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Breast cancer (BC) has surpassed lung cancer as the most frequently occurring cancer,
and it is the leading cause of cancer-related death in women. Therefore, there is an urgent
need to discover or design new drug candidates for BC treatment. In this study, we first
collected a series of structurally diverse datasets consisting of 33,757 active and 21,152
inactive compounds for 13 breast cancer cell lines and one normal breast cell line
commonly used in in vitro antiproliferative assays. Predictive models were then
developed using five conventional machine learning algorithms, including na€ıve
Bayesian, support vector machine, k-Nearest Neighbors, random forest, and extreme
gradient boosting, as well as five deep learning algorithms, including deep neural networks,
graph convolutional networks, graph attention network, message passing neural
networks, and Attentive FP. A total of 476 single models and 112 fusion models were
constructed based on three types of molecular representations including molecular
descriptors, fingerprints, and graphs. The evaluation results demonstrate that the best
model for each BC cell subtype can achieve high predictive accuracy for the test sets with
AUC values of 0.689–0.993. Moreover, important structural fragments related to BC cell
inhibition were identified and interpreted. To facilitate the use of the model, an online
webserver called ChemBC (http://chembc.idruglab.cn/) and its local version software
(https://github.com/idruglab/ChemBC) were developed to predict whether compounds
have potential inhibitory activity against BC cells.
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1 INTRODUCTION

According to the latest data on the global cancer burden for 2020
released by the International Agency for Research on Cancer of
the World Health Organization, breast cancer (BC) surpassed
lung cancer in 2020 to become the most common cancer
worldwide. BC is the leading cause of cancer-related death
among women worldwide (Sung et al., 2021). BC consists of
the uncontrolled proliferation of mammary epithelial cells under
the action of many carcinogenic factors (Escala-Garcia et al.,
2020), including alcohol consumption, smoking, overweight, and
mammographic density. BC is classified according to the
expression of the estrogen receptor (ER), progesterone
receptor (PR), human epidermal growth factor receptor 2
(HER2), and Ki-67 into five subtypes: Luminal A, Luminal B
(HER2-positive or HER2-negative), HER2-positive, and triple-
negative breast cancer (TNBC) (Harbeck et al., 2013). Among
these BC subtypes, TNBC is associated with poor survival
mediated by treatment resistance, and it is the most difficult
to treat with curative intent (Liao et al., 2021). Several drugs (e.g.,
anthracyclines and trastuzumab) have been approved by the U.S.
Food and Drug Administration (FDA) for the treatment of BC;
however, issues such as poor efficacy, toxicity, adverse drug
reactions, and the emergence of drug resistance have limited
their clinical use (Brower, 2013; Cameron et al., 2017; Shah and
Gradishar, 2018; Daniyal et al., 2021; Li and Li, 2021). Therefore,
there is an urgent need to discover and develop new drugs for the
treatment of BC, particularly for TNBC.

Innovative drugs (or active molecules) can be identified
through two mainstream screening methods: phenotypic-based
screening and target-based screening. Target-based screening has
been widely used to discover new drugs for the treatment of
human diseases in both the pharmaceutical industry and
academia for more than 30 years (Chen et al., 2014; Zhang
et al., 2014; Wang et al., 2017a; Luo and Wang, 2017; Moffat
et al., 2017; Shang et al., 2017). Target-based screening has several
advantages, including simplicity, lower cost, and easy to achieve
efficient structure-activity relationship (SAR) for lead
optimization (Croston, 2017). However, there are two major
concerns associated with target-based approaches: 1) the
identification and validation of druggable targets is difficult,
and if a selected target is undruggable, it may lead
practitioners to pursue projects and compounds that fail to
translate into clinical results (Croston, 2017) and 2) the
conventional “one drug, one target” paradigm has shown
unsatisfactory clinical results in human complex diseases (e.g.,
cancer (Wermuth, 2004), Alzheimer’s disease (Wang et al., 2017b;
Albertini et al., 2021), and infectious diseases (Morphy et al.,
2004; Li et al., 2019). Phenotypic-based screening (e.g., whole-cell
activity), an original but indispensable drug screening method,
has gained attention in recent years because of the number of
discovered and approved drugs (Liu et al., 2019; Childers et al.,
2020; Berg, 2021; Quancard et al., 2021). Two influential analyses
by Swinney and Anthony in 2011 and Swinney in 2013
highlighted that the majority of first-in-class drugs (new
chemical entities, NME) approved between 1999 and 2008
were identified through phenotypic screening approaches

compared with target-based screening methods. In reality,
most FDA approvals of first-in-class drugs originated from
phenotypic screening before their precise mechanisms of
action or molecular targets were elucidated.

Although phenotype-based screening has advantages over
target-based screening for drug discovery, it is unscalable,
costly, and does not contribute to the understanding of the
mechanism of action of drugs. Several important technologies
including affinity-based approaches, functional genetic
approaches, cellular profiling approaches, and knowledge-
based (computational) approaches are currently available and
can be used to characterize the direct and indirect target space of
bioactive compounds from phenotypic screening (Schirle and
Jenkins, 2016; Sydow et al., 2019; Hughes et al., 2021).

