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Modeling-based anti-cancer drug sensitivity prediction has been extensively studied in recent
years. While most drug sensitivity prediction models only use gene expression data, the
remarkable impacts of gene mutation, methylation, and copy number variation on drug
sensitivity are neglected. Drug sensitivity prediction can both help protect patients from
some adverse drug reactions and improve the efficacy of treatment. Genomics data are
extremely useful for drug sensitivity prediction task. This article reviews the role of drug sensitivity
prediction, describes a variety of methods for predicting drug sensitivity. Moreover, the research
significance of drug sensitivity prediction, as well as existing problems are well discussed.
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1 INTRODUCTION

With the significant technological advancements, a variety of modalities have been developed to
predict the sensitivity of tumors to anti-cancer drugs, which can improve drug efficacy and
reduce adverse effects and the financial burden of treatment on patient. The sensitivity of
tumors to anti-cancer drugs can be assessed by using patient cell lines, which can facilitate the
use of synergistic regimens (Liu et al., 2016). Unfortunately, this process requires substantial
time and carries a high risk (Hanna, 2006; Russo, 2015; Cheng et al., 2019; Zhuang et al., 2020).
Moreover, tumor drug resistance is another critical problem in the research and development of
anti-cancer drugs and the medical field (Liu et al., 2020; Zhang et al., 2020a). It is well known
that traditional cancer treatment approaches mainly aim to eradicate rapidly proliferating
tumor cells (Restifo et al., 2016; Cheng et al., 2018; O’Donnell et al., 2018; Liu and Chen, 2020;
Liu et al.,, 2021a). However, existing evidence illustrates that tumor cell subgroups can survive
by resisting treatment through resistance mechanism, and these cells will finally evolve into
drug-resistant tumor cells. It is challenging to elucidate the mechanisms by which tumors
acquire drug resistance, predict the evolution of drug-resistant tumors, and determine
appropriate strategies to eliminate recalcitrant cells. In addition, the identification of
mutations that increase sensitivity to anti-cancer drugs and formulation of appropriate
treatment plans for patient groups with specific genomic mutations have essential roles in
the development of targeted therapies and achievement of precision treatment for human
cancer. However, the traditional strategy for predicting drug sensitivity based on the similarity
with known mutations has limitations (Carr et al., 2016; Jennifer et al., 2016; Schmitt et al.,
20165 Li et al., 2017; Song et al., 2020; Qi et al., 2021). Meanwhile, the large amount of data
resources related to markers of anti-cancer drug sensitivity need to be integrated. Most
importantly, among the cancers, some are transmittable, thus triggering panic. Therefore,
therapeutic drugs are urgently needed that can stop cancer transmission. The transmission of
drug-resistant strains is an extremely serious major public health issue. Meanwhile, drug-
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FIGURE 1 | Schematic of the study.
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resistant mutant strains of HIV-1 have hampered anti-viral
treatment. It is necessary to study the mutation and subtype
characteristics of HIV-1 recombinants, evolutionary
principles, and drug resistance to develop vaccines and
related drugs and implement preventative and control
measures for AIDS (Castro-Nallar et al.,, 2012; Hemelaar,
2012; Shaw and Hunter, 2012).

This review focuses on several strategies related to drug
sensitivity analysis. We first discuss the types of evolutionary
models of drug resistance studies on drug-tolerant tumor cells
after treatment. Meanwhile, we describe the process of models,
including the construction of a time-series biological network
and the evolution prediction of the tumor drug resistance state
via k-means++ clustering, random walk, and other machine
learning methods (Oxnard and Geoffrey, 2016; Hangauer
et al., 2017; Recasens and Munoz, 2019; Yu et al., 2020a;
Cheng et al., 2021). Second, we describe the strategy of
sensitivity prediction of tumors to anti-cancer drugs using
graph representation learning. This strategy can explain the

