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The tumor microenvironment (TME) plays a key role in promoting the initiation and
progression of tumors, leading to chemoradiotherapy resistance and immunotherapy
failure. Targeting of the TME is a novel anti-tumor therapeutic approach and is currently a
focus of anti-tumor research. Panax ginseng C. A. Meyer (ginseng), an ingredient of well-
known traditional Asia medicines, exerts beneficial anti-tumor effects and can regulate the
TME. Here, we present a systematic review that describes the current status of research
efforts to elucidate the functions andmechanisms of ginseng active components (including
ginsenosides and ginseng polysaccharides) for achieving TME regulation. Ginsenosides
have variety effects on TME, such as Rg3, Rd and Rk3 can inhibit tumor angiogenesis;
Rg3, Rh2 and M4 can regulate the function of immune cells; Rg3, Rd and Rg5 can restrain
the stemness of cancer stem cells. Ginseng polysaccharides (such as red ginseng acidic
polysaccharides and polysaccharides extracted from ginseng berry and ginseng leaves)
can regulate TME mainly by stimulating immune cells. In addition, we propose a potential
mechanistic link between ginseng-associated restoration of gut microbiota and the tumor
immune microenvironment. Finally, we describe recent advances for improving ginseng
efficacy, including the development of a nano-drug delivery system. Taken together, this
review provides novel perspectives on potential applications for ginseng active ingredients
as anti-cancer adjuvants that achieve anti-cancer effects by reshaping the tumor
microenvironment.

Keywords: tumor microenvironment, tumor angiogenesis, tumor stem cell, immune response, Panax ginseng (C.A.
Meyer), cancer therapy

INTRODUCTION

Efforts to develop anti-cancer therapies no longer focus specifically on targeting tumor cells
themselves, since cancer progression is regulated by the interaction between tumor cells and the
tumor-site environment. The tumor microenvironment (TME) is a complex tumor ecosystem that
are dominated by tumor and consists of tumor cells, stromal cells, immune cells, and the extracellular
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matrix (Wang et al., 2021; Zhang et al., 2021). The overall
complexity of an anti-tumor treatment depends on
interactions between the TME and tumor that support tumor
growth and heterogeneity, as well as tumor invasion, metastasis,
immune escape, and resistance to radiotherapy and
chemotherapy (Cheng et al., 2020; Abou Khouzam et al.,
2021). In view of the important role of the TME in tumor
development, tumor treatment approaches have evolved from
traditional measures aimed at eliminating tumor cells to multi-
pronged comprehensive treatment measures focused on
eliminating both tumor cells and the TME. Therapeutic
strategies targeting the TME include enhancement of anti-
tumor immunity, inhibition of tumor angiogenesis,
administration of anti-inflammatory agents, and blockage of
communication between tumor cells and the extracellular
matrix (Pitt et al., 2016). A variety of drugs that target the
TME are currently in widespread clinical use. For example,
antibody treatments are used to enhance the anti-tumor
immune response by blocking negative immunomodulatory
effects on “immune checkpoints” that are induced by tumor
or immunosuppressive cells within the TME. Such antibodies
include anti-CTLA-4 antibodies that restore costimulatory
signaling of cytotoxic T lymphocytes (CTLs) and anti-PD-1/
PD-L1 antibodies that block PD-1/PD-L1 inhibition of
activated CTL function. Meanwhile, drugs targeting tumor

angiogenesis are also available that include antibodies targeting
the VEGF/VEGFR axis, which block tumor-site endothelial cell
angiogenesis and promote vascular normalization. Therefore,
targeting of the TME is a novel and promising strategy for the
development of anti-tumor drugs.

Panax ginseng C.A. Meyer, known as “the king of herbs,” has
been used in Asian medicine for thousands of years to treat illness
and was also used primarily as an energy and body balance tonic
in ancient times. Nowadays, ginseng has been shown to have
benefits for relieving a variety of disorders, such as inflammation,
infection, fatigue, effects of aging, and cancer. Active ingredients
of ginseng, such as ginsenosides and polysaccharides, have been
shown to possess significant anti-tumor activities (Sun et al.,
2017; Ahuja et al., 2018; Li X. et al., 2020; Guo et al., 2021).
Ginsenosides induce tumor cell death by inducing initiation of
programmed death pathways or inhibiting tumor proliferation by
interfering with tumor cell cycle and metabolic pathways. In
addition, ginsenosides effectively inhibit tumor cell invasion and
metastasis, while ginseng polysaccharides have been shown to
induce tumor cell apoptosis and inhibit tumor cell metastasis.
Furthermore, ginseng may counter immunosuppressive TME
effects by modulating immune cell differentiation and
functions and regulating immune checkpoints to restore anti-
tumor immune functions. Collectively, these results indicate that
ginseng anti-tumor efficacy may depend on abilities of its

TABLE 1 | Effects of Ginsenosides on angiogenesis.

Components Cell/animal model Effects Main mechanisms Ref.

Ginsenoside Rg3 In vitro, EPCs; In vivo, Lewis lung
carcinoma (LLC) tumor-bearing murine
model

Could suppress EPCs proliferation, migratory
ability and tubular formation ability in vitro, and
decrease number of peripheral EPCs and
tumor capillary in vivo

Suppressing VEGF dependent p38 and
ERK signal pathways

Kim et al.
(2012a)

Ginsenoside Rg3 In vitro, cord blood-derived CD34 stem/
progenitor cells

Could attenuating EPC differentiation of
human cord blood derived CD34-positive
stem cells

Inhibiting VEGF dependent Akt/eNOS
pathways

Kim et al.
(2012b)

Ginsenoside Rg3 In vitro, colorectal cancer cells(CRC) LoVo;
in vivo, LoVo orthotopic xenograft murine
model

Could decrease microvessel density (MVD)
levels

Downregulating expression of several
pro-angiogenic genes

Tang et al.
(2018)

Ginsenoside Rg3 In vitro, gastric cancer cell line BGC823 Could inhibit expression of VEGF Downregulating expression of HIF-α Li and Qu,
(2019)

Ginsenoside Rg3 In vitro and in vivo, a highly metastatic
subline of murine B16 melanoma cells

Could decrease the number of vessels
oriented toward the tumor lesions, and
reduce vascular endothelial cell proliferation
and migration

Downregulating expression of VEGF by
inhibiting Akt and ERK pathways

Meng et al.
(2019)

Ginsenoside Rd In vitro, HUVECs; in vivo, breast cancer
cell line MDA-MB-231 mouse model

Could inhibit VEGF-dependent migration,
vascularization and viability and angiogenesis
activity of HUVECs, and prevent tumor
angiogenesis

Inhibiting expression of HIF-α and
VEGF/VEGFR through Akt/mTOR/
p70S6K signaling pathway

Zhang et al.
(2017)

Ginsenoside Rk3 In vivo, human NSCLC H460 xenograft
mouse model, chick embryo
chorioallantoic membrane (CAM) model

Could decrease the expression of endothelial
cell marker CD34 in tumor tissues and inhibit
angiogenetic activity in CAM model

Not clear Duan et al.
(2017)

20(S)-
protopanaxadiol

In vitro, HUVECs Could induce endoplasmic reticulum stress
and apoptosis of HUVECs

Inducing PERK-eIF2-ATF4-CHOP
signaling pathway.