Increased amounts of phenotypical pharmacological data on
cancer, Alzheimer’s disease, and infectious diseases have been
accumulated in the past 3 decades. Inspired by the available
phenotypic screening data, several efficient and cost-saving
computational models have been developed to accelerate the
drug design and discovery process (Zoffmann et al., 2019;
Buckner et al., 2020; Chandrasekaran et al., 2021; Malandraki-
Miller and Riley, 2021). For example, in 2020, Stokes et al. first
reported directed message passing neural network models using a
collection of 2,335 compounds for those that inhibited the growth
of Escherichia coli (phenotype screening data) and then identified
the lead compound halicin with broad-spectrum antibacterial
activity (Stokes et al., 2020). Other machine learning-based
models have been established to identify new agents against
Methicillin-Resistant Staphylococcus aureus (Wang et al.,
2016b), Mycobacterium tuberculosis (Ye et al., 2021),
Pseudomonas aeruginosa (Fields et al., 2020), Plasmodium
falciparum (Ashdown et al., 2020), and Schistosoma (Zheng
et al., 2021). In the field of anticancer drug design and
discovery, phenotypical whole cell-based screening methods
have substantially advanced our ability to identify new
anticancer drugs. In previous studies, we reported the
development of computational models using integrated NCI-
60 cell-based phenotype screening data to identify new
anticancer agents (e.g., G03 and I2) with significant inhibitory
activity against various cancer cell lines (Guo et al., 2019; Luo
et al., 2019). Although the reported integrated computational
anticancer models provided valuable data for discovering
anticancer agents, these models cannot distinguish or
selectively predict specific cancer cell subtypes (such as BC
and its subtypes). In addition, these prediction models have
not been developed into easy-to-use tools (e.g., local software
packages or online prediction platforms), which limits the use of
these models by practitioners in the field.

In the present study, we expanded our earlier efforts aimed at
developing reliable computational cell-based models to predict
cell inhibitory activity in BC and subtypes and provided a free
platform to share our models. A total of 588 cell-based models for
BC and subtypes were developed using five conventional machine
learning (ML) and five deep learning (DL) algorithms based on
three major types of molecular descriptors, fingerprints, and
graphs. We used the local outlier factor (LOF) (Breunig et al.,
2000) algorithm to evaluate the applicability domain of the best
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model for each BC cell line and applied the SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017; Lundberg et al.,
2020) algorithm to highlight significant structural fragments.
Finally, an online platform (http://chembc.idruglab.cn/) and
local software (https://github.com/idruglab/ChemBC) were
constructed based on reliable models to contribute to future
research.

2 METHODS

2.1 Dataset Collection and Preparation
All quantitative compound-cell associations (cell-based assays,
assay type: F) for available BC cell lines and normal BC cell lines
were collected from ChEMBL (Mendez et al., 2019) (downloaded
in March 2021) after the exclusion of metastatic cell lines. Each
BC cell dataset was then processed using the following steps: 1)
compounds with biological activity reported as IC50, EC50, or GI50
were kept, whereas molecules that had no bioactivity record were
removed; 2) the units of bioactivity (i.e., g/mL, M, nM) were
converted into the standard unit in μM; 3) for a molecule with
multiple bioactivity values, the final bioactivity value was
obtained by averaging the available bioactivity records; 4)
according to previous studies (Fields et al., 2020; Ye et al.,
2021), compounds with bioactivity values (e.g., IC50, EC50,
GI50) ≤10 μM were considered as active and vice versa;
molecules whose labels could not be unequivocally assigned
(e.g., activity <100 μM or activity >1 μM) were excluded from
the dataset; 5) all molecules were processed by removing salt and
optimized based on the MMFF94X force field using MOE
software (version 2018) with the default parameters. Finally,
14 cell lines with the number of active molecules (actives) and
inactive molecules (inactives) >50 were retained. Each cell-
compound dataset was randomly split into three sub-datasets:
training (80%), validation (10%), and test (10%). All datasets used
for the models described in the present study are freely available
at https://github.com/idruglab/ChemBC.

2.2 Molecular Representations Calculation
Choosing suitable molecular representations is essential for
developing acceptable and robust QSAR models. To a certain
extent, the molecular representation determines the upper limit
of the accuracy of the model. To fully characterize the chemical
information of these molecules, three distinct types of features
were calculated and used, including molecular descriptors-,
fingerprints-, and graph-based representations. RDKit
descriptors (RDKitDes), a set of 208 descriptors, were used.
Four fingerprint-based features including Morgan fingerprints
(ECFP-like, 1024-bits) (Rogers and Hahn, 2010), MACCS keys
(166-bits) (Durant et al., 2002), AtomParis fingerprints (2048-
bits) (Carhart et al., 1985), and 2D Pharmacophore Fingerprints
(PharmacoPFP, 38-bits) (Gobbi and Poppinger, 1998) were
implemented. The molecular descriptor- and fingerprint-based
representations were calculated using RDKit (Landrum, 2016)
(version: 2020.03.1).

The molecular graph (G) representative consisted of two
matrices for a given molecule: the N × N adjacency matrix A,

representing a graph structure; and theN × F node-feature matrix
X, where N is the number of nodes and F is the number of node
features. The node-feature matrix contained the following atom
features: atom type, formal charge, hybridization, number of
bound hydrogens, aromaticity, number of degrees, number of
hydrogens, chirality, and partial charge. The edge representation
contained bond type, whether the atoms in the pair are in the
same ring, whether the bond is conjugated or not, and stereo
configuration of a bond (Kearnes et al., 2016). Most of them were
encoded in a one-hot manner into a molecular graph. In this
study, molecular graph-based representations were generated
using Deepchem (version: 2.5.0). For example, the
MolGraphConvFeatureizer module was used to calculate the
molecular graphs of Attentive FP, GAT, and MPNN models,
and the ConvMolFeaturizer (Duvenaud et al., 2015) module was
used to calculate the molecular graph of the GCN model.

2.3Machine Learning Algorithms andModel
Construction
Five conventional ML algorithms (i.e., RF, SVM, XGBoost, KNN,
and NB) and five DL algorithms (i.e., DNN, GCN, GAT, MPNN,
and Attentive FP) were used to develop classification models for
discriminating actives from inactives against breast cell lines. The RF,
SVM, KNN, and NBmodels were constructed using the Scikit-learn
(Pedregosa et al., 2011) python package (https://github.com/scikit-
learn/scikit-learn, version: 0.24.1); the XGBoost (Chen and Guestrin,
2016) models were developed using the XGBoost python package
(https://github.com/dmlc/xgboost, version: 1.3.3); and other graph-
basedmodels were established using the DeepChem python package
(https://deepchem.io/). All descriptor- and fingerprint-based models
and graph-basedDLmodels were trained on CPU [Intel(R) Xeon(R)
Silver 4216 CPU @ 2.10 GHz] and GPU [NVIDIA Corporation
GV100GL (Tesla V100 PCIe 32 GB)], respectively. In addition, we
used grid search to optimize hyperparameters for each model.
Detailed these modeling methods and their hyperparameters are
briefly described as follows.

