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Cyclooxygenase 2 (COX2) has been implicated in cancer development and metastasis.
We have identified several COX2-regulated inflammation-related genes in human
colorectal cancer cells and shown that some of them play important roles in tumor
progression. In this work, we have studied the COX2-regulated genes in the mouse
colorectal cancer cell line CT26, to find that many are also regulated by COX2 over-
expression. On the other hand, we generated a CT26 cell line expressing Gfp and
Luciferase, to study tumor growth and metastasis in immunocompetent Balb/c mice.
We then collected solid tissue, and blood samples, from healthy and tumor-bearing mice.
Using the Parsortix

®
cell separation system and taking advantage of the fact that the tumor

cells expressed Gfp, we were able to identify circulating tumor cells (CTCs) in some of the
mice. We compared the mRNA expression levels of Ptgs2 and effector genes in the
samples obtained from tumor-bearing or healthy mice, namely, tumor or healthy colon,
Ficoll purified buffy coat, and Parsortix-isolated cells to find different patterns between
healthy, tumor-bearing mice with or without CTCs. Although for genes like Il15 we did not
observe any difference between healthy and tumor-bearing mice in Ficoll or Parsortix
samples; others, such as Egr1, Zc3h12a, Klf4, or Nfat5, allowed distinguishing for cancer
or CTC presence. Gene expression analysis in Ficoll or Parsortix processed samples, after
liquid biopsy, may offer valuable diagnostic and prognostic information and thus should be
further studied.
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INTRODUCTION

Colorectal cancer (CRC) is the second cause of cancer death in the
developed countries. In the last decade, a small decrease in the
death numbers caused by this type of cancer has been achieved,
mainly due to prevention and early screening (Siegel et al., 2020).
The recent COVID-19 outbreak has led to a drastic reduction
(86%) of early screening (Patel et al., 2020), which leads to the
increase of advanced cancer cases (Aguiar et al., 2021) and the
need to implement new prognostic tools and treatment strategies.
Circulating tumor cell (CTC) enumeration is used as a prognostic
tool in different cancer types, among them, metastatic colorectal
cancer (Sastre et al., 2012; Sotelo et al., 2015). The CTCs have
been found to be very heterogenous, varying in surface marker
expression, which reduces the value of FDA-approved tools, such
as the CellSearch system (Gervasoni et al., 2011; Raimondi et al.,
2014). Taking advantage of the physical characteristics of the
CTCs, rather than the specific surface or expression markers, to
isolate them, the Parsortix system has been able to isolate CTCs
from a great variety of tumors and patients and it has been used
also in preclinical models (Kitz et al., 2018; Obermayr et al., 2018;
Obermayr et al., 2019).

Cyclooxygenase 2 (COX-2) is widely accepted to be implicated
in CRC progression and metastasis, as well as an important
therapeutic target for treatment or prevention of this type of
cancer (Doherty and Murray, 2009; Wang and DuBois, 2010). In
an effort to identify the mechanisms through which COX-2
activity leads to CRC progression, we showed that its
overexpression is enough to increase cancer cell aggressiveness
(Stamatakis et al., 2015) through the regulation of the expression
of genes we consider COX-2 activity effectors in the cancer cells
(Hidalgo-Estévez et al., 2020). A recent study pointed out that
COX-2 is expressed in CTCs of CRC patients and associated with
the clinicopathological features of the patients (Cai et al., 2019).

We decided to study the effect of COX-2 and its effector genes
in a mouse model of colorectal cancer and metastasis. We
confirmed that COX-2 activity had similar effects on the
COX-2-effector genes as in human CRC cells. Moreover, we
studied the expression of these genes, as well as Ptgs2, the mouse
gene encoding Cox-2, in tumors, peripheral blood-nucleated cell
isolates, and in CTCs isolated with the Parsortix system. We
found that the expression levels of this group of genes can help
estimate the presence of CTCs and that this strategy could be
useful to identify new molecular markers for CTCs.