Wang X.
et al. (2019)

Ginsenoside Rb1 In vitro, HUVECs Could suppressing the formation of
endothelial tube-like structures

Increasing expression of PEDF via
activating PPAR-γ/miR-33a pathway

Lu et al.
(2017)

Ginsenoside Ro and
its metabolites

In vitro, HUVECs Could inhibit tube formation of HUVECs. Not clear Zheng et al.
(2019)

Ginsenoside F1
and Rh1

In vitro and in vivo, HUVECs and human
retinal microvascular endothelial
cells(HRMECs)

Could inhibit VEGF-induced vascular leakage Targeted suppressing NR4A1
expression and transcriptional activity

Kang et al.
(2019)
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constituents to regulate multiple targets within the TME. In this
review, molecular mechanisms underlying TME regulation by
ginseng active ingredients are reviewed.

THE ROLE OF GINSENOSIDES IN
INHIBITING TUMOR ANGIOGENESIS

Under normal physiological conditions, blood vessel formation is
a tightly controlled process. However, during the process of
tumor proliferation, the tumor-dominated microenvironment
promotes aberrant angiogenesis by breaking the vascular
homeostatic balance (Weis and Cheresh, 2011). A large
number of pro-angiogenic and anti-angiogenic factors
participate in vascular homeostasis. When these factors are in
equilibrium, the vascular system remains stable and endothelial
cells do not proliferate. By contrast, when the “angiogenesis
switch” is turned on, the vascular homeostatic balance
becomes disrupted and tips in favor of pro-angiogenesis
(Hanahan and Folkman, 1996; Bergers and Benjamin, 2003;
Lugano et al., 2020). Bone marrow-derived endothelial
progenitor cells (EPCs) recruited by tumors participate in the
pathological neovascularization and growth of early tumors by
modulating the angiogenic switch (Nolan et al., 2007; Oh et al.,
2007; Plummer et al., 2013; Bonfim-Silva et al., 2017; Xu et al.,
2017). Moreover, hypoxic conditions, a hallmark of the TME, are
closely related to initiation of tumor angiogenesis, whereby the
ubiquitin-proteasome pathway of hypoxia inducible factor-1
(HIF-1) is inhibited under hypoxic conditions, which leads to

intracellular HIF-1 complex accumulation that promotes
initiation of transcription of pro-angiogenic genes. Pro-
angiogenic factors and their homologous receptors effectively
co-operate to promote angiogenesis within tumors during which
vascular endothelial growth factor and its receptor (VEGF/
VEGFR) system play a pivotal role (Weis and Cheresh, 2005;
Shibuya, 2013; Ribatti and Tamma, 2019). Furthermore, the
leakage and collapse of tumor blood vessels can exacerbate
hypoperfusion and hypoxia, leading to increased secretion of
VEGF. Meanwhile, other angiogenesis-related factors and
molecules (e.g., ANG1, FGF2, PDGF, ephrins, MMPs, etc.)
may also contribute to the formation of a defective vascular
network in tumors (Lugano et al., 2020) that may explain why
neo-vessels in the TME possess abnormal morphology and
network structure and have increased blood vessel
permeability. In turn, aberrant angiogenesis supports tumor
growth, invasion, and metastasis and may intensify the
hypoxic microenvironment surrounding the tumor to promote
tumor proliferation.

Anti-angiogenesis therapies, which mainly target the VEGF
signaling pathway, have been approved for treatment of a variety
of tumors (Lugano et al., 2020; Shibuya, 2013), although drug
development is ongoing due to drug resistance and adverse
reactions. Natural herbs such as ginseng are increasingly being
viewed as potential anti-angiogenesis drugs, including various
ginsenoside monomers that have been found to inhibit
angiogenesis in tumors (Table 1). For example, ginsenoside
Rg3 was found to inhibit EPCs differentiation, proliferation,
and migration by suppressing VEGF-dependent p38/ERK and

FIGURE 1 | Characteristics of tumor vessels and roles of ginsenosides on tumor angiogenesis. In the tumor microenvironment, tumor blood vessels comprise a
tortuous, over-branched, and disordered vascular network structure with increased vascular permeability (increased endothelial cell gaps, loss of pericyte coverage, and
incomplete basement membrane). Ginsenosides can inhibit effects of angiogenic factors on tumor angiogenesis and facilitate vascular normalization.
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TABLE 2 | Effects of ginseng on innate immune cells.

Components Cell/animal model Effects Main mechanisms Ref.

Macrophages
Rg3-LPs In vitro and in vivo, C6 murine glioma

cells and tumor-bearing murine
models

Could enhance PTX cytotoxicity and
apoptosis in C6 cells, prolongmedian
survival time of tumor-bearing mice/
rats

A synergistic effect on TAM repolarization
with PTX; decreasing the numbers of
granulocyte-like myeloid derived
suppressor cells in tumor
microenvironment

Zhu et al. (2021)

Ginsenoside Rh2 In vitro, the murine macrophage-like
cell line RAW264.7 and NSCLC cells;
in vivo, LLC-bearing murine model

Could inhibit the growth and
migration of human lung cancer cells

Inducing repolarization of TAM to M1-like
phenotype; downregulating
M2macrophages-induced secretion and
expression of VEGF-C, MMP2, and
MMP9 in NSCLC cells; decreasing the
VEGF-C and marker of M2-like
phenotype expression

Li H. et al. (2018)

Ginsenoside Rp1 In vitro, the J774A.1 macrophage
cells and CT26 colon cancer cells

Could decrease the migration
activities of colon cancer cells and
prolong the survival rates of tumor-
bearing mice

Inhibiting ionizing radiation enhanced
LPS-stimulated NO synthesis and IL-1β
production in macrophages;
radioprotective effects on J774A.1 via
inhibiting MAPK and Akt pathways

Baik et al. (2020)

Red ginseng acidic
polysaccharide

In vitro and in vivo, murine melanoma
B16 cells and tumor-bearing model
of C57BL/6 mice

Could enhance the tumoricidal
activity of murine peritoneal
macrophages against B16 cells

Increasing production of IL-1, IL-6, TNF-
α and NO via activating NF-κB pathway
when combine with IFN-γ treatment

Choi et al. (2008)

Ginseng neutral
polysaccharide fraction

Sarcoma-180 cells and tumor-
bearing ICR mice

Could inhibit tumor growth Augmenting macrophage phagocytosis
and stimulating production of TNF-α
and NO

Ni et al. (2010)

Heat-processed ginseng In vitro, the murine macrophage-like
cell line RAW264.7

Could enhance the macrophage
activation

Increasing cytokine production andMHC
expression in macrophage cells and
activating MAPKs and NF-κB pathways

Shin et al. (2018)

DCs
Ginsenoside Rg3 In vitro, LLC and melanoma cell lines

B16F10
Could suppress growth of tumor cells
and increase DC uptake function on
tumor cells

Increasing immunogenic cell death of
tumor cells; suppressing secretion of
IFN-γ and inducing secretion of IL-6,
TNF-α and TGF-β1 of tumor cells.