2.3.1 Random Forest
RF is a representative ensemble learning approach. It establishes a
classifier or regressor by an ensemble of individual decision trees
and makes predictions as final output by vote or by averaging
multiple decision trees (Svetnik et al., 2003). Compared with a
decision tree, RF has high prediction accuracy, good tolerance to
outliers and noise, and is not easy to overfit. To obtain the best RF
model, the following five hyperparameters were optimized:
n_estimators (10–500), criterion (“gini” and “entropy”),
max_depth (0–15), min_samples_leaf (1–10), and
max_features (“log2”, “auto” and “sqrt”).

2.3.2 Support Vector Machine
SVM is a supervised ML algorithm that can be used for both
classification and regression tasks (Zernov et al., 2003). The basic
idea underlying SVM is to find the optimal hyperplane in the
feature space that can be obtained by maximizing the boundary
between classes in N-dimensional space, which distinguishes
objects with different class labels. SVM has been widely used
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in drug discovery-relevant applications such as compound
activity and property prediction (Heikamp and Bajorath,
2014). In the training of SVM models, two hyperparameters,
Kernel coefficient (gamma, “auto”, 0.1–0.2) and penalty
parameter C of the error term (C, from 1 to 100), were optimized.

2.3.3 Extreme Gradient Boosting
XGBoost is one of the so-called ensemble learning algorithms
under the Gradient Boosting framework and has achieved state-
of-the-art ranking results in many ML competitions. It has been
widely used in molecular property/activity prediction tasks (Jiang
Z. et al., 2021; Li et al., 2021; Ye et al., 2021). Seven
hyperparameters were optimized in the training of XGBoost
models: learning_rate (0.01–0.1), gamma (0–0.1),
min_child_weight (1–3), max_depth (3–5), n_estimators
(50–100), subsample (0.8–1.0), and colsample bytree (0.8–1.0).

2.3.4 K-Nearest Neighbor
The basic idea of the KNNML algorithm (Cover and Hart, 1967)
is to identify the k training samples closest to the test samples in
the training set based on distance measures (e.g., Euclidean,
Manhattan, and Jaccard distance), and to make a prediction
based on the information of the k samples. The default
distance measure Euclidean was used in this study. The
following three hyperparameters were optimized: n_neighbors
(1–5), p (1–2), and weight function (“uniform”, “distance”).

2.3.5 Na€ıve Bayes
NB is a classic classification ML method based on Bayes’ theorem
(Duda andHart, 1973) and independent assumption of characteristic
conditions. For a given dataset, the joint probability distribution of
input and output is first learned based on the independent hypothesis
of characteristic conditions. NB is also widely used in drug discovery
practices (Wang et al., 2016b; Wang et al., 2016a; Wang et al., 2016b;
Guo et al., 2020). Two hyperparameters were optimized: alpha
(0.01–1) and binarize (0, 0.5, 0.8).

2.3.6 Deep Neural Networks
DNN is a typical DL algorithm and is essentially an artificial
neural network (McCulloch and Pitts, 1943) with multiple hidden
layers. It consists of many independent neurons, each of which
collects information from its connected neurons, and the
aggregated information is then activated through a nonlinear
activation function. The following key hyperparameters were
optimized: dropouts (0.1, 0.2, 0.5), layer_sizes (64, 128, 256,
512) and weight_decay_penalty (0.01, 0.001, 0.0001).

2.3.7 Graph Convolutional Network
GCN is a classic neural network that can use graph-structured
data as input (Kipf and Welling, 2016). It is composed of graph
convolution layers, a readout layer, fully connected layers, and an
output layer. The core idea of graph convolution is to use edge
information for aggregating node information, thereby
generating a new node representation. Various GCN
frameworks have been proposed. Duvenaud et al. (2015)
introduced a convolutional neural network that allows end-to-
end learning of prediction pipelines. In this study, we used

Duvenaud’s GCN method, and the following hyperparameters
were optimized: weight_decay (0, 10e-8, 10e-6, 10e-4),
graph_conv_layers [(64, 64), (128, 128), (256, 256)], learning
rate (0.01, 0.001, 0.0001) and dense_layer_size (64, 128, 256).

2.3.8 Graph Attention Network
Attention mechanism (AM) is one component of a neural
network architecture, which can be embedded in the DL
models to automatically learn and calculate the contribution
of input data to output data. GCN cannot complete the
inductive task, namely, dynamic graph problems, and it is
not easy for GCN to assign different learning weights to
different neighbors. GAT (Veličković et al., 2017) introduces
an AM to address the disadvantages of previous approaches
based on GCN or its approximation. The weight of the features
of adjacent nodes depends entirely on the features of the nodes
and is independent of the graph structure. In the training of the
GAT model, the following hyperparameters were optimized:
weight_decay (0, 10e-8, 10e-6, 10e-4), learning rate (0.01, 0.001,
0.0001), n_attention_heads (8, 16, 32), and dropouts (0, 0.1,
0.3, 0.5).

2.3.9 Message Passing Neural Network
MPNN, proposed by Gilmer et al. (2017), is a common graph
neural network (GNN) framework for chemical prediction tasks.
It can directly learn the molecular characteristics from the
molecular diagram and is not affected by the graph
isomorphism. In the training of the MPNN model, six
hyperparameters were optimized: weight_decay (10e-8, 10e-6,
10e-4), learning rate (0.01, 0.001, 0.0001), graph_conv_layers
[(64, 64), (128, 128), (256, 256)], num_layer_set2set (2, 3, 4),
node_out_feats (16, 32, 64), and edge_hidden_feats (16, 32, 64).

