tRNA-
modifying enzymes, which play a vital role in obtaining 3D
L-shaped structures and stability, translation start and
extension factors, aminoacyl-tRNA synthases and ribosomes,
and decoding efficiency and fidelity. Mature tRNAs add amino
acids to the two-step reaction through aminoacyl-tRNA
synthases, which are activated by ATP to form amino amp,
and then add end adenosine to the tRNAs 3′ end (Figure 1).
Then, the tRNAs charged with the amino acid interact with the
enzyme machinery of the ribosome to decode mRNAs into
proteins during translation (Figure 1). Meanwhile, tsRNAs are
is a class of non-coding small RNAs produced by mature tRNAs
or pre-tRNAs at different sites that are widely present in
prokaryotic and eukaryotic transcriptomes, and produced by
mature tRNAs or pre-tRNAs at different sites. tsRNAs refers
to specific nucleic acid enzymes such as Dicer and angiogenin,
especially cells or specific cleavage of tRNAs under certain
conditions, such as stress and hypoxia (Levitz et al., 1990;
Thompson and Parker, 2009). There are two main types of
tsRNAs: tRFs (Keam and Hutvagner, 2015) and the tRNA-
derived, stress-induced RNAs (tiRNAs) (Saikia and Hatzoglou,
2015; Shigematsu and Kirino, 2017). tRFs are 14–30 nucleotides
(nts) long, and tRFs can be further divided into four categories,
namely tRF-5s, tRF-1s, i-tRF, and tRF-3s, depending on their
position on tRNAs. tRF-5s come from the 5′ end of mature
tRNAs without D-loop and have three subclasses: 1) tRF-5a about
14–16 bases, a cutting site before the D ring; 2) tRF-5b, containing
22–24 bases and cleavage site behind the D ring; and 3) tRF-5c,
about 28–30 bases long, has cleavage site before the anticodon
ring (Kumar et al., 2014). tRF-3s are rooted in the 3′ end of
mature tRNAs and include a CCA parting without the L-loop.
They are divided into two subclasses according to size. tRF-3a
usually has a cleavage site before the T-ring, while the tRF-3
cleavage site is in the T-ring, and the tRF-3a is usually made up of
18 bases, while the tRF-3 is 22 bases (Kumar et al., 2016). tRF-1s,
the third category, is produced at the 3′ end of the pre-tRNAs,
and their 5′ ends begin just after the 3′ end of the mature tRNA
sequence. Finally i-tRF comes mainly from the middle region of
mature tRNAs (Lee et al., 2009).

tiRNAs (31–40 nts in length) are formed by cleaving the tRNA
anticodon loop affected by sex hormones and their receptors
(Rashad et al., 2020), and have two types: tiRNA-5s and tiRNA-3s
(Anderson and Ivanov, 2014; Saikia and Hatzoglou, 2015).
Angiogenin, the nuclease responsible for tiRNA formation,
generally in the nucleus of cells but under certain conditions
can enter the cytoplasm, belonging to the RNase A superfamily
(Fu et al., 2009; Li and Hu, 2012). In response to stress,
angiogenin is isolated by RNH1 (an angiogenin inhibitor),
enters the cytoplasm from the nucleus, and cleaves tRNAs into
tiRNA-5s and tiRNA-3s in the cytoplasm (Li and Hu, 2012)
(Figure 1).
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FIGURE 1 | Structure and pre-transcriptional changes in tRNAs. (A) Precursor tRNAs forms mature tRNAs; (B) Aminoacyl-tRNA synthetase binds amino acids to
its corresponding tRNAs by consuming energy; (C) tRNAs and ribosomes are involved in the translation process; (D) The process by which precursor tRNAs andmature
tRNAs form four tsRNAs.
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BIOLOGICAL ROLES AND FUNCTIONS OF
TRNAS AND THEIR DERIVATIVES

The functions of tsRNAs in different pathways, such as
increasing mRNA stability (Saikia and Hatzoglou, 2015;
Shigematsu and Kirino, 2017), repressing translation
(Kumar et al., 2014; Kumar et al., 2016), regulating
ribosome biogenesis (Lee et al., 2009), functioning as novel
epigenetic factors (Rashad et al., 2020), promoting RNA
reverse transcription (Anderson and Ivanov, 2014),
functioning as immune signaling factors (Fu et al., 2009),
have recently emerged.

Regulation of mRNA Stability
As miRNAs, tRFs can reduce mRNA stability by mediating
target gene deacetylation, thereby promoting mRNA

degradation and instability. tRFs prioritizes the inhibition of
ribosome proteins and translational initiation or elongation
factors of mRNA translation through antisense pairing in
Drosophila melanogaster (Karaiskos et al., 2015; Babiarz
et al., 2008; Eichhorn et al., 2014). In human cells, The
GW182 protein inhibits translation and promotes the
degradation of target mRNAs, and the tRF-3 target mRNA
pairs in the RNA-induced silencing complex associate with
GW182 proteins, which means that tRFs can affect the
function of RNA-induced silencing complex by regulating the
stability of mRNA (Kuscu et al., 2018; Ren et al., 2019).
Furthermore, in mature B lymphocytes, tRF-3s derived from
tRNAGly-GCC (referred as CU1276) possess miRNA-like
structure and function, thereby repressing mRNA transcripts
by destabilizing mRNA, and can inhibit protein translation and
the cleavage of a partially complementary target site, thereby