Son et al. (2016)

M1 and M4 In vitro, human peripheral blood
mononuclear cells (PBMCs)
derived DCs

Could promote DCs maturation,
enhance stimulatory efficiency on
naïve T cells differentiating towards
Th1 type and augment the
cytotoxicity of CD8+T cells

Increasing immune DCs surface
expression of CD80, CD83, CD86 and
HLA-DR; modulating murine DCs to
secrete more IFN-γ and less IL-4
cytokines

Takei et al.
(2004)

Neutral ginseng
polysaccharides(NGP)

In vitro, bone marrow dendritic cells
(BMDCs) of C57BL/6 mice

Could promote DCs maturation and
increase proliferation of T cells

Increasing expression of CD40, CD80,
CD83, CD86 andMHC-II on BMDCs and
cytokines IL-12p70 and TNF-α secretion

Meng et al.
(2013)

Ginseng polysaccharides In vivo, NSCLC patients Could improve quality of life when
treatment with DCs

Increasing the level of Th1 cytokines
(INF-γ, IL-2) and the ratio of Th1/Th2
cytokines (INF-γ/IL-4, IL-2/IL-5);
decreasing the level of Th2 cytokines.

Ma et al. (2014)

Acidic ginseng
polysaccharides (from red
ginseng)

In vitro, BMDCs of C57BL/6 mice Could induce DCs maturation Increasing surface markers, MHC II,
CD80, CD86, CD83 and CD40 on the
DCs, and inducing secretion of higher
level of IL-12 and low level of TNF-α

Wang et al.
(2013)

Ginseng berry extract In vitro, BMDCs of C57BL/6 mice; in
vivo, B16F10-bearing murine model

Could stimulate BMDCs maturation,
increase spleen DCs proportion and
activation; could enhance anti-cancer
immune response as an immune
adjuvant

Upregulating co-stimulatory molecules
and production of pro-inflammatory
cytokines of BMDCs and spleen DCs via
TLR4 and MyD88 signaling pathways

Zhang et al.
(2015)

NK cells
Ginsenoside F1 In vitro, human NK cells isolated from

PBMCs; in vivo, lymphoma and
melanoma implantation murine
model

Could promote the cytotoxicity
activity

Increasing the levels of NK cells cytotoxic
effector molecules(perforin and
granzyme B) and activating signaling
downstream (PI3K/Akt) of NK cell-
activating receptors (NKG2D and 2B4)
and IGF-1 pathway

Kwon et al.
(2018)

M4 In vitro and in vivo, murine melanoma
cells B16-BL6 and murine tumor-
bearing model of C57BL/6 mice

Could Inhibit tumor growth and
metastasis

Stimulating splenic NK cells cytotoxic
activity against tumor cells

Hasegawa et al.
(2002)

(Continued on following page)
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Akt/eNOS signal pathways in vitro (Kim et al., 2012a; Kim
et al., 2012b), while also attenuating neo-vessel formation and
mobilization of EPCs in vivo, leading to delayed tumor
progression and angiogenesis (Kim et al., 2012a). According
to Tang et al., ginsenoside Rg3 appeared to decrease
microvessel density levels in colorectal cancer xenografts by
downregulating expression of certain angiogenesis-related
genes, such as CSF3, FGF2, MMP1, and PGF (Tang et al.,
2018). Under TME hypoxic conditions, HIF-1 complex, of
which HIF-1α is a key component, could further activate
various downstream angiogenic factors in tumor cells, such
as VEGF. In other studies, ginsenoside Rg3 has been shown to
inhibit angiogenesis in a variety of tumor models and was
shown to inhibit hypoxia-induced VEGF expression in tumor
cells (Ge et al., 2014; Li and Qu, 2019; Meng et al., 2019)
through regulation of various pathways, such as Akt, ERK,
JNK, and STAT3 signaling pathways (Chen et al., 2010; Meng
et al., 2019). Another ginsenoside, Rd, was reported to exert
anti-angiogenic effects by mitigating VEGF-induced
migration, invasion, and capillary formation by human
umbilical vascular endothelial cells (HUVECs) and by
reducing CD31-positive capillary formation in tumors by
inhibiting both VEGF/VEGFR2 signaling cascade pathways
Akt/mTOR/p70S6K and HIF-1α expression (Zhang et al.,
2017). Meanwhile, ginsenosides Rb1 and Ro have been
shown to inhibit HUVEC cell formation into tube-like
structures (Lu et al., 2017; Zheng et al., 2019), while the
end metabolite of 20(S)-protopanaxadiol-type ginsenosides
metabolism, PPD, exerted a pro-apoptotic effect on
HUVECs (Wang X. et al., 2019) and ginsenoside Rh2
downregulated tumor cell expression of VEGF and MMPs
(Li H. et al., 2018; Zhang et al., 2020).

The tumor vascular network is characterized by dilated,
twisted, and disordered immature vessels lacking parietal cells
(Figure 1) that exhibit hyperpermeability, poor perfusion, and
increased hypoxia (Viallard and Larrivée, 2017). Recent data have
demonstrated that some ginsenosides, such as F1 and Rh1, act to
reduce vascular leakage induced by VEGF by suppressing mRNA
transcription and protein expression of NR4A1 (Kang et al.,
2019), leading to vascular normalization that prevents tumor
cell extravasation and metastasis.

GINSENG MAY REGULATE THE TUMOR
IMMUNOSUPPRESSIVE
MICROENVIRONMENT
An important component of the TME, infiltrating immune cells,
can be classified as tumor-suppressors and tumor-promotors
based on functions of these tumor-associated cells (Lei et al.,
2020). In general, although immune cells within the body are
capable of recognizing and killing tumor cells, anti-tumor
immune responses in the TME are suppressed due to direct or
indirect tumor interference with, and/or inhibition of, functions
of tumor-antagonizing immune cells acting via many
mechanisms. Ultimately, dysfunctional immunoregulation
within the TME promotes proliferation and differentiation of
tumor-promoting immune cells that eventually lead to abnormal
immunosurveillance and tumor cell immune escape (Li W. et al.,
2020; Lei et al., 2020; Liskova et al., 2020). Several active
components of ginseng may exert anti-tumor effects by
interfering with the differentiation and maturation of tumor-
promoting immune cells, leading to reversal of the inhibitory
phenotype of tumor-antagonizing immune cells and restoration
of anti-tumor functions of innate (Table 2) and acquired
immune cells.