2.3.10 Attentive FP
Attentive FP, which was proposed by Xiong et al. (Xiong et al.,
2020), is currently a state-of-the-art GNN model for molecular
property prediction, and what is learned from the established
model is interpretable. It allows the model to focus on the most
relevant parts of the input by applying a graph AM. Herein, the
main hyperparameters were optimized as follows: dropout (0, 0.1,
0.5), graph_feat_size (50, 100, 200), num_timesteps (1, 2, 3),
num_layers (2, 3, 4), learning rate (0.0001, 0.001, 0.01), and
weight_decay (0, 0.01, 0.0001).

2.4 Performance Evaluation of Models
The following classification evaluation metrics were used to
evaluate the performance of the classification models:
specificity (SP/TNR), sensitivity (SE/TPR/Recall), accuracy
(ACC), F1-measure (F1 score), Matthews correlation
coefficient (MCC), the area under the receiver operating
characteristic (AUC), and Balanced accuracy (BA). These
evaluation metrics are defined as follows:

SP � TN

TN + FP
(1)

SE � TP

TP + FN
(2)
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ACC � TP + TN

TP + TN + FP + FN
(3)

F1 � 2 × Precision × Recall

Precision + Recall
� 2 × TP

2 × TP + FN + FP
(4)

MCC � TP × TN − FN × FP
�������������������������������������������(TP + FN) × (TP + FP) × (TN + FN) × (TN + FP)√

(5)

BA � TPR + TNR

2
� SE + SP

2
(6)

where TP, TN, FP, and FN represent the number of true positives,
true negatives, false positives, and false negatives, respectively.

2.5 Model Interpretation
The interpretation of complex ML models remains a challenge
because ML algorithms are often a “black box”. Accordingly, we
used a recently-developed model-agnostic interpretation framework
termed SHapley Additive exPlanation (SHAP) to interpret the
established ML models presented in this study. Inspired by the
idea of cooperative game theory, the SHAP method constructs an
additive explanatorymodel. In thismodel, all features are considered
contributors. For each prediction sample, the model generates a
predicted value, and the SHAP value is the value assigned to each
feature in the sample. The greater the SHAP value, the greater the
contribution of the corresponding feature to the ML model. The
SHAP value is calculated as follows:

yi � ybase + f(Xi1) + f(Xi2) +/ + f(Xik) (7)

where Xi represents the sample, Xij represents the j feature of this
sample, yi represents the predicted value of the model for this
sample, ybase represents the baseline of the entire model (usually
the mean of the target variable for all samples), f (Xij) is the SHAP
value of Xij. Intuitively, f (Xi1) is the contribution value of the first
feature in sample i to the final predicted value yi. When f (Xi1) > 0, it
indicates that this feature improves the predicted value and has a
positive effect. On the contrary, it shows that this feature reduces the
predicted value and has a reverse effect. Collectively, SHAP value can
reflect the influence of the feature in each sample and show the
positive and negative influence of the feature.

2.6 Model Applicability Domain
According to the principles of the Organization for Economic Co-
operation and Development (OECD), it is necessary to determine
the applicability domain (AD) of the QSAR model because of the
limited structural diversity of the molecules used in the training
dataset. From the perspective of ML, a suitable AD can prevent
the prediction deviation from being too large because the feature
range of the samples to be tested is too different from the training
dataset samples. Therefore, effective identification of Out-of-
Domain compounds is the basis for ensuring the reliability of
the establishedmodel. We used the LOF algorithm (Breunig et al.,
2000) to detect super-applicability domain compounds for the
best model for each BC or normal breast cell line. LOF is based on
the concept of local density, where the local area is given by
k-nearest neighbors, whose distance is used to estimate the
density. Regions of similar density can be identified by

comparing the local density of an object with that of its
neighbors, and points that are much lower in density than
their neighbors are considered outliers.

3 RESULTS

3.1 Dataset Analysis and Model
Construction
According to the above-predefined criteria, 14 breast-associated cell
lines were obtained and distributed as follows: 1) two Luminal A
subtypes including MCF-7 and T-47D; 2) two Luminal B subtypes
including BT-474 and MDA-MB-361; 3) three HER-2+ subtypes
includingMDA-MB-435,MDA-MB-453, and SK-BR-3; 4) six TNBC
subtypes including Bcap37, BT-20, BT-549, HS-578T, MDA-MB-
231, andMDA-MB-468; and 5) one normal breast cell line, HBL-100.
Accordingly, we selected these cell-based phenotypical datasets for
subsequent modeling. The model construction pipeline is shown in
Figure 1. Details on the 14 cell lines and their corresponding cell-
associated compound datasets are summarized in Table 1. The
compiled cell-based phenotype datasets included 34,801 unique
compounds and 54,909 cell–compound associations. Among
them, in 14 cell line datasets, 33,757 compounds were labeled as
actives and 21,152 compounds were labeled as inactives
(Supplementary Figure S1A). Supplementary Figure S1B shows
the proportions of actives and inactives in the 14 cell datasets (due to
the natural, although itmay not be the best, we did not add theoretical
decoys to deliberately balance the data), with active compounds
accounting for approximately 40–78%.

The structural diversity and chemical space of compounds in
datasets play a key role in the predictive ability of the ML models.
Bemis–Murcko scaffold analysis (Bemis and Murcko, 1996) showed
that the proportion of the scaffolds for each BC cell line dataset was
between 19.70 and 53.41% (Table 1), suggesting that the anti-BC
compounds of each cell line were structurally more diverse. In
addition, the chemical space of the compounds in each dataset
can be depicted in a two-dimensional space using molecular weight
(MW) and AlogP. As shown in Supplementary Figure S2, the
training, validation, and test set compounds were distributed over a
wide range of MW (108.10–5,714.45) and AlogP (−55.54–42.62),
demonstrating that the compounds in the modeling datasets have a
broad chemical space. Based on the three different types ofmolecular
features (i.e., molecular descriptors-, fingerprints-, and graph-based
features) and the selected ten types of ML algorithms, 476 single
models and 112 fusion models were developed. All models were
optimized based on the validation sets and selected based on the F1
score (Kc et al., 2021). The best models were selected for the
evaluation of external test datasets. The performance of the
established models is discussed in the following sections.