FIGURE 2 | Biogenesis of tsRNAs. (A) tsRNAs reduce mRNA stability by binding to a complex such as Ago1/3/4 proteins; (B) tsRNAs can inhibit the translation of
mRNA by competitive binding of YB-1 or by self-binding of ribosomes; (C) tsRNAs promote translation by promoting the formation of rRNAs in ribosomes, while
participating in ribosome protein formation to facilitate translation processes and inhibit preadipocytes differentiation.
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suppressing proliferation (Shao et al., 2017a). Although some
tRFs have similar functions to miRNAs, the formers have been
expressed preferentially bind argonaute1, argonaute3, and
argonaute4 to promote RNA-induced silencing complex
formation and reduce the stability of mRNA, thus inhibiting
mRNA translation, rather than binding argonaute2 like miRNA
(Kumar et al., 2014; Haussecker et al., 2010) (Figure 2). In
addition, tRF-2s blocks the interplay of Y-box binding protein 1
(YBX-1) and YBX-1 mRNAs by competitively binding to YBX-
1. This reduces the stability of these mRNAs, which could
subsequently reduce the genetic stability of human breast
cancer cell metastasis (Goodarzi et al., 2015) (Figure 2).
Moreover, some tRF-3s chimeras have been related to
histone mRNAs and can thus affect mRNA stability by
competing with stem-ring binding proteins in human cells
(Kumar et al., 2014) (Figure 2). Although there is an
increased understanding of some of the functions of tRFs in
regulating mRNA stability, the functions of tiRNAs remain
elusive.

Downregulation of Translation
Some studies have shown that tiRNAs, mainly tiRNA-5s, could
decrease translation speed by 10–15% (Yamasaki et al., 2009).
For instance, tiRNA-5s from tRNAAla and tRNACys can form a
G-quadruplex-like structure that selectively binds to eIF4G/
eIF4A in the translation of the starting complex, thereby
inhibiting cap-dependent translation of cellular mRNAs
rather than traditionally internal ribosome entry site
mediated translation (Ivanov et al., 2011; Ivanov et al., 2014).
tiRNAs can also selectively repress the housekeeping
components’ translation under stress conditions, thereby
reducing cell energy consumption without affecting the
generation of pro-survival proteins (Li and Hu, 2012). These
studies suggest that tiRNAs are produced to regulate the
translation process under stress conditions and are not
intended to reduce the level of functional maturity tRNAs
affecting mRNA function (Ivanov et al., 2011; Ivanov et al.,
2014).

In addition, some researches have proved that tRFs plays a
positive role in reducing protein translation behavior. For
example, tRF-5s is supposedly involved in new mechanisms
underlying the regulation of small RNA in human cell by
repressing protein translation through conserved residues in
tRNAs present in tRF-5s without the need for complementary
target sites in mRNA (Sobala and Hutvagner, 2013). tRF-5s
derived from tRNAVal-GAC in Haloferax volcanii has been
revealed to bind the small ribosomal subunit near the mRNA
channel, leading to substitution in the initiation complex and
thereby attenuating global translation both in vivo and in vitro
(Gebetsberger et al., 2017).

Regulation of Ribosome Biogenesis
tsRNAs have recently emerged as important regulators of
ribosome biogenesis. Particularly, in the lower organism
Tetrahymena thermophila, tsRNAs are composition of the
precursor ribosomal RNA splicing complex (Couvillion
et al., 2012). In Drosophila, tsRNAs restrain global

translation by impeding ribosome biogenesis.
Mechanistically, Drosophila argonaute2-bound tsRNAs
preferentially inhibit the mRNA translation of ribosome
proteins or translational initiation or elongation factors via
an RNA-like pathway, thus attenuating overall translation
(Couvillion et al., 2012; Dou et al., 2019). In addition, tRF-
3s can recruit exonuclease Xrn2 and Tan1 protein to form
compounds by specifically binding to the Twi12 protein, which
cleaves and processes precursor ribosomal RNA to enhance
ribosomal RNA synthesis in physiological conditions in
Tetrahymena (Couvillion et al., 2012). In mammalian cells,
tRF-3s from tRNALeu-CAG bind at least two ribosomal protein
mRNAs to itself, such as ribosome proteins 28 and ribosome
proteins 15, to promote translation (Kim et al., 2017)
(Figure 2). However, the mechanism by which tsRNAs
regulate ribosomal biogenesis in human remains to be
explored.