Ginseng Enhancement of the Innate
Immune Response
Macrophages
Macrophages exhibit developmental plasticity and can
differentiate into pro-inflammatory (M1) and anti-
inflammatory (M2) phenotypes according to different
pathological environments (Wang Y. et al., 2019). Available
studies indicate that tumor-associated macrophages (TAMs)
derived from circulating monocytes and myeloid-derived
suppressor cells (MDSCs) mainly possess characteristics and
phenotypes of pro-tumorigenic M2-polarized macrophages
that promote tumor angiogenesis, enhance tumor metastasis,
and inhibit anti-tumor T cell immunity (Kim and Bae, 2016).
Thus, strategies that Increase the M1/M2 ratio or inhibit effects of
M2-polarized cells are promising anti-tumor therapeutic
approaches that work by targeting the TME.

TABLE 2 | (Continued) Effects of ginseng on innate immune cells.

Components Cell/animal model Effects Main mechanisms Ref.

Ginseng berry
polysaccharide portion
(GBPP)

In vitro, splenic NK cells of tumor-
bearing BALB/c mice; in vivo, B16-
BL6 melanoma lung cancer
metastasis model of BALB/c mice

Could reduce tumor metastasis
colonies in lung

Promoting NK cell cytotoxicity via the
release of IFN-γ and granzyme B;
enhancing macrophages and cytotoxic T
lymphocytes activity

Lee et al.
(2019a), Lee
et al. (2019b)

Ginseng leaves
polysaccharide fraction

In vitro, splenic NK cells of tumor-
bearing BALB/c mice; In vivo, colon
26-M3.1 carcinoma cells lung
cancer metastasis model of BALB/c
mice

Could inhibit lung metastasis Activating macrophages and NK cells Shin et al. (2017)

Ginseng fruits
polysaccharide

In vitro, splenic NK cells of tumor-
bearing C57BL/6 mice and LLC
cells; in vivo, LLC-bearing model

Could Inhibit tumor growth and
metastasis

Enhancing the NK cell-mediated
cytotoxicity

Wang et al.
(2015)
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Recent studies have shown that ginsenosides may help to
regulate the two subpopulations of TAMs. One such study
declared that ginsenoside Rg3 treatment led to an improved
anti-tumor effect based on the re-education and conversion of
TAMs from anM2 phenotype to anM1 phenotype when Rg3 was
delivered to cells within liposomes that were also loaded with
paclitaxel (Rg3-PTX-LPs) (Zhu et al., 2021). Another
ginsenoside, Rh2, has also been shown to alter the TME by
inducing conversion of TAMs from an M2 to an M1
phenotype that, in turn, prevented tumor cell migration and
secretion of tumor angiogenetic factors (Li H. et al., 2018).
Meanwhile, ginsenoside Rp1 was shown to inhibit murine
macrophage radiation-induced DNA damage. After colon
cancer cells were exposed to conditioned medium from
radiation-potentiated macrophages, it was found that culture
supernatant of Rp1-treated macrophages inhibited growth and
metastasis of tumor cells and prolonged survival of tumor-
bearing mice in vivo (Baik et al., 2020). In yet another study,
treatment of RAW264.7 cells, a macrophage-derived cell line,
with heat-processed ginseng (HPG) containing Rg3, Rk1, and
Rg5 that enhanced macrophage cell functions that included
cytokines production, MHC class I and II expression, and NF-
κB transcriptional activity (Shin et al., 2018).

Another component of ginseng, polysaccharides, are
recognized as immunomodulators (Zeng et al., 2019; Qi et al.,
2021). It has shown that the addition of red ginseng acidic

polysaccharide (RGAP) or IFN-γ alone to murine melanoma
B16 cells exerted no cytotoxic effect, while each weakly activated
macrophages. It is worth noting that RGAP administered with
IFN-γ markedly stimulated macrophages to secrete pro-
inflammatory cytokines resembling those secreted by M1
macrophages (e.g., IL-1, IL-6, TNF-α) due to triggering of the
NF-κB pathway, leading to dramatic enhancement of MHC-
unrestricted macrophage-mediated cytotoxicity (Choi et al.,
2008). The non-selective cytotoxicity of most
chemotherapeutic drugs, while achieving desired anti-tumor
effects, can lead to collateral damage of immune cells,
prompting researchers to investigate ginseng effects for
alleviating immune cell damage. In one such study, ginseng
neutral polysaccharides were shown to reverse 5-fluorouracil-
induced splenic weight decreases and inhibition of macrophage
phagocytosis to restore macrophage production of NO and TNF-
α (Ni et al., 2010). Therefore, ginseng active ingredients appear to
have the potential to induce macrophages to transform into pro-
inflammatory cells with heightened ability to kill tumor cells,
while also potentially alleviating macrophage damage caused by
effects of radiotherapy and chemotherapy.

Dendritic Cells
Dendritic cells (DCs), which function as professional antigen
presenting cells (APCs), play pivotal roles in initiating innate and
adaptive immunity, with the latter role associated with DCs

FIGURE 2 | Effects of active ingredients of ginseng on acquired immune responses in the tumor microenvironment. A variety of cells in the tumor microenvironment
may inhibit T cell functions, either through direct modulation of the IDO molecular switch or indirect effects that maintain immunosuppressive Treg cells within the tumor
microenvironment. Tumor cells inhibit T cell functions through the PD-1/PD-L1 axis, resulting in immune escape. Active ingredients of ginseng act to inhibit these
processes. CAF, cancer-associated fibroblast; TAM, tumor-associated macrophage; MDSC, myeloid-derived suppressor cell; DC, dendritic cell; GBPE, ginseng
berry polysaccharide extract; GBPP, ginseng berry polysaccharide portion; IDO, indoleamine 2,3-dioxygenase.
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presentation of exogenous tumor-associated antigens on MHC I
molecules to naive CD8+ T cells to initiate anti-tumor immunity.
However, the activity of DCs to induce anti-tumor responses is
suppressed by TME dampening of DC maturation,
differentiation, or cell migration, with numerous TME effector
molecules (e.g., IL-6, IL-10, VEGF, TGF-β, CSF-1) involved in
suppression of DC activities (Fu and Jiang, 2018; Bandola-Simon
and Roche, 2019; Del Prete et al., 2020). Defective DCs that
cannot properly perform their sentinel function have been
detected in various cancers, such as breast cancer (Gervais
et al., 2005), colorectal cancer (Legitimo et al., 2014), and
ovarian cancer (Jiang et al., 2018). Increased immunogenic
tumor cell death may contribute to maturation and tumor
antigen-presentation activity of DCs resulting from release of
damage-associatedmolecular patterns (DAMPs) molecules from
tumor cells, such as chaperone protein calreticulin (CRT), high
mobility group box-1 protein (HMGB1), and heat shock proteins
(HSPs). Keum-joo Son et al. (Son et al., 2016) reported that
ginsenoside Rg3 was able to act as an immunomodulator to
increase DC uptake of tumor cells by inducing immunogenic
tumor cell death and enhancing immunogenicity of cancer cells.
Furthermore, ginsenoside Rg3 could stimulate tumor cells to
produce IFN-γ, an anti-tumor cytokine secreted by T cells, while
suppressing tumor cell secretion of TGF-β and IL-6 (Son et al.,
2016). In other work, Takei et al. (Takei et al., 2004)
demonstrated that M1 and M4, end products of steroidal
ginseng saponins metabolized within the digestive tract,
exerted immunomodulatory effects on DCs by inducing DCs