mechanism by which cancer develops, and most importantly
provide reliable evidence for cancer treatment to promote the
development of bioinformatics. Third, we discuss the strategy
of developing a collaborative drug sensitivity analysis
platform that can provide specific cancer cell lines with
optimal stimulatory or inhibitory candidate drug molecules.
This strategy provides new technical solutions for the
development of anti-cancer drugs and overcomes the
insufficiency of deep learning modeling methods for
analyzing anti-cancer drug sensitivity (Jaiswal et al., 2018;
Zhao et al.,, 2018; Azad et al., 2019; Cheng et al., 2020; An
and Yu, 2021; Shang et al., 2021). The fourth strategy mainly
aims to establish platforms for drug resistance association
analysis to reduce the blind use of drug-resistant HIV strains
and improve the effectiveness of AIDS treatment. There is an
urgent need to develop drugs for both AIDS and cancer to limit
deleterious effects in patients. Therefore, it is necessary to
review Dbioinformatics research into drug sensitivity
prediction. The outline of the essay is provided in Figure 1.
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2 METHODS OF RESEARCH ON DRUG
SENSITIVITY

2.1 Evolutionary Model Based on Drug

Resistance

2.1.1 Introduction to Methods

This type of researches mainly aimed to explore the drug resistance
mechanisms of various anti-cancer drugs and the evolutionary
direction of the drug resistance state. They target the characteristics
of drug-resistant tumors during treatment through machine
learning and deep learning methods, as well as the use of high-
throughput pharmaceutical informatics data. Scientists generally
conduct research from four aspects. 1) The first aspect is mainly
concerned with the analysis of different drug resistance
mechanisms arising from pan-cancer and tumor drug resistance
based on the different tumor cell lines after treatment. 2) The
second is mainly focused on the construction of a prediction model
for the evolution of tumor drug resistance. In this part, gene
mutations in various cell lines can be added to the prediction
model according to the mutation frequency of the gene as the
evolutionary condition of resistance. 3) The third aspect is mainly
concerned with the design of drug application strategies that
interfere with the tumor drug tolerance state. This means that
the treatment plan can be devised according to genes affected by
existing drugs and the classification of anti-tumor action principles.
4) The fourth aspect of methods mainly focus on the verification of
the predicted medication plan through gene chip and cell
experiments. Finally, the relevant interference drug plan can be
developed using the prediction model, and then gene chip
detection can be used for comparisons with the results obtained
from the prediction model to verify the accuracy of the model.

2.1.2 Introduction to the Process of This Method

In recent years, the drug resistance state of tumors, regarded as an
important process in the evolution of tumor resistance, has been well
studied by using a variety of machine learning methods. This type of
methods analyze the drug resistance mechanism activated by tumor
cell lines in different drug resistance state. They mainly consist of four
steps. 1) The first step is to analyze the drug resistance mechanism
produced from the tumor drug resistance state. This step requires the
construction of a time-series biological network (T-BioPPI).
T-BioPPI integrates multiple database biological association
networks to form a relatively comprehensive biological protein
interaction network of BioPPI, in which the LINCS database
provides tumor cell line gene expression profile data at three time
points. The data at these time points are analyzed for differentially
expressed genes. Each gene is expressed as a different node between
time layers in the biological network. At this point, the gene
interaction networks at various time points are linked together to
construct a large time-series biological network, thus identifying the
important genes in the biological network through regression
analysis. Because each drug has a relatively fixed target in the
cells, the key lies in the action time of the drug. Using the drug
dose as an independent variable and gene expression as a dependent
variable, regression analysis of gene expression over time in tumor
cells following drug treatment can be performed. Following this step
is an initiated step to map the genes of each tumor cell line to
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T-BioPPL. Then, by restarting the random walk, an analysis of
walking from the nodes in the 0-h network to the 24-h network
can be performed. This is followed by dimensionality reduction and
k-means++ clustering. The evolution prediction model is the
classification result of tumor cell lines obtained after clustering. 2)
Second, a deep learning model is established for predicting the
evolution of the tumor drug resistance state. In general, long
short-term memory networks are applied to assess the evolution
of tumor drug resistance through ordered sequences of gene
expression changes. During this step, the classified cell line data
are used as the basis for long short-term memory model construction,
and the gene expression profile data of similar tumor cell lines are
used as the training set for deep learning data. 3) The third step is to
design drug application strategies that interfere with tumor drug
resistance to cover single-target drug identification and combination
drug identification. 4) The fourth step is to verify the predicted drug
resistance evolution model and medication plan through cytology
and gene chip experiments. Three main sub-steps are involved. The
first sub-step is the cultivation of drug-resistant cell lines, the second
sub-step involves gene chip experiments, and the last sub-step is the
cell proliferation inhibition test. Figure 2 presents a reference for the
drug resistance evolution model based on the tumor drug resistance
state and the general process of the drug administration strategy.