As Novel Epigenetic Factors
Recent studies have unveiled that tsRNAs may function as
epigenetic factors to regulate gene expression. Obese rat model
under the control of a high-fat diet, increased levels of tRFGlu-TTC

directly targeted the transcription factors from the Kruppel-like
factor (KLF) family, such as KLF9, KLF11, and KLF12, which are
injected themselves into multiplication, apoptosis, differentiation
and progress, and significantly suppressed their target mRNA
expression, thus preventing the differentiation of preadipocytes
(Shen et al., 2019) (Figure 2). Moreover, tRFGlu-TTC suppressed
adipogenesis by inhibiting lipids transcription factors’ expression
(Shen et al., 2019). tRF-3s of different lengths can block reverse
transcription and post-transcription silence by 18 and 22 nts long
respectively, thus silence the long terminal repeat reverse
transcription transposer (Schorn et al., 2017). Furthermore,
Dicer-like 1 processes tRF-5s and then integrates into
argonaute1, which, like miRNA, regulates genomic stability by
targeting the transcriptional elements in plant Arabidopsis
thaliana (Martinez et al., 2017). Intriguingly, tsRNAs from
high-fat diet male sperm injected into normal fertilized eggs of
mature mouse sperm caused gene expression changes in the early
embryo and triggered islet metabolic pathways independent of
DNA methylation in CpG-enriched regions. This proves that
tsRNAs may be a paternal epigenetic factor in the
intergenerational inheritance of metabolic diseases affected by
a mediated diet (Chen et al., 2016).

Upregulation of RNA Reverse Transcription
tsRNAs can also act as an agonist for viral reverse transcription
and promote the viral reverse transcription process in various
ways. For example, tRF-3s can combine with the primer-binding
site of human T cell leukemia virus type 1 RNA to initiate reverse
transcription and promote viral synthesis of HIV-infected host
cells (Ruggero et al., 2014). Meanwhile, the respiratory syncytial
virus infection induces the angiotensincutting2 tRNAs to produce
tiRNAs, thus triggering stress response in host cells. respiratory
syncytial virus uses host tiRNAs as primers to promote its
replication and improve the infection efficiency (Wang et al.,
2013; Deng et al., 2015; Zhou et al., 2017).
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Moreover, host cellular proteins can regulate retroviral
replication by binding to tRNAs, thereby affecting all steps in
the viral life cycle. In certain circumstances, aminoacyl-tRNA
synthetases bind tRNAs and link them with their corresponding
amino acids and cognate aminoacyl-tRNA synthetases to
facilitate tRNA primer selection, thus promoting viral reverse
transcription (Jin and Musier-Forsyth, 2019).

Immune Regulation
Studies have also revealed the potential role of tsRNAs as novel
immune factors. tsRNAs are highly and stably expressed in
hematopoietic and lymphatic organs and blood compared with
other tissues (Dhahbi, 2015). This suggests that tsRNAs may
participate in the immune process. In addition, when the body is
in an acute inflammatory state, tsRNAs levels in the blood
increase rapidly, particularly in the sera of mice and monkeys
with acute and chronic hepatitis B and active hepatitis B virus
infection, as well as chimpanzees with chronic viral hepatitis
(Zhang et al., 2014; Selitsky et al., 2015). Likewise, tRF-5s derived
from tRNAGlu can lead to the inhibition of CD1A expression by
compounding with PIWIL4 and PIWIL1, which was able to
promote the maturation of monocytes into dendritic cells
(Zhang et al., 2016) (Figure 3). Moreover, tsRNAs can also
activate the immune response of Th1 and cytotoxic T
lymphocyte by interacting directly with toll-like receptors
(Wang et al., 2006) (Figure 3).

In addition, the specific nucleoside motifs of tRNAs may be a
structural determinant of innate immune recognition. For
example, the interaction between the human tRNAAla stem
loop and the D and T rings of tRNAHis may be epitopes of
autoantibodies in the sera of patients with idiopathic
inflammatory myopathy (Bunn and Mathews, 1987), and the
anti-adenovirus infection-induced tRNAs fungal protective cell
therapy (Alvarado-Vásquez et al., 2005). Finally, the major
histocompatibility complex contains the largest tRNA gene
cluster in human, which also coexist with immune-related
functions are co-located. This may imply the role of tRNA in
the immune system (Horton et al., 2004). These findings overall
support the proposition that tRNAs may act as immune signaling
molecules.

Other Mechanisms of Action
Both mitochondrial and cytosolic tRNAs have been shown to
bind to cytochrome c. This binding inhibits the interaction
between cytochrome c and apoptotic protease activating
factor-1, thus blocking activating factor-1 oligomerization and
caspase activation, which eventually preventing apoptosis (Mei
et al., 2010). Another study revealed that under high osmotic
pressure or stress, angiogenin-induced tiRNAs can inhibit
apoptotic formation and activity by binding cytochrome c to
form a ribonucleoprotein complex (Saikia et al., 2014) (Figure 3).
Moreover, tsRNAs can also regulate micro-organisms found in

FIGURE 3 | tsRNAs’ functions. (A) tsRNAs inhibit the transcription of the CD1A gene by forming a complex with PIWIL1/4, thereby inhibiting the conversion of
Mynocytes to Thedritic cell; (B) tsRNAs can be combined with toll-like receptor to activate CTL and Th1; (C) The interaction between tsRNAs and Cty c inhibits the
apoptosis process.
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TABLE 1 | Summary of human cancer-associated tRNAs and tsRNA.

tRNAs and tsRNA Function Role Cancer type References

tRFGlu-YTC Destabilization of YB-1 bound oncogenic transcripts then
suppresses cell proliferation and cancer metastasis