MATERIALS AND METHODS

Mice and Mouse Models
All animal studies were done according to Spanish and European
regulations, the Ethics Committee of Animal Experimentation
(CSIC-UAM), and the Institutional Review Board of UAM. Six-
week-old female Swiss Nude and Balb/c mice were obtained from
Janvier labs. For subcutaneous inoculation, 106 cells were injected
under the skin of the left flank of themice. Orthotopic inoculation
in the cecum wall of 50,000 cells was done according to the
method described by Tseng et al. (2007). Tumor growth was

monitored by bioluminescence, using an IVIS Lumina system
(Perkin Elmer), as described before (Jiménez-Segovia et al., 2019).
Fifteen mice were inoculated, 11 of which developed tumors. At
the end of the experiment, mice were sacrificed by CO2

inhalation, blood was collected through heart puncture, and
tumors were excised for further processing (macroscopic
separation of tumors and RNA extraction). From the 11 blood
samples, four were discarded due to extensive clotting (although
all animals were injected intraperitoneally with heparin to avoid
this). Samples from five healthy mice were used as controls.

Cell Culture
Colorectal carcinoma cell line CT26 was obtained from the ATCC
and maintained according to the distributor’s instructions.
Human COX2 overexpression was achieved after transduction
with a lentiviral vector and antibiotic selection, as described
before Stamatakis et al. (2015). The CT26-Luc-Gfp cell line
was generated by transducing CT26 cells with lentiviral
particles generated with the pHRSIN-Luc-IRES-Gfp vector,
originally described in Garaulet et al. (2013), carrying the
firefly luciferase and Gfp cDNAs separated by an IRES. Gfp-
positive cells were sorted with a FACSAria Fusion (BD
Biosciences), and light-emitting clones were selected, adding
D-luciferin to the medium and detecting light emission with a
BMG Biosciences FluoStar Optima plate reader. After inoculation
and tumor growth in nude mice, tumors were excised and tumor
cells cultured and sorted for Gfp positive cells. These cells were
used for further experiments in Balb/c mice.

Reagents and Materials
All reagents were purchased from Sigma Aldrich, unless stated
otherwise. Oligonucleotides were synthetized by Sigma Aldrich,
according to the following sequences (gene symbol, forward
primer, reverse primer): Ptgs2, 5′ gatgctcttccgagctgtgc, 5′ gga
ttggacagcaaccatttg; Ptges, 5′ gtgatctcctggctgcaaatc, 5′ cctggacagtgc
tttgctctg; Dusp10, 5′ cctgtcgtctaaaggagatgga, 5′ cagatggtagagggc
tcgc; PMEPA1, 5′ gaccatcttcgacagtgacct, gtagcaggtggcgctgatg;
KLF4, 5′ atggtcaagttcccagcaag, 5′ tttctgttttgtctcttgaactcttc;
Tacstd2: 5′ cgggcaaatacaaaaaggtg, 5′ acaagctaggttcgcttctca;
Zc3h12a, 5′ tcatcgacggaagcaatgt, 5′ cctcgctccagaaaccag; Nfat5,
5′ tcagacaagcggtggtga, 5′ agggagctgaagaagcatca; Ptgfr, 5′ tgcaat
gttggccattgttacg, 5′ ctggccataatgtgcgtctc; Egr1, 5′ tcacctatactggcc
gcttc, 5′ ggttcaggccacaaagtgttg; Tgfb1, 5′ ccaaggtaacgccaggaattgttg
ctata, 5′ agcggactactatgctaaagaggtcaacc; Inhba1, 5′ tcctcttcatggtat
tggca, 5′ gggagtgatccctggaaac; Il15ra, 5′ tgcagaagttgtttgggatg, 5′
tacccgcaatgaccacagaga; Il15, 5′ actgtcagtgtataaagtggtgtcaatatg, 5′
cagaggccaactggatagatgtaag; Nfkbia, 5′ cgaggagtacgagcaaatgg, 5′
tgattgccaagtgcagga; Gadph, 5′ tgtagaccatgtagttgaggtca, 5′aggtcg
gtgtgaacggatttg.

Isolation of Blood-Nucleated Cells (Ficoll
Samples)
Mouse blood was collected in EDTA-treated tubes, to avoid
coagulation; 1 ml of Ficoll Paque (FisherSci) was placed
beneath the blood in the tube and centrifuged at 1,500 rpm
with for 30 min according to the manufacturer´s instructions.
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The upper, clear phase containing all nucleated cells was
collected, diluted in PBS, and centrifuged to obtain the cell pellet.