2.2 Graph Embedding

Computational theory tools such as graph representation learning
are widely used to establish standard data sets and online databases
for anti-cancer drug sensitivity mutation data using. Then analysis
models are established to conduct in-depth research and exploration
on anti-cancer drug sensitivity mutation prediction methods. The
project mainly studied the following aspects. 1) First, the
construction of anti-cancer drug sensitivity mutation databases.
After collecting anti-cancer drug sensitivity mutation data from
multiple cancer genome projects, a document classifier for
cancer-related mutations can be constructed by using machine
learning text mining technology. The classifier intends to facilitate
access to the literature about cancer-mutation-drug information in
the PubMed database. After obtaining these related documents,
professional personnel can collect and annotate the relevant anti-
cancer drug sensitivity mutation information. When mutation data
information is obtained for the first time, standard tools are
employed to organize the information annotations of each entry
into a standard format. Then, the obtained original data sets are
integrated with the source of literature mining. Finally, a user-
friendly anti-cancer drug sensitivity mutation database web
interface based on the Browser/Server model is developed, which
is open for users to view and download data. 2) The second aspect
focuses on research on the prediction method of drug sensitivity
markers. According to the characteristics of drug sensitivity-related
mutations, known anti-cancer drug sensitivity mutation data is
sorted and preprocessed. Then, existing feature quantification
methods are collected and well analyzed. Meanwhile, wild-type
and mutant DNA sequences are used for feature quantification to
permit the information before and after the appearance of the
mutation, which can further ensure the reliability of the results.
The background network is obtained by calculating the
mutation-mutation similarity. 3) Third, a drug-drug network is

Frontiers in Pharmacology | www.frontiersin.org

December 2021 | Volume 12 | Article 799712


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

Review on Drug Sensitivity Prediction

Research content

Differential analysis of drug

Graph embedding resistance mechanisms N
learning
o : Reduction and
Prediction model Construction 1 clustering
| Single targeted drug
Design of drug application g Iecognition
strategies i Combination drug
Summary - identification

Verify the predicted medication
plan

FIGURE 2 | Diagram of the research content on the evolution model of drug resistance.

- Construction of T-BioPPI

Regression analysis

Culture drug-resistant
cell lines

- Gene chip experiment

// ~ // ~
\
( Drug networks | [ Drug random !
' : I walk path !
' I
' |
: @ | Random : |
' I walk 1 I
. | ey : —
: Protein networks | { Protein random |
I | | walk path I
' : [ 1
! ! [ |
| /| | /|
T 7 L Ny S W <
o
=
Zs ~ o, = 2
{/ ¥ {/ Drug feature 3
| I | vector |
' |
| ‘ |
= () | |
: = = a1 : |
| M A (. :
: % = ; | : Protein feature |~
| B8 2 S ! | vector I
s o li— |
' ] l —
\ ; \ ’
= N

FIGURE 3 | Flowchart of graph embedding-based algorithm NEDTP.

extracted from the research on the prediction method of
mutation-drug  interaction pairs. Then, a multi-source
heterogeneous drug interaction network is established through
techniques such as similar network fusion. 4) Finally, the graph
representation learning method is adopted to predict the relationship
of the mutation-drug interaction pair and develop corresponding
prediction software and an online prediction platform. The
flowchart of graph embedding-based algorithm NEDTP is shown
in Figure 3.