3.2 Performance of Descriptor-Based
Prediction Models for Breast-Associated
Cells
Firstly, 84 predictive models were constructed based on the
RDKit-descriptors using five traditional types of ML
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algorithms (KNN, NB, RF, SVM, and XGBoost) and one deep
learning DNN method. For these traditional ML methods, the
optimized RDKit-descriptors were obtained using the
SelectPercentile module (Percentile � 30) implemented in the
scikit-learn package and then used as input features to construct
models. Each model is denoted as a combination of a given
molecular representation and ML algorithm (e.g., RF:RDKitDes).
For each cell dataset and the corresponding ML methods,
hyperparameters were optimized based on the validation sets
(detailed in the Methods section), and the best set of

hyperparameters are shown in Supplementary Table S1. The
detailed performance results for descriptor-based models are
listed in Supplementary Table S2. The performance of the
models (F1 score, BA, and AUC) for the test sets is
summarized in Figure 2. Overall, most descriptor-based
models performed well in BC cell inhibitory prediction tasks,
achieving a mean F1 score and BA value > 0.5. The RF model
performed the best in all cell lines, with higher average F1 scores
(0.840 ± 0.073), BA (0.725 ± 0.073), and AUC (0.835 ± 0.067).
Meanwhile, the XGBoost model also achieved good and/or

TABLE 1 | Breast cell line datasets used in this study.

Cell lines Classification No. of compounds No. of scaffolds Scaffolds/compounds (%)

MDA-MB-435 HER-2+a 3,030 870 28.71
MDA-MB-453 HER-2+ 440 215 48.86
SK-BR-3 HER-2+ 2026 571 28.18
MCF-7 Luminal Ab 29,378 5,787 19.70
T-47D Luminal A 3,135 926 29.54
BT-474 Luminal Bc 811 308 37.98
MDA-MB-361 Luminal B 367 196 53.41
HBL-100 Normal cell line 316 110 34.81
Bcap37 TNBCd 275 73 26.55
BT-20 TNBC 292 146 50.00
BT-549 TNBC 1,182 497 42.05
HS-578T TNBC 469 215 45.84
MDA-MB-231 TNBC 11,202 2,672 23.85
MDA-MB-468 TNBC 1986 685 34.49

a*HER-2+: HER2-positive breast cancers.
bLuminal A: Luminal A breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), HER2-negative, and has low levels of the protein Ki-67,
which helps control how fast cancer cells grow.
cLuminal B: Luminal B breast cancer is hormone-receptor positive (estrogen-receptor and/or progesterone-receptor positive), and either HER2 positive or HER2 negative with high levels
of Ki-67.
dTNBC: triple-negative breast cancer.

FIGURE 1 | Model construction pipeline.
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comparable performance results (Figure 2). The detailed best-
performing RF:RdkitDes models results were achieved in five
breast cancer cell lines (BT-20, HS-578T, MCF-7, MDA-MB-231,
and T-47D), while the XGBoost:RDKitDes models also showed
superior performance in five breast-associated cell lines (BT-474,
HBL-100, MDA-MB-453, MDA-MB-468, and SK-BR-3). The
KNN:RDKitDes models exhibited the best performance in the
Bcap37, MDA-MB-361, and MDA-MB-435 cell lines. The SVM:
RDKitDes models performed well in BT-549.

3.3 Performance of Fingerprint-Based
Prediction Models for Breast-Associated
Cells
There were 336 models developed based on four types of
fingerprints (Morgan, MACCS, Atompairs, and PharmacoPFP)
using six types of ML algorithms (KNN, NB, RF, SVM, XGBoost,
and DNN). The detailed performance results for fingerprint-
based models are listed in Supplementary Tables S3-S6. The F1,

AUC, and BA values of the test sets are shown in Figures 3, 4 and
Supplementary Figure S3. Taking the average F1 score as a point
metric into consideration, the numbers of cell lines for which each
model was identified as the best-performing are shown in
Figure 5. No model, fingerprint, or ML algorithm could be
identified as the best-performing for the 14 cell line datasets,
demonstrating that it is necessary to screen different fingerprints
and different ML algorithms for the current breast cell-associated
modeling datasets (Figures 5B–F). Although the characteristics
of the four molecular fingerprints are different, the RF models
performed better than the other five ML models against most of
the 14 cell lines (Figures 3, 4, 5A). Meanwhile, the Morgan
fingerprint represents the best molecular feature representation
because the ML models based on Morgan fingerprints achieved
the best results for these modeling datasets (Table 2). Global
analysis of four fingerprint-based models also demonstrated that
RF methods can achieve a better performance than other ML
methods, with the highest average F1 score (0.848 ± 0.006), BA
(0.750 ± 0.013), and AUC (0.853 ± 0.009).