Tumor
suppressor

Breast cancer Goodarzi et al. (2015)
tRFAsp-GTC

tRFGly-TCC

tRF-1001 Promotes cell proliferation Tumor
promoter

Prostate cancer Lee et al. (2009)

tiRNAAsp-GUC Sex hormone-dependent production, promote cell
proliferation

Tumor
promoter

Breast cancer and prostate cancers Honda et al. (2015)
tiRNAHis-GUG

tiRNALys-CUU

tiRNALeu-CAG-5 Promotes cell proliferation and G0/G1 cell cycle progression,
greatly upregulates in stage III and stages IV cases and
relates with the development of stage

Tumor
promoter

Non-small cell lung cancer Shao et al. (2017a)

tRF/miR-1280 Inhibits cell proliferation and tumor growth through inhibiting
Notch signaling pathway by targeting JAG2

Tumor
suppressor

Colorectal Cancer Huang et al. (2017)

CU1276/tRF-3018 Associates with Argonaute proteins and represses
endogenous RPA1, suppresses proliferation and modulates
the molecular response to DNA damage

Tumor
suppressor

B cell lymphoma Maute et al. (2013)

tRFSer-GCT Unknown Unknown Breast cancer Telonis et al. (2015)
tRFSer Cleavage of tRNAs during stress Unknown Hepatocellular cancer Fu et al. (2009)
tRFLys3 Combine with AGO2 and target HIV primers with binding

sites
Unknown Cervical cancer Yeung et al. (2009)

tRFHis-GTG Associates with AGO2 and down-regulate target genes by
transcript cleavage

Unknown B cell lymphoma Li et al. (2012)
tRFLeu-CAG

tiRNAAla Inhibits protein synthesis and triggers the phospho-eIF2α
independent assembly of stress granules

Promoting
tumor

Osteosarcoma Ivanov et al. (2011)
tiRNACys

tRFVal Induces the assembly of cytoprotective stress granules Unknown Osteosarcoma Emara et al. (2010)
tRFGln Inhibits the process of protein translation without the need for

complementary target sites in the mRNA
Tumor
suppressor

Cervical cancer Sobala and Hutvagner,
(2013)

cand14 Primarily associates with AGO3 and AGO4, RNA silencing by
targeting luciferase reporter gene

Unknown Kidney and colorectal cancer Haussecker et al. (2010)
cand45
tiRNAVal Associates with response to the treatment of DNA

methyltransferase inhibitors
Unknown MDS Guo et al. (2015)

Multiple tRFs Overexpresses in metastatic tissues, potential diagnostic
and prognostic biomarkers

Unknown Prostate cancer Martens-Uzunova et al.
(2012)

tRF-544 High expression ratio of tRF-315/tRF-544 predict poor PFS Unknown Prostate cancer Olvedy et al. (2016b)
tRF-315
tRFVal-AAC Greater downregulation in advances and less differentiates in

ccRCC tissues
Tumor
suppressor

Clear cell renal cell carcinoma Nientiedt et al. (2016), Zhao
et al. (2018)tiRNALeu-CAG-5

tiRNA Arg-CCT-5
tiRNA Glu-CTC-5
tiRNA Lys-TTT-5
ts-46 ts-47: upregulated with KRAS mutation Tumor

suppressor
Lung cancer, breast cancer Balatti et al. (2017)

ts-47 ts-46: upregulated with PIK3CA mutation in breast cancer
cells; inhibition effect on colony formation in H1299 and A549
cell lines

ts-53 ts-53: reduce lung cancer colony formation through
exogenous expression; ts-53, ts-101: act as miRNAs and
piRNAs by their interaction with argonaute and Piwi proteins

Tumor
suppressor

Lung cancer, CLL Pekarsky et al. (2016)
ts-101

miRNA-1236-3p Suppresses the proliferation, migration, and invasion
capacity of cancer cells

Tumor
suppressor

Hepatocellular cancer, ovarian
cancer, bladder cancer, gastric
cancer

An et al. (2019)

tRF-03357 Promotes cell proliferation, migration, and invasion Tumor
promoter

High-grade serous ovarian cancer Zhang et al. (2019b)

tRNALeu Promotes cell proliferation and transformation Tumor
promoter

ER + breast Fang et al. (2017)
Cancer

tRNALeu Initiated tumorigenesis Tumor
promoter

Triple-negative breast cancer Khattar et al. (2016)
tRNATyr

tRNALeu-CAG Increases protein synthesis and proliferative ability of cancer Tumor
promoter

Her2(ErbB2)-positive breast Kwon et al. (2018)

mt-tRNAAsp Involved in the carcinogenesis of breast cancer Tumor
promoter

Breast cancer Meng et al. (2016)

tRNAArg-CCG Promotes metastasis and invasion Tumor
promoter

Breast cancer Goodarzi et al. (2016)
tRNAGlu-UUC

methionine tRNA Advances cancer cell migration, invasiveness, and lung
colonization capacity

Tumor
promoter

Melanoma Birch et al. (2016)

(Continued on following page)
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human. In the oral cavity, the presence of Fusobacterium
nucleatum triggers the release of tsRNAs, which may inhibit
the growth of the former by interfering with the biosynthesis of
bacterial proteins (He et al., 2018).

At present, studies exploring the function of tRNAs are
only emerging. Future researches are expected to reveal the
further regulatory role of tRNAs and tsRNAs in biological
functions.