2.3 Capsule Network and Shapley Value
Method

Deep learning has shown impressive performance in many tasks
(Jiang et al., 2013; Guo et al,, 2020; Jin et al,, 2020; Tao et al,, 2020; Yu
et al,, 2020b; Zhang et al., 2020b; Zhao et al., 2020; Jin et al,, 2021; Liu
etal, 2021b; Lv et al,, 2021; Su et al., 2021; Wang et al,, 2021a; Xu et al.,
2021; Yu et al,, 2021). This deep model-based strategy intends to build
a deep feed-forward network and drug fingerprint encoding method
to obtain the disease cell lines and drug quantitative characteristics. To
identify the direct correlation between drug groups and disease-
specific gene expression profiles, this project adopted the capsule
network and the encoder-decoder model of the attention mechanism
to predict the sensitivity of cancer cell lines to single and combination
drug regimens. Capsule network is an improved convolutional neural
network, which loads the information of feature states learned in the
network into capsules in the form of vectors. The capsule preserves
precise information about position and posture, making the visual
entity locally invariant. While traditional deep learning methods
output as a single scalar on a single neuron, and realize the
invariance of perspective through maximum pooling method, it
loses a lot of valuable information and fails to take into account
the relative spatial relationship between coding features. The capsule
network can learn the posture information of different cells from the
cancer cell line, and convert the information that might be missed by
the traditional CNN network into high-level features, which can be
used to predict the sensitivity of drugs to the cancer cell line. The
contribution/inhibition relationship between drug groups for specific
diseases was obtained using the Shapley value method of cooperative
game theory to analyze the convolutional neural network model
(Aumann and Shapley, 1971; Karim et al, 2019; Cai et al., 2020a;
Cai et al,, 2020b; Mo et al., 2020), as well as through calculation and
comparative analysis of the marginal contributions between drug
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groups. The project mainly studied three points: 1) Feature
quantification methods oriented at the prior knowledge of
genomics and drug targeting information to construct a deep feed-
forward network and encode drug fingerprints based on drug
targeting relationships. 2) Designing a deep learning model
adapted to gene expression profile and drug gene data. First a
network structure is built to analyze the basic structural association
relationship between drug groups and gene expression profiles. And
the capsule network is used to extract the characteristics of the cancer
cell line and the drug itself. Moreover, the encoder—decoder model of
the attention mechanism is adopted for the fusion of heterogeneous
features. 3) Constructing a gene expression profile-drug group
network by cooperative game model. Then the gene-drug group
network is applied to calculate the enhancement/inhibition degree
of the drug fingerprint and identify the set with obvious enhancement/
inhibition effects in the drug group. This type of method considers
both the enhancement/inhibition relationship between drug
combinations. It first integrates the drug combination data from
various sources, then extracts the enhancement/inhibition
relationship combinations of different drug combinations, and
finally predicts the sensitivity of drug combination with machine
learning algorithms based on the different feature combinations.

2.4 Drug Resistance Association Analysis

The strategy mainly aims to establish a recombinant strain drug
resistance analysis platform, and verify the hypothesis related to
recombinant drug resistance by targeting circulating recombinant
forms (CRFs) (Ru et al.,, 2020; Wang et al,, 2020a). Data related to
drug resistance can be obtained through appropriate and efficient
data mining methods. By combining SeqFeatR and Bayesian factor
methods, complex hierarchical models can be used to quantify drug
combinations (Plummer, 2003; Bettina et al., 2016; Zhao et al., 2019;
Hu et al., 2020; Zeng et al., 2020a; Zeng et al., 2020b; Hu et al., 2021a;
Hu et al., 2021b; Song et al., 2021). Meanwhile, reliable associations
can be identified for recombinant HIV-1 for application in anti-viral
therapy based on the link between base substitutions in viral
sequences and the viral genomic background. The direct coupling
analysis method is used to predict the interaction between the
associated mutations in the protein and analyze the nearest
neighbor between the sites associated with drug resistance. The
main research contents are as follows: 1) establish a drug resistance
association analysis platform for HIV-1 CRFs and 2) propose and
verify that the HIV-1 CREFs are related to drug resistance mutations.
This method mainly aims to establish a recombinant HIV-1 drug
resistance analysis platform and spread it to other recombinant
pandemic areas across the globe. It initially involves data and model
inference. In this project, HIV-1 pol serves as the research object, and
model inference is achieved through JRip of the RWeka software
package of the R system, which makes fast rule inference on the
aforementioned three sets of data by adopting the RIPPER
algorithm. Then, reliability verification of the model inference
(leave-one-out classification verification) is conducted to obtain
the statistical evaluation of the rule inference results (Zeng et al,
2018; Zeng et al., 2019; Dao et al., 2020; Fu et al., 2020; Zulfigar et al.,
2021). Finally, the sequence characteristics of recombinant HIV-1,
recombinant drug-related patterns, and recombinant characteristic
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drug resistance patterns will be obtained. In general, this method
performs drug resistance information interpretation and correlation
analysis of HIV-1 recombinant characteristic drug resistance
mutations, and then performs computer modeling and
construction verification. The flowchart of representative platform
for drug resistance mutations prediction is shown in Figure 4.