maturation, as reflected by upregulation of DC surface expression
of maturation marker molecules CD80, CD83, CD86, and HLA-
DR. In turn, mature DCs enhanced the polarization of Th1 cells
that increased anti-tumor immunity. In addition, ginseng
polysaccharides have been shown to stimulate maturation of
murine bone marrow dendritic cells (BMDCs), as revealed by
changes in cell morphology, upregulation of membrane
phenotypic markers (e.g., CD40, CD80, CD83, CD86, MHC
II), and increased pro-inflammatory cytokine production
(Meng et al., 2013; Wang et al., 2013).

Natural Killer Cells
As for DCs, natural killer (NK) cells in the TME are also
dysfunctional (Round and Mazmanian, 2010). Results of
studies based on mouse models of lymphoma clearance and
metastatic melanoma demonstrated that ginsenoside F1 could
enhance NK cell cytotoxicity against diverse types of cancer cells,
while also improving NK cell cancer surveillance ability by
upregulating NK cell secretion of cytotoxic mediators and NK
activation signal molecules (Kwon et al., 2018). Meanwhile, oral
administration of 20(S)-protopanaxatriol (M4), an intestinal
bacterial metabolite of ginsenosides, led to complete
absorption of M4 by the small intestine followed by transfer of
most of the substance to the mesenteric lymphatics, where it was
esterified to form EM4 that then spread to other organs in the
body. Notably, EM4 was shown to stimulate tumor lysis mediated
by NK cells in a B16-BL6 melanoma metastasis mouse model
(Hasegawa et al., 2002). In another study, pectin polysaccharide

TABLE 3 | Effects of ginseng on cancer stem cells.

Components Cell/animal model Effects Main mechanisms Ref.

Fermented red ginseng with
L. rhamnosus KCTC 5033

In vitro, mimicking breast cancer
stem cells MCF-7

Could reduce the viability of reprogrammed
MCF-7 cancer stem-like cells

Not clear Oh et al.
(2015)

Ginsenoside Rg3 In vitro, colorectal cancer
cells(CRC) LoVo. In vivo, CRC
cells LoVo orthotopic xenografts

Could repress the growth and migration CRC
cells and strengthen the cytotoxicity of 5-Fu
and oxaliplatin

Partly depend on decreasing proportion of
stem cells expressing CD24+/CD44+/
EpCAM+ and attenuate the stemness of
CRC cells

Tang et al.
(2018)

Ginsenoside Rg3 In vitro, stem-like NSCLC cells
H1975, Osimertinib-resistant
H1975 cells(H1975-OR)

Could decrease spheroid formation ability,
expression of stemness-related markers,
ALDH activity, and attenuate the Osimertinib
resistance of NSCLC cells

Activating Hippo signaling Tan et al.
(2020)

Ginsenoside Rg3 In vitro and in vivo, stem-like
NSCLC cells H1299 and A549

Could inhibit spheroid formation ability,
expression of stemness-related markers,
sensitize hypoxic NSCLC cells to cisplatin

Inhibiting NF-kB signaling pathway Wang
et al.
(2018)

20(R)-Ginsenoside Rg3 In vitro, CRC cells HT29 and
SW620

Could downregulate the levels of stemness
genes and EMT markers

Inhibiting EGFR/SNAIL signaling Phi et al.
(2019a)

Standardized Korean Red
Ginseng extract (RGE),
ginsenoside Rg3

In vitro, stem-like breast cancer
cells MCF-7 and MDA-MB-231

Could decrease the viability, number and the
size of mammospheres, proportion of
CD44high/CD24low CSCs and ALDH positive
cells, and reduce the expression of self-
renewal signaling molecules

Partially dependent on the PI3K/Akt
pathway

Oh et al.
(2019)

Fermented ginseng extract
BST204

In vitro, embryonic carcinoma
cells NCCIT

Could downregulate the levels of stemness
and stem-related transcription factors genes,
and inhibit CSCs tumorigenesis

Target CD133 Park et al.
(2020)

Ginsenoside Rd In vitro, CSC-like CRC cells HT29
and SW620

Could suppress the growth of CSCs, and
downregulate expression levels of CSC
markers.

Inhibiting EGFR/Akt signaling Phi et al.
(2019b)

Ginsenoside Rg5 and Rk1 In vitro, human NSCLC cells
A549

Could inhibit tumorsphere formation ability,
suppressed the stem cell-like properties

Suppressing Smad2/3, NF-kB, ERK, p38
MAPK, and JNK pathways

Kim et al.
(2021)
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fraction (GS-P) purified from ginseng leaves was shown to inhibit
proliferation and metastasis of colon cancer cells; these effects
were not based on direct cytotoxicity, but were instead based on
stimulation of macrophage and NK cell activities (Shin et al.,
2017). A similar conclusion was obtained in a study of ginseng
berry polysaccharide portion (GBPP), which stimulated
macrophages to secrete anti-tumorigenic cytokines (e.g., IL-6,
IL-12, TNF-α) while also promoting NK cells to release IFN-γ
and granzyme B that inhibited tumor cells activities (Lee et al.,
2019a; Lee et al., 2019b). Moreover, another study of
polysaccharides purified from ginseng fruits demonstrated that
ginseng polysaccharides could significantly enhance NK cell-
mediated cytotoxicity in tumor-bearing mice (Wang et al.,
2015). Taken together, these results indicate that active
components of ginseng exert anti-tumor effects by correcting
impaired NK cell killing of tumor cells that, in turn, effectively
inhibit tumor metastasis.