FIGURE 2 | Performance of descriptor-based BC prediction models. (A) F1 scores of descriptor-based models. (B) AUC results of descriptor-based models. (C)
BC results of descriptor-based models.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 7965347

He et al. Prediction of Breast Cells Inhibition

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


3.4 Performance of Graph-Based Prediction
Models for Breast-Associated Cells

Compared with the traditional pre-tailored molecular descriptors
and/or fingerprints, the key feature of GNN is its capacity to
automatically learn task-specific molecular representations using
graph convolutions. The SOAT accuracies of GNN models and
their variants (e.g., GCN, MPNN, GAT, and Attentive FP) have
been reported in various molecular property prediction tasks (Wu

et al., 2018; Yang et al., 2019; Xiong et al., 2020). Therefore, 56
molecular graph-based models were established using four types of
DL algorithms, including GCN, MPNN, GAT, and Attentive FP.
The detailed performance results of molecular graph-basedmodels
are listed in Supplementary Table S7. As shown in Figure 6, the
Attentive FP models exhibited the overall best performance
compared with other GNN methods, with a relatively higher
average F1 score (0.831 ± 0.070) and AUC (0.809 ± 0.086). The
BA results are shown in Supplementary Figure S4. Figure 6C

FIGURE 3 | Performance of fingerprint-based BC prediction models. (A) F1 scores of the AtomPairs-based models. (B) F1 scores of the MACCS-based models.
(C) F1 scores of the Morgan-based models. (D) F1 scores of the PharmacoPFP-based models.
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shows that the Attentive FPmodels performed the best in six breast
cancer cell lines including Bcap37, MCF-7, MDA-MB-453, MDA-
MB-468, SK-BR-3, and T-47D,making it the most frequent choice.

The GCN models showed the best performance in four breast cell
lines (BT-549, HBL-100, MDA-MB-231, and MDA-MB-361), the
MPNNmodels performed the best in BT-20 and BT-474 cell lines,

FIGURE 4 | Performance of fingerprint-based BC prediction models. (A) AUC results of the AtomPairs-based models. (B) AUC results of the MACCS-based
models. (C) AUC results of the Morgan-based models. (D) AUC results of the PharmacoPFP-based models.
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and the GAT models performed the best in HS-578T and MDA-
MB-435 cell lines.

One advantage of the DL model is its capacity for multi-
task model building for attribute-related datasets to improve
the accuracy of the single-task model (Li et al., 2018).
Therefore, the multi-task models were trained by the entire
13 breast cancer cell-compound datasets based on the features
of the Morgan fingerprints using DNN and molecular graphs

using GCN, Attentive FP. Supplementary Table S8 shows
that the AUC of the multi-task models was not better than that
of the single-task models. Further data point distribution
analysis found that the number of common compounds
shared by 13 cell line datasets was small (only 12
molecules, Supplementary Figure S5), which explains the
poor performance results (Supplementary Table S8) of the
multi-task models.

FIGURE 5 | (A) Summary of the optimal models for each fingerprint-based feature. (B) The best models among various fingerprint-based models for different kinds
of breast cell lines. The optimal models based on (C) AtomPairs, (D) MACCS, (E) Morgan, and (F) PharmacoPFP for different subtypes of breast cell lines.
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3.5 The Optimal Model for Each Breast Cell
Line and Further Validation
Comparison of the established molecular descriptor-, fingerprint-
, and graph-basedmodels showed that Eq. 1 the RF algorithm had
a better performance capability than the other five ML methods,
with higher average metric values of F1 score, BA, and AUC

(Table 2) in both descriptor- and fingerprint-based models, while
XGBoost also achieved comparable results for these 14 modeling
datasets (Table 2 and Figure 5A); 2) among the established
56 graph-based models, Attentive FP architecture outperformed
the other three deep graph learning approaches (i.e., GCN,
MPNN, and GAT) on average across all 14 datasets (Table 2);

TABLE 2 | Optimal models in different datasets and the evaluation of test datasets.

Molecular features Algorithms F1 scoresj BAk AUCl

Morgan DNNa 0.832 ± 0.080 0.735 ± 0.058 0.822 ± 0.078
KNNb 0.836 ± 0.084 0.771 ± 0.063 0.821 ± 0.069
NBc 0.775 ± 0.094 0.720 ± 0.079 0.782 ± 0.078
RFd 0.846 ± 0.087 0.754 ± 0.068 0.852 ± 0.072
SVMe 0.843 ± 0.084 0.747 ± 0.067 0.838 ± 0.072
XGBoostf 0.832 ± 0.076 0.728 ± 0.062 0.813 ± 0.079
Mean 0.827 ± 0.026 0.743 ± 0.019 0.821 ± 0.024

MACCS DNN 0.831 ± 0.076 0.737 ± 0.060 0.822 ± 0.067
KNN 0.846 ± 0.050 0.759 ± 0.056 0.798 ± 0.067
NB 0.723 ± 0.077 0.637 ± 0.073 0.722 ± 0.103
RF 0.853 ± 0.066 0.761 ± 0.064 0.860 ± 0.067
SVM 0.851 ± 0.064 0.755 ± 0.059 0.830 ± 0.068
XGBoost 0.842 ± 0.074 0.760 ± 0.056 0.842 ± 0.068
Mean 0.824 ± 0.050 0.735 ± 0.049 0.812 ± 0.049

AtomPairs DNN 0.853 ± 0.050 0.759 ± 0.057 0.842 ± 0.063
KNN 0.851 ± 0.037 0.781 ± 0.051 0.828 ± 0.064
NB 0.678 ± 0.099 0.668 ± 0.083 0.732 ± 0.085
RF 0.851 ± 0.066 0.753 ± 0.054 0.858 ± 0.059
SVM 0.847 ± 0.062 0.737 ± 0.069 0.829 ± 0.066
XGBoost 0.840 ± 0.074 0.755 ± 0.041 0.837 ± 0.075
Mean 0.820 ± 0.070 0.742 ± 0.039 0.821 ± 0.045

Molecular Graph Attentive FP 0.831 ± 0.070 0.721 ± 0.086 0.809 ± 0.087
GATg 0.810 ± 0.086 0.695 ± 0.088 0.774 ± 0.075
GCNh 0.818 ± 0.076 0.710 ± 0.091 0.798 ± 0.100
MPNNi 0.821 ± 0.080 0.696 ± 0.109 0.781 ± 0.090
Mean 0.820 ± 0.009 0.708 ± 0.011 0.793 ± 0.015