TRNAS AND TSRNAS IN HUMAN CANCER

tRNAs dysregulation have been detected in a variety of cancers,
including breast cancer (Fang et al., 2017), lung cancer (Lu et al.,
2009), melanoma (Phizicky and Hopper, 2010), prostate cancer

(Olvedy et al., 2016a), and tRNA has been revealed to be
regulated by oncogenes and tumor-suppressor genes.
Particularly, oncogenes Ras (Wang et al., 1997) and c-myc
(Gomez-Roman et al., 2003) can promote the expression of
RNA polymerase III, whereas suppressor genes Rb (White et al.,
1996) and p53 (Crighton et al., 2003) can inhibit its
transcription. This leads to a serious imbalance of tRNA
expression in cancers. Abnormally expressed tRNA can also
promote cell proliferation and inhibit cell apoptosis, thus
promoting tumor progression (Pavon-Eternod et al., 2013;
Kwon et al., 2018).

In addition, the tRNA modification system can initiate
tumorigenesis by directly affecting cellular processes
associated with characteristic cancer cell phenotypes, such as
increased proliferation, metastasis potential, and stem cell

TABLE 1 | (Continued) Summary of human cancer-associated tRNAs and tsRNA.

tRNAs and tsRNA Function Role Cancer type References

tRNAArg TERT promotes cancer cell Tumor
promoter

Melanoma Khattar et al. (2016)
tRNAAla Proliferation by augmenting tRNA expression
tRNAAsn

tRNACys

tRNALys

tRNAGlu

tRNAThr

tRNAArg The oncoproteins E6 and E7 stimulates tRNA transcription Tumor
promoter

Cervical cancer Daly et al. (2005)
tRNASec

High levels of tRNA
abundance

Increases translation of highly active proteins Tumor
promoter

Multiple myeloma Zhou et al. (2009)

FIGURE 4 | Landscape of tRNAs in human diseases.
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survival (Endres et al., 2019). Further, the tRNA modification
system is also a key component of carcinogenic signaling
pathways (Endres et al., 2019). In various cancers, the tRNA
modifying enzyme increases the modification of a specific
tRNA, thereby altering the preference of the tRNA codon.
This results in increased levels of proteins corresponding to
these mRNAs was found to be rich in a particular subset of the
new “preferred” codons (Novoa et al., 2012; Novoa and Ribas De
Pouplana, 2012).

Mutations in mitochondrial tRNA (mt-tRNA) have been
confirmed that increased tumorigenic relates to the invasive
phenotypes (Amuthan et al., 2001). These mutations can
seriously affect the tertiary structure of mt-tRNAs, thus
severely damaging the synthesis of mitochondrial proteins
(Grzybowska-Szatkowska and Slaska, 2012). At present, the
involvement of mt-tRNA mutations in the carcinogenesis of
breast and lung cancers has been confirmed (Lu et al., 2009;
Meng et al., 2016).

FIGURE 5 | Roles of tRNAs and tsRNAs in breast cancer.
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Several studies have also reported that tsRNAs, a derivative of
tRNA, is dysregulated in a variety of cancers and may play a
carcinogenic or anti-cancer role (Pekarsky et al., 2016; Balatti
et al., 2017). In breast cancer, many studies have shown that
cancer genes can regulate the expression of tsRNAs, which may
also be a key effector molecule in cancer gene regulation (Balatti
et al., 2017).

While current knowledge of tRNAs and tsRNAs in cancer is
still in its infancy, their potential applications in the improvement
of fresh biomarkers and original healthful strategies for the
diagnosis, monitoring, predicting, and treating cancer cannot
be understated. We have summarized the recent literature on the
functions andmechanisms of cancer-associated tRNAs inTable 1
(Figure 4).

Breast Cancer
Different factors can induce the abnormal expression of tRNAs in
breast cancer, thereby promoting tumor progression. For
example, the stimulation of ethanol activates c-Jun N-terminal
kinase 1, which promotes the proliferation of Brf1 and ERα.
Subsequently, the interaction between Brf1 and ERα upregulates
Pol III gene transcription to enhance the production of tRNA,
ultimately leading to the development of breast cancer. However,
tamoxifen can hold in the incident of breast cancer by containing
the effects of Brf1 and ERα, also indirectly inhibits the generation
of tRNA (Fang et al., 2017) (Figure 5). Similarly, the TATA box-
binding protein human Maf1 and the oncogene Ras can promote
the transcription of tRNAs by targeting RNA pol Ⅲ, particularly
the Brf1 subunit of TFⅢ B factor, thereby promoting tumor
progression (Wang et al., 1997; Shen et al., 1998; Rollins et al.,
2007; Johnson et al., 2008).

Enzymes catalyzing tRNA modifications play significant roles
in the biological processes in breast cancer (Towns and Begley,
2012; Frye and Watt, 2006; Delaunay et al., 2016). In human, the
overexpression of the U34-modifying enzymes Elp3 and Ctu1/2
directly promoted the translation of the oncoprotein DEK by
catalyzing the mcm5s2-U34 tRNA modification. Increased DEK
can then bind the LEF1 internal ribosome entry site sequence,
thereby increasing the translation of the oncogenic LEF-1 mRNA
and promoting the invasion and metastasis of breast cancer cells
(Delaunay et al., 2016) (Figure 5). Furthermore, the high
expression of tRNAArg-CCG and tRNAGIu-UUC in breast cancer
can promote the invasion and metastasis of cancer cells by
directly upregulating the expression of EXOSC2 and
enhancing that of GRIPAP1 (Goodarzi et al., 2016).