Ginseng Enhancement of the Adaptive
Immune Response
Adaptive Immune Cells
In addition to ginseng effects for reversing tumor inhibition of
innate immune cell activities, ginseng has also been shown to
reverse tumor-inhibited adaptive immune cell activities. For
example, regulatory T cells (Tregs) (identified based on the
presence of foxp3+CD25+CD4+ cell surface markers) actively
engage in maintenance of immunological self-tolerance, as well as
in inhibition of immune responses within the TME (Dong et al.,
2020). In fact, Tregs have been found to infiltrate the tumor site,
where they suppress the anti-tumor response, with suppression
reversed by depletion of Tregs. Using chronic intestinal

inflammation as a model system of colorectal cancer (due to
the close clinical relationship between the two diseases), ginseng
berry polysaccharide extract (GBPE) and GBPP obtained from
Asian ginseng berries were shown to exert anti-inflammatory
effects in vitro that were linked to inhibition of secretion of IL-8, a
proinflammatory factor closely tied to intestinal inflammation.
Moreover, by inhibiting T cell differentiation into Th1 cells
(which promote intestinal inflammation) and Treg cells
(which weaken the body’s anti-tumor immunity), intestinal
inflammation may be reduced and anti-tumor effects of
chemotherapy drugs synergistically enhanced so as to
effectively inhibit proliferation of colorectal cancer cells (Wang
et al., 2020).

Indoleamine-2,3-dioxygenase (IDO) is an intracellular heme-
containing enzyme within the kynurenine (Kyn) pathway that
catabolizes tryptophan (Trp). Due to its role in tumor immune
escape mechanisms, IDO expression has been found in tumor
cells, DC cells, endothelial cells and even stromal cells in the TME,
where it inhibits CTL infiltration and cell functions while
inducing Treg recruitment (Uyttenhove et al., 2003; Löb et al.,
2009; Sharma et al., 2010; Munn and Mellor, 2016). Using the
ratio of Kyn to Trp as a marker of IDO enzymatic activity, results
of a study based on amousemodel of inflammation indicated that
ginseng total saponins could decrease the plasma Kyn/Trp ratio
(Kang et al., 2011). Since then, researchers have also found that
ginsenoside Rg3 treatment similarly reduced IDO activity in the
periphery and brain (Kang et al., 2017). In an in vivo liver fibrosis
mouse model and in in vitro experiments, ginsenoside Rg1 was
also observed to inhibit IDO1 protein expression and enhance
DCs activities and T cell infiltration, thereby enhancing the
immune response (Mo et al., 2021). Recent studies have
shown that ginseng polysaccharides enhanced the anti-tumor

TABLE 4 | Structure and extraction method of polysaccharide from ginseng.

Polysaccharide Extraction and separation method Composition sugar ratio
(Mass percentage or molar ratio)

Molecular
weight

Ref.

Red ginseng acidic
polysaccharide (RGAP)

Distilled water percolation, precipitation by 85% ethanol,
purification by dialysis (15 kDa)

GlcA: Glc: GalA � 51.8: 26.1: 5.1 >15 kDa Choi et al.
(2008)

Ginseng neutral
polysaccharide fraction

Hot water exaction, precipitation by 95% ethanol,
purification by Sevage and DEAE -Cellulose

Glc: Gal: Ara � 95.3%: 3.3%: 1.3% _ Ni et al. (2010)

Neutral ginseng
polysaccharides (NGP)

NGP bought from Pude Pharmaceutical Company Main ingredients is α-(1→6)-D-Glucan 504 Da Meng et al.
(2013)

Ginseng polysaccharides GPS injection was bought from Shanxi Pude
pharmaceutical Co., Ltd., Shanxi, China

_ _ Ma et al.
(2014)

Acidic ginseng
polysaccharides (AGP)

AGP (>99% purity, 3 mg/ml) was bought from Pude
pharmaceutical company, Shanxi, China

Sugar of composition are GalA, Glc, Ara, Xyl
and Rha

66 kDa Wang et al.
(2013)

Ginseng berry
polysaccharide portion
(GBPP)

Hot water exaction, precipitation by 95% ethanol,
purification by dialysis (20 kDa)

Rha: Fuc: Ara: Xyl: Man: GalA: Glc � 8.4:
19.5: 2.2: 1.5: 39.8: 5.4

>20 kDa Lee et al.
(2019a)

GBPP-I Hot water exaction, precipitation by 90% ethanol,
purification by dialysis (20 kDa) and G-75 gel permeation
column

Glc: GalA: Gal: Ara: Rha � 5.4: 10.4: 46.9:
27.5: 6.7

76 kDa Lee et al.
(2019b)

Ginseng leaves
polysaccharide fraction

Hot water exaction, purification by Diaion HP-20 column
and Diaion PA312 column, precipitation by 95% ethanol
and dialysis (1000Da)

Rha: Fuc: Ara: Gal: GalA: GlcA: Man: Xyl �
10.2: 3.1: 14.4: 11.8: 37.3: 2.5: 0.7: 0.9

10.2 kDa Shin et al.
(2017)

Ginseng fruits
polysaccharide

Hot water exaction, precipitation by 95% ethanol,
purification by Sevage, DEAE-cellulose-52 and Sepharose
CL-6B column

Gal: Glc: Rha: Ara � 6.1: 2.0: 1.1: 3.2 140 KDa Wang et al.
(2015)
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response triggered by anti-PD-1 mAb by increasing CD8+ T cell
function and decreasing Treg inhibition. These effects may have
been due to effects of ginseng polysaccharides on tryptophan
metabolism that acted to reshape the gut microbiota that resulted
in significantly increased production of L-tryptophan and
decreased production of L-kynurenine and IDO expression in
tumor cells (Huang et al., 2021). In conclusion, ginsenosides and
ginseng polysaccharides appear to enhance the adaptive immune
response against tumor cells, warranting further study (Figure 2).

Enhancement of Immunogenicity of Tumor Cells
Immunogenicity of tumor cells is key to inducing an anti-tumor
immune response. Generally, cancer cells could evade anti-tumor
immunity by adopting active immunogenicity reduction
strategies, including reduced expression of tumor antigens,

diminished MHC-I expression for reduced antigenic
recognition by T cells, and aberrant expression of immune
checkpoint proteins, such as programmed death ligand-1 (PD-
L1), which inhibits existing host anti-tumor immunity (Kim and
Seo, 2018; Looi et al., 2019; Tang et al., 2014). Furthermore, PD-
L1 expression can be up-regulated in tumor cells that are resistant
to chemotherapeutic agents (Shen et al., 2019; Wu et al., 2021),
including tumor-targeting drugs such as EGFR-TKI (Peng et al.,
2019), thus promoting immune escape of tumor cells. Although
inhibitors targeting immune checkpoints have been developed
and have become a focal point of clinical cancer therapy, current
low treatment response rates, high incidence of side-effects, and
acquired resistance are still unavoidable challenges. Nevertheless,
effective reduction of PD-L1 expression in tumor cells appears to
anti-tumor immunity and reduce tumor drug resistance, as