PharmacoPFP DNN 0.824 ± 0.072 0.705 ± 0.091 0.803 ± 0.105
KNN 0.840 ± 0.060 0.755 ± 0.075 0.782 ± 0.070
NB 0.705 ± 0.088 0.619 ± 0.075 0.680 ± 0.080
RF 0.840 ± 0.064 0.731 ± 0.070 0.840 ± 0.060
SVM 0.835 ± 0.068 0.722 ± 0.064 0.823 ± 0.059
XGBoost 0.838 ± 0.049 0.727 ± 0.072 0.825 ± 0.058
Mean 0.814 ± 0.054 0.710 ± 0.047 0.792 ± 0.059

RDKit DNN 0.817 ± 0.063 0.671 ± 0.089 0.782 ± 0.070
KNN 0.831 ± 0.053 0.736 ± 0.065 0.778 ± 0.068
NB 0.753 ± 0.068 0.605 ± 0.083 0.672 ± 0.108
RF 0.840 ± 0.073 0.725 ± 0.073 0.835 ± 0.067
SVM 0.805 ± 0.091 0.656 ± 0.086 0.761 ± 0.077
XGBoost 0.836 ± 0.084 0.740 ± 0.071 0.839 ± 0.060
Mean 0.814 ± 0.032 0.689 ± 0.054 0.778 ± 0.061

aDNN: Deep neural networks.
bKNN: K-Nearest Neighbor.
cNB: Na€ıve Bayesian.
dRF: Random forest.
eSVM: Support vector machine.
fXGBoost: Extreme gradient boosting.
gGCN: Graph convolutional networks.
hGAT: Graph attention network.
iMPNN: Message passing neural networks.
jF1 scores: F1-measure.
kBA: Balanced accuracy.
lAUC: Area under the receiver operating characteristics curve.
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and 3) the performance of molecular fingerprint-based models is
generally better than that of both descriptor- and graph-based
models at least in these 14 datasets (Table 2), implying that graph
DL methods do not achieve better results than the traditional ML
learning methods (especially for the two most efficient
algorithms, XGBoost and RF), which is consistent with a
recent systematic comparison study (Jiang D. et al., 2021).

According to the metrics of F1 score, BA, and AUC from
the test sets, the optimal in silico predictive model for each
breast cell line is listed in Supplementary Table S9.
Fingerprint-based RF models performed the best because
they ranked first in eight of 14 cell lines. Fingerprint-based
XGBoost and SVM models are tied for second place and
performed best in two of 14 breast cell lines each. For
example, the RF:Morgan model achieved higher prediction
results against MDA-MB-231 and T-47D breast cancer cell
lines, with ACC values of 83.7 and 84.0%, respectively, and
AUC values of 0.904 and 0.885, respectively. The lack of

selectivity for cancer cells rather than normal cells is one of
the main factors that limit the development of anticancer
drugs for clinical use (Dy and Adjei, 2013; Guo et al., 2020).
For one normal breast cell line (HBL-100), the RF:Morgan
model also showed good prediction results, with ACC and
AUC values of 83.9%, and 0.823, respectively, suggesting that
this model can be used to detect whether a given molecule
selectively inhibits breast cancer cells over normal human
breast cells.

Model fusion may improve the classification prediction
performance of a single model by combining the
classification prediction results from the corresponding
multiple models. Both voting and stacking methods were
used in this study for model fusion. As shown in Table 2,
Morgan fingerprint-based models performed the best in
different kinds of fingerprint-based models with an average
F1 score of 0.827 ± 0.026, and RF, XGBoost, and SVM
algorithms performed best in most of the datasets (Figures

FIGURE 6 | Performance of graph-based BC prediction models. (A) F1 scores of graph-based models. (B) AUC results of graph-based models. (C) The optimal
models based on molecular graph for different subtypes of breast cell lines.
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5A,E). Therefore, RF, SVM, and XGBoost models for model
fusion were applied based onMorgan fingerprints. A total of 112
fusion models were established, and detailed performance

results for these voting and stacking models are listed in
Supplementary Tables S10, S11. As shown in
Supplementary Figure S6, the average F1 scores of voting or

FIGURE 7 | The performance of 10-fold cross-validation results in RF:Morgan and XGBoost:Morgan models. (A–D) F1 scores, AUC, BA, and ACC results in RF:
Morgan models. (E–H) F1 scores, AUC, BA, and ACC results in XGBoost:Morgan models.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 79653413

He et al. Prediction of Breast Cells Inhibition

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


stacking models were similar in each dataset. In all the datasets
of breast cell lines, the RF + XGBoost voting model showed the
best average performance among fusion models, with average
F1, BA, and AUC of 0.849 ± 0.066, 0.749 ± 0.075, and 0.845 ±
0.075, respectively. The fusion models based on Morgan

fingerprints were slightly but not significantly better than the
single models.

To validate the stability and reliability of the models
presented, 10-fold cross-validation and 10 different random
seeds of data were used to retrain the models based on the

FIGURE 8 | Based on the top 20 most important features of the RF:Morgan model in MDA-MB-231, (A) the SHAP values for each molecular substructure, and (B)
the mean of the absolute value of the SHAP value for each molecular substructure.
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combination of Morgan fingerprints and two ML algorithms
(RF and XGBoost). The performance of 10-fold cross-validation
classification models is summarized in Supplementary Table
S12 and Figure 7. Overall, all RF:Morgan models performed
well, showing high F1 scores of 0.582–0.914, AUC values of
0.704–0.960, and ACC values of 0.685–0.878. XGBoost:Morgan
models showed a similar trend in the 10-fold cross-validation

experiment. In 14 cell line datasets, both RF:Morgan and XGBoost:
Morgan models consistently exhibited better performance with
different seeds (Supplementary Figure S7), and the performance
showed comparable or smaller variation compared with the
previous models based on a specific random seed. Taken
together, these results demonstrate that the models presented in
this study show stability and reliability. Y-scrambling testing was

FIGURE 9 | Important molecular substructures of the RF:Morgan model in MDA-MB-231 and the chemical structural of paclitaxel.