In a study cohort of Polish women with breast cancer, the
tertiary structure of mt-tRNAs was affected by genetic mutation,
resulting in the severe impairment of the mitochondrial protein
synthesis, and thus affecting cell proliferation (Grzybowska-
Szatkowska and Slaska, 2012). Further, mutations in mt-
tRNAs are participated in the carcinogenesis of breast cancer,
such as mt-tRNAAsp (Meng et al., 2016), but the specific
mechanism of mtRNA mutation in cancer is unknown.

Similarly, tiRNAs are abnormally expressed in breast cancer
and are involved in tumorigenesis (Goodarzi et al., 2015; Honda
et al., 2015; Balatti et al., 2017). Decreased abundances of 26
specific circulatory tiRNAs from the tRNAGly, tRNAGlu, and

tRNALys heterogenous receptors was observed in ER-positive
breast cancer (Dhahbi et al., 2014). The same study have
suggested that inflammatory breast cancer is associated with
an increase in tiRNAAla (Dhahbi et al., 2014). Some tiRNAs,
such as tiRNAAsp-5 and tiRNAHis-5, are significantly
overexpressed in breast cancer, and the knockout of tiRNA-5s
can inhibit tumor proliferation (Honda et al., 2015). These
findings provide sufficient evidence of the involvement of
abnormal tiRNAs expression in the course of breast cancer.

The connection of tsRNAs in breast cancer progression has
also been confirmed by several studies. First, the anomalous
demonstration of tiRNAs has been sighted at some stages of
the carcinogenesis process [19]. The downregulation of tiRNAVal-
5 in the serum is positively associated with lymph nodemetastasis
and cancer stage progression, whereas its overexpression inhibits
malignant cell activity (Mo et al., 2019). Meanwhile, the
expression of tRF-3s are strongly downregulated in invasive
advanced breast cancer, whereas that of tRF-1s were raised in
an advanced cancer cell, thus suggesting that tRF-3s and tRF-1s
may be related to advanced pathological changes in cancer
(Balatti et al., 2017). Second, tsRNAs can regulate breast
cancer progression by affecting gene transcription. For
example, tRFs from tRNAGlu, tRNAAsp, tRNAGly, and tRNATyr

contend with YB-1 for the transcription of endogenous cancer
genes, thereby undermining the stability of transcriptions of
proto-oncogene and reducing their expression. This
subsequently inhibits breast cancer progression (Goodarzi
et al., 2015). Similarly, in breast cancer cells, tRFs derived
from tRNATyr, tRNAAsp, tRNAGly, and tRNAGlu can inhibit
tumor progression by displacing the 3′-UTRs of multiple
oncogenic transcripts from the RNA-binding protein YBX-1,
thus reducing their stability (Goodarzi et al., 2015). Another
study showed that tiRNAVal-5 leads to the inhibition of c-myc and
cyclinD1 by downregulating the FZD3-Wnt/β-catenin axis, which
inhibits the progression of breast cancer (Mo et al., 2019)
(Figure 5). Third, the impairment of the tiRNAs production
also affect cancer progression. estrogen and its receptors promote
the angiogenin cutting mature tRNA anticodon ring, thus
producing large amounts of tiRNAs in ER-positive breast
cancer. This accumulation makes for cells proliferating, which
may promote tumor occurrence and tumor growth (Honda et al.,
2015). Meanwhile, in a hypoxic environment, angiogenin induces
the production of tsRNAs, and tsRNAs then interact with
interleukin-6 to promote the phosphorylation of signal
transducers and activators of transcription proteins. This
promotes the transcription of the hypoxia inducible factor-1α,
as well as those of multidrug-resistant genes and glycolytic
proteins, ultimately leading to cytochemical resistance (Cui
et al., 2019) (Figure 5). These studies suggest the varied
functions of tsRNAs in cancer pathogenesis.

Lung Cancer
mt-tRNA gene mutations have been found to promote the
development of lung cancer (Lu et al., 2009). These mutations
damage the secondary structure of tRNAs, thereby affecting post-
transcriptional modifications and aminoacylation, which can
change the specificity, stability, or affinity of tRNAs (Brulé
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et al., 1998). Further, these mutations caused a decrease in
mitochondrial protein synthesis and the cellular inability to
reach the respiratory phenotypes and ATP thresholds required
by normal cells to promote lung cancer (Lu et al., 2009)
(Figure 6). The drug BC-Li-0186 when combined with leucyl-
tRNA synthetase inhibited its activity, reduced the abundance of
tRNA-carrying leucine, and prevented leucyl-tRNA synthetase
mediated the non-classical mammalian target of rapamycin
complex 1. This ultimately restrains the development of non-
small cell lung cancer (Kim et al., 2019) (Figure 6).

tsRNAs have also been associated with lung cancer
development through its regulation of the biological behavior
of cells. For instance, miR-4521, acts as an inhibitor in CLL, has
been revealed to be a tsRNA (ts-4521), which is lowered and
mutated genes in lung cancer. Meanwhile, a reduction in ts-4521
has been shown to support tumor movement by the cell
proliferation-related pathways’ activation and inhibiting
apoptosis-related pathways in cancer cells (Phizicky and
Hopper, 2010; Pekarsky et al., 2016). In addition, tsRNAs can
regulate the demonstration of oncogenes. tRF-Leu-CAG is highly
expressed in non-small cell lung cancer tissues, promoting tumor
cell proliferation and cell cycle progression by upregulating the
oncogene AURKA (Shao et al., 2017b) (Figure 6). However, how

to mediate other signaling pathways through AURKA remains
unclear.