FIGURE 3 | Summary of the functional effects and mechanisms underlying TME regulation by ginseng active ingredients via multiple targets. HPG, heat-processed
ginseng; RGAP, red ginseng acidic polysaccharide; GPs, ginseng polysaccharides; NK cell, natural killer cell; CTL, cytotoxic T lymphocyte.
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shown in a study whereby PD-L1 protein was overexpressed in
cisplatin-resistant human non-small cell lung cancer (NSCLC)
cell line A549/DDP. In these experiments, ginsenoside Rg3 was
shown to significantly block PD-L1 overexpression in A549/DDP
cells, an effect that was associated with inhibition of activation of
Akt and NK-κB pathways. Additional in vitro experiments
confirmed that when A549/DDP cells were co-cultured with
CD8+ T cells, Rg3 could target chemotherapy-induced PD-L1
and enhance the immunocytotoxicity of CD8+ T cells (Jiang et al.,
2017). Moreover, when loaded into carbon nanotubes (CNT)
(Luo et al., 2021), Rg3 inhibited expression of PD-L1 by triple-
negative breast cancer cells. Remarkably, CNTs-loaded with Rg3
could attenuate PD-1 expression in activated T cells and reduce
PD-1/PD-L1 axis activity in vitro. Meanwhile, other ginsenosides
such as Rk1 (Hu et al., 2020), Rh4 (Deng et al., 2020), and Rh2
(Chen Y. et al., 2020) have also been reported to downregulate
PD-L1 expression in tumor cells (Figure 2). In addition,
ginsenosides have been shown to exert a competitive
inhibitory effect on the PD-1/PD-L1 interaction. Specifically,
eight ginsenosides (Rd, F2, Rg3, C-K, Rh2, PPD, Rg1, Rh1)
were confirmed to block the PD-1/PD-L1 binding interaction,
whereby a blocking ability of 35% was observed at the maximum
ginsenoside concentration (1 µM), with Rg3 and C-K exerting the
most significant effects. Further analyses based on molecular
docking and pharmacophore analysis suggested that Rg3 and
C-K may achieve an immune checkpoint blockade through
multiple hydrophobic and hydrogen bonds with PD-1/PD-L1
molecules (Yim et al., 2020).

GINSENG COULD INHIBIT STEMNESS OF
CANCER STEM CELLS

In recent decades, rare stem-like cells known as cancer stem
cells (CSCs) have been detected in tumors. CSCs possess
characteristics of self-renewal, strong xenograft
tumorigenesis properties, and resistance to conventional
therapy (radiation and chemotherapy) and resemble bone
marrow hematopoietic stem cells. In general, CSCs are
dormant except during long-term tumor growth, where they
can become activated to engage in self-renewal and
differentiation to generate heterogeneous tumor cells with
epithelial-mesenchymal transition (EMT) characteristics
(López de Andrés et al., 2020). CSCs have been identified
using various identification methods, including in vivo
limiting-dilution tumorigenicity assays in immunodeficient
mice, in vitro tumorsphere formation assays, and assays to
detect particular surface markers (Walcher et al., 2020). In
multiple types of solid tumors, such as breast cancer (Bai et al.,
2018), lung cancer (Heng et al., 2019), brain cancer (Singh et al.,
2003), and colon cancer (Gupta et al., 2019), CSCs have been
identified and found to play crucial roles in tumor proliferation,
metastasis, relapse, and chemotherapy/radiation resistance
resulting in failures of anti-cancer therapies. Maintenance of
CSCs is dependent on TME characteristics such that the acidic
and hypoxic environment of the TME may support the
establishment and maintenance of CSCs stemness properties,

while initiating and regulating stem cell-like programs through
various developmental signaling pathways. Such pathways are
crucial for maintenance of stem and progenitor cell
homeostasis and functions and include Norch, WNT,
Hedgehog, and Hippo pathways (Meurette and Mehlen,
2018; Clara et al., 2020). Recent studies have found that
endothelial cells/pericytes within some tumor vessels may be
generated via differentiation from CSCs (Krishna Priya et al.,
2016), thus highlighting CSCs as a novel promising target for
use in regulating the TME.

Ginseng has been reported to decrease the size of the CSCs
population (Table 3). A Korean research team fermented red
ginseng with Lactobacillus rhamnosus KCTC 5033 (f-RGE) to
increase Rg3 content level and found that f-RGE had the potential
to inhibit differentiation of breast cancer stem cell-like cells in the
presence of carcinogens (Oh et al., 2015). It was further
demonstrated that in vitro, Rg3 treatment could reduce the
size of the population of CD24+/CD44+/EpCAM+ colon
cancer stem cells and inhibit their clone-forming ability, with
similar results obtained from an in vivo orthotopic xenograft
model study (Tang et al., 2018) and a breast cancer study (Oh
et al., 2019). In addition, ginseng had the potential to modulate
the CSC phenotype. For example, BST204, a fermented ginseng
extract containing high quantities of Rh2 and Rg3, strongly
suppressed cancer stemness of embryonic carcinoma cells by
downregulating stemness markers and transcription factors at
both transcriptional and protein expression levels (Park et al.,
2020). Meanwhile, ginsenoside Rg3 was also shown to decrease
tumor CSC sphere-forming capacity that led to deregulated
expression of stemness-related markers and attenuated CSC
tumorigenic activities in several types of cancer (Wang et al.,
2018; Phi et al., 2019a; Oh et al., 2019; Tan et al., 2020). Moreover,
it has been reported that ginsenoside Rd may downregulate levels
of genes related to stemness and EMT by binding to epidermal
growth factor receptor (EGFR) (Phi et al., 2019b). Additionally,
ginsenosides Rk1 and Rg5 have also been reported to suppress
expression levels of lung CSC surface markers CD44 and CD133
and transcriptional regulators Nanog, Oct4, and Sox2 (Kim et al.,
2021). Furthermore, the inhibitory effect of ginsenosides on
stemness of CSCs has been shown to increase cell sensitivity
to chemotherapeutic treatments while also reducing resistance to
chemotherapy (Tang et al., 2018; Wang et al., 2018; Tan et al.,
2020). At present, mechanisms whereby ginsenosides regulate
CSCs are still unclear, while results regarding effects of
ginsenosides on CSCs in the TME and effects of other ginseng
active ingredients on CSCs await future verification. However,
from the body of accumulated data, it is apparent that ginseng
holds great promise as a drug for targeting CSCs.

CONCLUSION

The TME, a complex ecological system composed of a variety of
cells and stroma, is a hotbed of tumor development. Tumor cell
interactions with the TME lead to greater tumor cell
aggressiveness and resistance to conventional drugs and
radiation. Therefore, anti-tumor therapies should both
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eliminate tumor cells and interfere with communication between
tumor cells and the TME.