2.5 Summary

This chapter mainly discusses the significance and
indispensability of drug sensitivity in bioinformatics research
by introducing different methods. A persistent problem has
arisen in the research and development of anti-cancer drugs
and in the medical and health fields, namely the issue of tumor
resistance. Methods reviewed in this study can assist with the
prediction of drug sensitivity. They encompass oncology,
pharmacy, and computer science, and strategies to predict
tumor resistance, design rational drug strategies, and construct
computer models were principally covered. These methods have
promoted the research and development of bioinformatic fields
such as computational methodology and algorithm design.
Moreover, research reviewed in this study can be directly
applied to anti-cancer precision medicine, new drug
identification, and other systems. They have exhibited broad
market application prospects and a further possibility to
improve the effectiveness of AIDS treatment and lower the
cost of its prevention and control.

3 LITERATURE CONTRIBUTION

Tumor drug tolerance is an important process in the evolution of
tumor drug resistance, and the drug resistance mechanism activated
by the tumor in the drug resistance state remains unclear.
Bioinformatic analysis and research on mutations associated
with anti-cancer drug sensitivity are expanding. Hopefully, the
methods reviewed in this study will contribute to overcoming
existing problems. They analyzed the drug resistance mechanism
of tumor cell lines in a drug-resistant state based on a variety of
machine learning (Wei et al., 2014; Wei et al., 2017a; Wei et al.,
2017b; Ding et al., 2020a; Ding et al., 2020b; Wang et al., 2020b;
Wang et al., 2021b) and deep learning methods to study the gene
expression profiles of a large number of drug-resistant tumor cells
(Lv et al., 2019; Su et al., 2019; He et al., 2020; Li et al., 2020; Peng
et al,, 2020; Su et al., 2020; Zhang et al., 2020c; Cui et al., 2021). The
flowchart of a representative method DLapRLS is shown in
Figure 5. The established prediction model provides a new
strategy for future research on tumor drug resistance. Cell
experiments are also applied to block the evolution of drug
resistance in the tumor drug resistance state by using single
drugs and combination regimens. A new random walk-based
graph representation learning algorithm was proposed to the
predict of anti-cancer drug sensitivity mutation data. It
incorporates gene-drug interaction network information into the
node representation of mutation-mutation networks for the
comprehensive and systematic command of the inherent
properties of such mutations. Moreover, a mutation-drug
network graph representation algorithm with multi-source
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heterogeneous information was developed to predict mutations
associated with anti-cancer drug sensitivity and sensitivity/
resistance to specific drugs. Meanwhile, a network prediction
platform available for researchers was also developed (Zhang
et al, 2020a). An exploratory method based on the Shapley
value of cooperative game theory was proposed to analyze the
convolutional neural network model. Through the differential
analysis of the contributions of monotherapies and synergistic
drug combinations in specific disease cell lines, candidate drug
group collection of the enhancement/inhibition relation in drug
components was obtained. Further application and promotion of
the drug resistance association analysis platform can provide
strategies for controlling the spread of circulating recombinant
drug-resistant HIV-1 strain. At the same time, it can also help
reduce the blind use of drugs against circulating recombinant drug-

resistant HIV-1 strain, improve the treatment effectiveness, and
lower the cost of prevention and control of AIDS.

4 CONCLUSION

In recent years, anti-cancer drugs have consistently been the focus of
new drug development. Methods that can accurately predict drug
sensitivity are urgently needed to facilitate drug development and
disease prevention in the field of biomedical health. In this study, a
comprehensive review was provided concerning the analysis of the
drug resistance mechanisms of tumor cell lines in the drug-resistant
state by using a variety of machine learning methods. The two-step
cancer-mutation-drug triad prediction is achieved through text
mining technology based on machine learning. It has laid solid
foundations for the subsequent construction and update of the drug
sensitivity mutation database through a combination of manual
annotations. The wide distribution of HIV-1 recombinant types and
the formation of drug-resistant strains will facilitate our study of
recombinant characteristic drug resistance patterns and drug
resistance associations. The aforementioned summary indicates
the necessity of the current review.
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