Melanoma
Melanoma is highly malignant and accounts for the majority of
skin tumor deaths. The roles of tRNAs and tsRNAs in its
melanoma have also been investigated. The overexpression of
the promoter methionine tRNA gene promoted tumor growth
and angiogenesis in mouse melanoma cells, as well as an increase
in cancer cell migration, invasion, and lung colonization, thereby
resulting in increased metastasis potential (Phizicky and Hopper,
2010; Clarke et al., 2016). Its upregulation in cancer-associated
fibroblasts accelerated the secretion of stromal cells, especially
type-II collagen, thus facilitating tumor growth and metastasis
(Phizicky and Hopper, 2010) (Figure 7).

In a recent study, the accurate translation of hypoxia
inducible factor 1 α mRNA in melanoma requires the
participation of 34 uridine tRNA-modifying enzymes to
adapt to a metabolic environment that is not conducive to
growth conditions. The particular translation reprogramming
of which relies partly on mTORC2-mediated enzymatic
phosphorylation to modify the anti-codon of tRNA. Further,
enhanced codon dependence on hypoxia inducible factor 1 α

FIGURE 6 | Roles of tRNAs and tsRNAs in lung cancer.
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translation can promote glycolytic metabolism and the
proliferation of melanoma cells (Mcmahon and Ruggero,
2018) (Figure 7). However, the specific regulatory
mechanism of tRNAs in melanoma needs further validation,
whereas the role of tsRNAs in melanoma has yet to be studied.

Other Cancers
tRNAs and tsRNAs have also been implicated in the biological
processes of liver (Selitsky et al., 2015) and prostate cancers (Olvedy
et al., 2016b). In liver cancer, tsRNAs tRNAVal-TAC-3, tRNAGly-TCC-5,
tRNAVal-AAC-5, and tRNAGlu-CTC-5 were significantly increased in
plasma exosomes (Selitsky et al., 2015) (Figure 8). Meanwhile the
expression of tiRNAArg-CCT-5, tiRNAGlu-CTC-5, tiRNALeu-CAG-5,
and tiRNALys-TTT-5 was downregulated in clear-cell renal-cell
carcinoma, suggesting a potential role as a tumor suppressor
(Zhao et al., 2018). Moreover, the relative abundance of tiRNAGly

is 50–60% lower in hepatitis B virus and Hepatitis C virus-related
cancers than normal liver tissue (Selitsky et al., 2015). These findings
suggest that tRNAs and tsRNAs may have opposite effects in liver
cancer and clear-cell renal-cell carcinoma and may thus be used as
new diagnostic biomarkers.

tsRNA (CU1276) modulated DNA damage response and
suppressed cell proliferation via the inhibition of RPA1, which
is an endogenous single-stranded DNA binding protein, in B cell
lymphoma cells (Maute et al., 2013) (Figure 8). Meanwhile,
tRNALeu and pre-miRNA derived from tRF/miR-1280, can
suppress the growth and transfer of colorectal cancer by

inhibiting Notch signaling pathways. Particularly, tRF/miR-
1280 can target the Notch ligand jagged 2 (JAG2) to repress
Notch signaling pathways, which in turn inhibits the cancer stem
cell phenotypes by inhibiting direct transcription of Gata1/3 and
miR200b genes, thus inhibiting tumorigenesis and metastasis
(Huang et al., 2017) (Figure 8).

In high-grade serous ovarian cancer, upregulated tRFs can
promote protein phosphorylation, transcription, cell migration,
cancer pathways, MAPK, and Wnt signaling pathways, as well as
regulating HMBOX1 to attack human ovarian cancer cells
(Zhang et al., 2019a). This proves that tRFs play a role as a
regulatory factor for cancer development in serous ovarian cancer
(Figure 8). In prostate cancer, 589 differentially expressed tRFs
have been detected, suggesting its potential as a biomarker
(Olvedy et al., 2016b). Similarly, tRF-1001 from tRNASer was
eminently expressed in prostate cancer, whereas its knockdown
suppressed DNA biosynthesis and cell proliferation (Anderson
and Ivanov, 2014).

CLINICAL APPLICATION OF TRNAS AND
TSRNAS IN CANCER

Although tsRNAs and tRNAs function in the human body are
still in the exploratory stage, the potential it has shown as a cancer
marker is not to be underestimated. Next, we will discuss its role
in clinical diagnosis and treatment.

FIGURE 7 | Roles of tRNAs and tsRNAs in melanoma.
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As a Diagnostic Biological Marker
Cancer is the most dangerous disease known. In many cases,
patients with cancer are often unaware of their early stages, and
when clinical symptoms appear, the cancer is in its late stages.
Finding reliable and sensitive diagnostic molecular markers is
researchers have been struggling to find. Recently, the function of
tRNAs and tsRNAs in the human body has gradually received
clinical attention and shown great molecular marker potential.