Due to the fact that targeting of the TME is a promising anti-
cancer strategy, agents that target TME inputs hold great promise
as future anti-cancer drug treatments. Such agents in current use
include monoclonal antibodies against three key targets: immune
checkpoints PD-1 and CTLA-4, which enhance tumor-killing
T cell immune functions; pro-angiogenic factor VEGF; and
integrin adhesion molecules that mediate interactions between
tumor cells and the TME matrix. However, anti-cancer drugs
inevitably have side effects and development of new anti-cancer
compounds and antibodies is extremely expensive, although
screening of databases containing information for a huge array
of natural compounds is a relatively inexpensive and effective
approach for identifying potential anti-cancer drugs.

Ginseng is a versatile natural herbal medicine that has been
shown to exert good anti-inflammatory, antioxidant, and anti-
aging therapeutic effects. In fact, ginsenosides, which are mainly
found in ginseng root, are considered to be the most important
biologically active components of ginseng preparations. So far,
more than 180 types of ginsenosides have been isolated from
ginseng (Xu et al., 2021). In addition, another active ingredient of
ginseng, polysaccharides (the structure and extraction method of
polysaccharides are listed in Table 4), also possess beneficial
activities for modulating immune regulatory functions.
Inhibitory effects of some ginsenoside monomers and ginseng
polysaccharides on cancer cell activities have been studied, with
regulatory effects of ginseng on TME under increasing scrutiny.
In this review, ginseng effects on tumor angiogenesis, the tumor
immunosuppressive microenvironment, and tumor stem cells are
summarized.

The gut microbiota maintains a symbiotic relationship with
intestinal mucosa, the largest immune organ of the human body.
The importance of this symbiotic interaction to host well-being is
based on its ability to shape the host immune system by regulating
local and systemic immune responses. For example, gut
microbiota and metabolites may activate DCs in the local
intestine, thereby activating the transformation of primitive
T cells into effector T cells in mesenteric lymph nodes, with
special importance for development of Treg and Th17 cells
(Round and Mazmanian, 2010; Cheng et al., 2019).
Alternatively, metabolites of the gut microbiota could also
enter the blood circulation, thus affecting the immune
function of the entire body (Rooks and Garrett, 2016; Ohno,
2020). A large body of experimental evidence suggests that gut
microbes influence tumorigenesis and functions of immune cells
in the TME by regulating production of cytokines (De Almeida
et al., 2019; Untersmayr et al., 2019; Li Q. et al., 2020; Chen et al.,
2021). In addition, gut microbes are closely associated with the
efficacy and toxicity of anti-tumor immunotherapies, such as
adoptive cell transfer therapy (Viaud et al., 2013; Nelson et al.,
2015; Uribe-Herranz et al., 2018) and immune checkpoint
inhibitors (Vétizou et al., 2015; Gopalakrishnan et al., 2018;
Routy et al., 2018; Elkrief et al., 2019). Therefore, the gut
microbiota not only serves as a new observational index of
tumor immunotherapy, but also holds promise as an anti-
tumor therapeutic target. In accordance with these concepts,

previous studies indicated that the efficacy of oral ginseng was
related to gut microbiome-mediated metabolic transformation
involving two types of ginsenoside biotransformation: conversion
of protopanaxadiol-type ginsenosides to form compound K and
ginsenoside Rh2; conversion of protopanaxatriol-type
ginsenosides to form ginsenosides Rh1 and protopanaxatriol
(Kim, 2018). Interestingly, ginsenosides and ginseng
polysaccharides have also been used to regulate the structure
of the gut microbiome for treating a variety of diseases, such as
obesity (Song et al., 2014; Lee et al., 2021), diabetes (Li J. et al.,
2018; Xu et al., 2020), colitis (Wang et al., 2016; Chen L. et al.,
2020), and antibiotic-related diarrhea (Qu et al., 2021). With
regard to cancer, a recent study showed that oral ginseng
polysaccharides combined with anti-PD-1-mAb could improve
therapeutic sensitivity of anti-PD-1-mAb in patients with
NSCLC. This effect may have been related to ginseng
polysaccharides-induced remodeling of gut microbiota
structure in chemotherapeutic non-responders that led to
increased abundance of metabolites, such as short-chain fatty
acids (SCFAs), while also down-regulating IDO activity (Huang
et al., 2021). Thus, the immunosuppressive TME associated with
NSCLC was altered, leading to heightened immunotherapeutic
sensitivity induced by ginseng polysaccharides administration.
Consequently, we hypothesized that the regulatory effects of
active ingredients of ginseng on anti-tumor immunity and on
the tumor immunosuppressive microenvironment may be partly
related to the gut microbiome, although we have found only a few
published reports describing such an association. Nevertheless,
interrelationships between the regulation of gut microbiome by
active ginseng ingredients, the tumor immune
microenvironment, and tumor immunotherapeutic effects are
unknown and require additional evidence, warranting further
research.

In order to improve organ/tumor-site targeting, increase
solubility of ginseng active ingredients, and reduce drug
toxicity toward non-cancerous cells, researchers have
combined nanoscale drug delivery systems with ginseng-
derived drugs to improve biological activities of ginseng active
ingredients for enhanced therapeutic effect. For example, a folic
acid-modified targeting-drug delivery system based on bovine
serum albumin nanoparticles achieved targeted accumulation of
drugs at the cancer focus that significantly increased anti-cancer
effectiveness of Rg5 in breast cancer (Dong et al., 2019).
Meanwhile, use of multiple nanoparticle-loaded Rg3 was
shown to achieve good organ targeting, possess sustained
release properties, and exert superior anti-cancer activities,
while also facilitating transport of drugs across the blood-brain
barrier (Qiu et al., 2019; Ren et al., 2020; Su et al., 2020). These
results support potential benefits of ginseng ingredients for use in
numerous clinical applications.

Although targets of ginseng anti-cancer effects are unknown, it is
undeniable that active ingredients of ginseng influence the interaction
between the tumor and the TME through several mechanisms: by
inhibiting tumor angiogenesis, regulating the immunosuppressive
TME, and by inhibiting stemness of cancer stem cells (Figure 3).
Therefore, use of a combination of ginsenosides and/or
polysaccharides as cancer adjuvant therapies to target the TME
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may be a useful anti-tumor therapeutic strategy that may also reduce
side effects of chemotherapy or immunotherapy. In addition, the
application of red ginseng and white ginseng roots for adjuvant
treatment of tumor patients is practical, but the dose must be
further standardized and validated using clinical data and the
ginseng target network must be further elucidated. In conclusion,
this review provides new insights into possible applications of active
ingredients of ginseng for achieving TME remodeling.
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