Frontiers in Pharmacology | www.frontiersin.org December 2021 | Volume 12 | Article 79653415

He et al. Prediction of Breast Cells Inhibition

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


used to demonstrate that the results are not attributed to chance
correlation. As illustrated in Supplementary Figure S8, S9, the F1
scores, BA, and AUC values of the RF:Morgan and XGBoost:
Morgan models were significantly higher than those of any of the
Y-scrambled models, which confirmed that the results were not
chance correlations.

3.6 Interpretation of the Optimal Model for
Each Breast Cell Line
To gain a deeper understanding of the established models, we used
the SHAP method to calculate the contribution of important
structural fragments. Because models based on the combination
of the RF and Morgan fingerprints had relatively high predictive
performance, we used TreeExplainer, a tree explanation method in
SHAP, to calculate the optimal local explanation for these RF:
Morgan models. In the MDA-MB-231 cell line as an example,
the top 20 favorable and unfavorable structural fragments forMDA-
MB-231 inhibition were determined based on the SHAP value and
are displayed in Figures 8, 9. As shown in Figure 8A, the feature
values are represented by different colors (red to blue). Redder points
indicate larger feature values. Morgan fingerprints only contain 1
(with this structural fragment, red) and 0 (without this structural
fragment, blue). For Morgan 128, Morgan 926, and Morgan 314 in
Figure 8A, most of the red points are in the positive value part and
most of the blue points are in the negative value part, indicating that
the predicted molecules with these fragments will have a higher
probability of anti-BC activity. On the contrary, Morgan 784 and
Morgan 171 have more red points in the negative value part,
indicating that high probabilities are judged by the model as
having no inhibitory effect on the MDA-MB-231 cell line. Taking
paclitaxel (a typical drug for BC treatment) as an example, it contains

Morgan 128, Morgan 926, and Morgan 314 but does not contain
Morgan 784 and Morgan 171, implying that it will be predicted to
have an inhibitory effect on theMDA-MB-231 cell line. In fact, this is
consistent with actual predictions and experimental results. The top
20 important structural fragments for other breast cell lines are
shown in Supplementary Figure S10–S35, which may facilitate
anti-BC lead compound selection and optimization.

3.7 Model AD
To further evaluate the generalization capability of our models, the
LOF algorithm was applied to detect super-applicability domain
compounds in the datasets. We first reduced the Morgan
fingerprints of 1,024 bits to two dimensions by Principal
Component Analysis in Scikit-learn and then used the LOF
module for calculation. As shown in Supplementary Figure
S36, there are fewer red points, which indicates that each
dataset has fewer super-applicability domain compounds.
Therefore, selecting compounds that are similar to those in the
datasets of this study may result in higher prediction accuracy
when using the present model. The molecular (feature) spaces can
be used to define the applicability domain, thus, a simpler way to
determine whether a molecule fits the models of this study is to
directly calculate the molecular weight of the molecule. Since the
molecular weight range of the molecules in this study is
108.10–5,714.45, we recommend using molecules in this range
for prediction, which can make the prediction more accurate.

3.8 Webserver and Local Version Software
for the Prediction of Anti-BC Agents
To facilitate the use of these models by experts and non-
experts in the field, we built a web-based online forecasting

FIGURE 10 | Website schematic diagram of bioactivity prediction. (A–F) represents prediction of paclitaxel inhibition for MDA-MB-231 cell line. (G–L) represents
prediction of paclitaxel inhibition against HBL-100 cell line.
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system called ChemBC (http://chembc.idruglab.cn/). To
expand the AD threshold of the established model, we
retained models for each breast cell line according to the
combination of Morgan fingerprint and RF using the entire
dataset, and then implemented these retained models into
ChemBC and its local version. According to the 10-fold
cross-validation (AUC � 0.780–0.928, ACC � 0.714–0.880),
the retrained models for 14 breast cell line datasets showed
excellent predictive performance. ChemBC was developed
based on the Django framework using the Python package.
The main functional module of ChemBC is prediction
(Figure 10) in which users can upload and/or online draw a
structure to easily and quickly predict the inhibitory activity
against 13 breast cancer cell lines and one normal breast cell
line. In addition, a local version executable software (https://
github.com/idruglab/ChemBC) was developed to perform
large-scale VS screening.

Taking paclitaxel as an example, it has a predicted score of 1.0 in
the MDA-MB-231 model, proving that it has a strong inhibitory
effect on the MDA-MB-231 cell line. Meanwhile, it has a predicted
score of 0.8 in the normal breast cell line (HBL-100), suggesting that
it is also toxic to the normal breast cell. Therefore, the ChemBC
webserver can not only predict whether the compound has an
inhibitory effect on breast cancer cells but also predict whether
the compound is toxic to one normal breast cell.

4 CONCLUSION

In this study, we collected datasets of phenotypic compound-
cell association bioactivity toward 13 breast cancer cell lines
and one normal breast cell line and constructed 588 models
based on three molecular representatives, including molecular
descriptors, fingerprints, and graphs using five conventional
ML and five DL algorithms. Compared with these established
models, the performance of RF:Morgan models was superior
to that of the other models based on molecular descriptors
and graphs. Based on RF:Morgan models, the important
favorable and unfavorable fragments for each breast cell
line generated using SHAP algorithms will be helpful for
lead optimization or the design of new agents with better
anti-BC activity. Although some fusion models based on
voting and stacking methods showed better performance
than single models, the observed improvement was minor.
Finally, the online platform ChemBC and its local version

software were developed based on well-established models,
which could contribute to research aimed at designing and
discovering new anti-BC agents. With the growth of
compound toxicity data for BC and normal breast cell
lines, we will add more prediction models in future studies.
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