Isolation of CTCs With the Parsortix System
Mouse blood was isolated as above, diluted 1:1 with PBS, and
introduced to the Parsortix system (Angle PLC, Surray,
United Kingdom), according to the manufacturer´s
instructions, collecting the CTCs in a 6.5 μm cassette using the
Parsortix PX2_S99F protocol. Once the protocol was finished, the
cassette was removed and observed under an Axiovert200 (Zeiss)
fluorescence microscope with a sCMOS monochrome camera for
presence of Gfp-positive cells (CTCs, since only tumor cells are
Gfp-positive). To avoid cell loss or RNA degradation, cells were
immediately lysed in the cassette through the flow of 300 μl of
isolation buffer (SPLIT RNA extraction kit), collecting all the
flowthrough volume, before proceeding to RNA extraction.
Parsortix system-isolated CTCs have been characterized in
other studies (Gkountela et al., 2019; Szczerba et al., 2019).

Gene Expression Analysis
RNA was extracted using Trizol reagent (Thermo Fisher
Scientific) for cell culture or tumor samples and with the
SPLIT RNA extraction kit (Lexogen) for Parsortix cassette and
Ficoll samples. The RNA was retrotranscribed with the
Transcriptor First Strand cDNA Synthesis Kit (Roche
Diagnostics). Quantitative PCR was performed using the
GoTaq 2-Step RT-PCR system (Promega). Relative mRNA
levels to the Gadph housekeeping gene (ΔCt) and to the
experimental control point (ΔΔCt) were calculated using the
2−ΔΔCT formula from the values obtained. To quantify and
compare gene mRNA levels between Parsortix samples (less
than 1,000 cells), Ficoll-isolated buffy coats (millions of cells),
and tumor samples (millions of cells), the entire eluate of the
SPLIT RNA extraction kit was used for the first type of samples,
while 50 ng RNAwas used for the rest, for retrotranscription. Pre-
amplification and qPCR amplification were performed using the
RealTime ready cDNA Pre-Amp Master (Roche Diagnostics)
with the RealTime ready Pre-Amp Primer Pool, and the
RealTime ready custom panel (Roche Diagnostics) according
to the manufacturer´s instructions, using a LightCycler 480
(Roche Diagnostics). mRNA levels of each gene were
expressed as ΔCt, the difference of the crossing point (Ct) of
the gene with the Ct of the housekeeping Gadph.

Statistical Analysis and Principal
Component Analysis
Statistical analysis was performed with the Graphpad Prism
software. Depending on the data compared, unpaired t-test,
Wilcoxon test, or Mann–Whitney U test was performed.
Significance is indicated in the figure legends.

Principal component analysis (PCA) (Mardia et al., 1979;
Becker et al., 1988; Venables and Ripley, 2002) was conducted
in RStudio 2021.9.0.351 (R Core Team, 2021 https://www.rstudio.
com/) using prcomp command, and ggbiplot package (Vincent Q.
Vu 2011 https://github.com/vqv/ggbiplot) was used for data
visualization.