Previous studies have shown that tsRNAs can be detected in
serum and urine stabilized (Romaine et al., 2015; Santos et al.,
2019). Now, with the continuous development of high-
throughput sequencing technology, different types of tsRNAs
are constantly detected and isolated in body fluids, and their
functions are gradually reflected. For example, there are
differences in abundance between prostate cancer and renal
transparent cell carcinoma and tsRNAs in normal prostate
tissue (Hayes et al., 2014; Zhao et al., 2018). Subsequently,
many studies have found tRNAs and tsRNAs disorders may
be related to the regulation of tumor genes and tumor
suppressor genes, while the abnormal expression of tRNAs
and tsRNAs can promote cell proliferation and inhibit cell
apoptosis, further promoting cancer progression (Pavon-
Eternod et al., 2013; Kwon et al., 2018). In breast cancer,
ethanol stimulation can promote the proliferation of Brf1 and
ER+, thereby enhancing their interaction, and enhance the
production of tRNA by Pol III gene transcription, further

promoting tumor progression (Fang et al., 2017). Meanwhile
many studies have shown that cancer genes can regulate the
expression of tsRNAs and tsRNAs may also be a key effector
molecule of cancer gene regulation (Zhu et al., 2019). On the
other hand, in hepatocellular carcinoma, tsRNAs tRNAVal-TAC-3,
tRNAGly-TCC-5, tRNAVal-AAC-5, and tRNAGlu-CTC-5 are
significantly elevated in plasma exosomes, which may play a
transcriptional role (Selitsky et al., 2015). These characteristics are
sufficient to demonstrate the great potential of tsRNAs to become
a biomarker of tumors. But there is still less research on tsRNAs,
and hopefully more people will look to it in the future so that
tsRNAs can really play its clinical role and contribute to the cause
of human medicine.

The Role of Targeted Therapy
tRNAs and tsRNAs, as small molecular markers related to tumor,
may also play a role in molecular targeted therapy to suggest local
therapeutic targets. For example, mt-tRNA mutations in lung
cancer inhibit the development of NSCLC by leucyl-tRNA
synthase mediated rapamycin complex 1 as a non-classical
mammalian target (Kim et al., 2019). In high-grade serous
ovarian cancer, tRF-03357 promotes cell proliferation,
migration and invasion, partly by modulating HMBOX1. And
this phenomenon can be reversed by targeting tRF-03357 (Zhang
et al., 2019a). These functions indicate that tRNAs and tsRNAs
can be used as therapeutic targets for clinical interventions.

FIGURE 8 | Roles of tRNAs and tsRNAs in other cancers.
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However, as a therapeutic target, more precise mechanisms of
action and higher sensitivity specificity are required, which still
leaves some unexplored areas.

CONCLUSION AND PERSPECTIVES

Recent studies have revealed they are key role to various human
diseases’ development, especially cancer. Meanwhile, tsRNAs are
increasingly being tapped for its potential role in diseases. This
review summarizes recent literature on the biogenesis, structure,
and biological characteristics and functions of tRNAs and
tsRNAs, with an extraordinary attention to their participation
and potential clinical significance in human cancers.

In human cancer, tRNAs and tsRNAs possess carcinogenic
roles by promoting cell proliferation, migration, and invasion
and inhibiting apoptosis (Santos et al., 2019). Meanwhile,
tRNAs and tsRNAs also have anti-tumor effects. Although in
clinical settings, fluid screening mainly focuses on miRNAs
(Hayes et al., 2014; Romaine et al., 2015). However, tRNAs
and tsRNAs are stably enriched in the biofluids in solid cancers
and blood malignancies, (Zhang et al., 2009; Li et al., 2012), fluid
screening can determine tRNAs and tsRNAs biomarker
candidates for cancer diagnosis.

Several studies have confirmed that tRNAs and tsRNAs
regulate cancer progression. Indeed, such mechanisms may
become suitable targets for novel therapeutic approaches in
several tumor types. Although tRNA has already been
confirmed as a regulator, it remains unclear whether its
dysregulation in many cancers is a trigger for tumor initiation,
progress, or metastasis.

Compared with that on other non-coding RNAs, i.e., miRNA
and lncRNA, the current state of knowledge on tRNAs and
tsRNAs are still in its infancy, and they have not yet been
studied in clinical settings. There are several challenges and
limitations in the study of tRNAs. First, the molecular
mechanism of tRNAs and tsRNAs in cancer development
needs to be further confirmed. Second, most studies on tRNAs

and tsRNAs and their role in cancer used cancer cells. To advance
research in this field, future studies should utilize clinical samples,
such as tumor tissues and body fluids. Third, how to utilize
tRNAs and tsRNAs against cancer cells effectively and with long-
term efficacy should be sufficiently addressed. Fourth, to ensure
their safety and efficacy in human, pre-clinical and clinical studies
are warranted. Lastly, the relationship between mutations in
mitochondrial tRNA and maternal genetic diseases needs to be
more clearly studied.

In conclusion, this review bridges the gap between what is
known about tRNAs and tsRNAs and their involvement in
human cancer, thus providing new insights and strategies for
cancer diagnosis, management, and treatment (Hopper and
Phizicky, 2003).
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