RESULTS

COX2-Regulated Genes in CT26 Cells
We have identified in previous works (Stamatakis et al., 2015;
Hidalgo-Estévez et al., 2020) genes regulated by cyclooxygenase
activity in HT29 human colon cancer cells. Among the
upregulated genes were PTGES, DUSP10, PMEPA1, KLF4,
TACSTD2, ZC3H12A, NFAT5, PTGFR, EGR1, TGFB1, INHBA,
IL15RA, IL15, and NFKBIA. In this work, we overexpressed
COX2 in the mouse colon cancer cell line CT26, to test if
these genes were also upregulated. CT26 cells in culture
express low levels of Ptgs2, which increased when we
overexpressed the human COX2, probably through a positive
feedback loop. Although there was a tendency for many of the
mouse homologs of the mentioned genes to be upregulated, we
found that this was significant only for Ptges, Dusp10, Inhba, Il15,
and Nfkbia (Figure 1). COX2 overexpression has been associated
with colorectal cancer progression and metastasis, it is
upregulated in tumors vs. normal colon tissue and we have
shown that PTGS2 (that encodes COX2) is also up-regulated
in human xenografts in nude mice (Stamatakis et al., 2015). Using
the CT26-Balb/c syngeneic, orthotopic mouse model, we tested if
the mRNA levels of PTGS2 and the abovementioned effector
genes varied between normal colon and tumor tissue. As it can be
seen in Figure 2, Ptgs2 levels are significantly higher in tumor
tissue than normal colon. Similar results were obtained for Ptges,
Dusp10, and Inhba1, suggesting that the Ptgs2 upregulation could
be responsible for their increased mRNA levels. On the contrary,
Pmepa1,Klf4, Il15ra, Il15, andNfkbiawere significantly decreased
indicating that other factors may be more important than the
cyclooxygenase activity for their regulation in vivo. We also
checked Ptgfr expression levels to find that both in culture as
in vivo, it had an inverse correlation with Ptgs2 expression levels.
Moreover, when comparing data from our mouse model and
from the TCGA colon cancer cohort analyzed using the UCSC
Xena browser (https://xenabrowser.net/), the direction in the
gene expression change, between normal tissue and tumor,
was similar in both human and mouse for Ptgs2, Ptges,
Dusp10, Klf4, Ptgfr, Egr1, Inhba1, Il15, and Nfkbia (not
shown). The rest of the genes had a different behavior when
comparing colon and tumor tissue, suggesting there are
differences in gene regulation and in their role in cancer
progression between the two species.

The CT26-Balb/C Orthotopic Colon Cancer
Model Produces CTCs
Balb/c mice inoculated with CT26 cells rapidly produce tumors in
all the length of the large intestine, even though cells were injected
in the cecum wall (not shown). This could be due to cell shedding
in the peritoneal cavity and colonizing the rest of the intestinal
tube, or due to metastasis through the blood stream. To test the
second hypothesis, we decided to search for CTCs derived from
these tumors in the blood of the mice. Using a fluorescent and
bioluminescent derivative of the cell line, CT26-Luc-Gfp, we
inoculated mice orthotopically and monitored tumor growth
by in vivo imaging (Figure 3A). When mice showed clear sign
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of metastatic tumor growth (bioluminescent signal expanding in
the entire peritoneal cavity), they were sacrificed, and tumor
growth and metastasis were confirmed (Figure 3A). At sacrifice,
the blood of the mice was extracted and separated in two, for
Ficoll gradient nucleated cell isolation and for Parsortix system
CTC isolation. We were able to detect the CTCs in the blood of
the tumor-bearing mice using fluorescent microscopy, searching
for Gfp-positive cells (Figure 3B). On the other hand, we
extracted RNA from the mentioned samples to compare the
expression levels of our genes of interest in solid tissue, buffy coat,
and Parsortix system cassette.

Gene Expression Varies due to the
Presence of CTCs
As already shown in Figure 2, the expression of the COX2-
effector genes is different between normal colon and colon

tumors. We sought to explore if the presence of tumors or
tumors releasing CTCs would change the expression pattern of
these genes in a detectable way, in solid tissue, in the blood or in
the Parsortix system-isolated cell population. Thus, we compared,
as shown in Figure 4, the mRNA levels of each gene in solid tissue
(green), Ficoll isolate (black), and Parsortix isolate (red) in
healthy (Healthy), tumor-bearing (wTumor) and tumor-
bearing with detectable CTCs (wCTCs) mice. As expected, the
levels of each gene vary between sample/isolation types in each
mouse. On the other hand, the tumor presence altered gene
expression in a similar way to Figure 2, although it is interesting
to note that the Pmepa1 and Klf4 expression levels were
remarkably lower in tumors with detectable CTCs. In a similar
way, regarding Ficoll isolates, Nfat5 and Egr1 levels were
significantly lower in CTCs bearing samples while the Dusp10
levels were higher. Finally, Klf4 and Egr1 levels were lower in the
CTCs containing Parsortix-isolated samples, while Dusp10 and

FIGURE 1 | COX2-regulated gene expression in CT29 cells. Fold change of mRNA levels in CT29- COX2 cells compared to the empty vector ones (EV) as
estimated by RT-qPCR. Statistically significant differences were tested using the unpaired t test. ns: not significant; *: p < 0.05; **: p < 0.001; ***: p < 0.0001.
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Pmepa1 higher levels in these samples could indicate tumor
presence. These results suggest that in each isolation type,
mRNA level changes can be found that may indicate the
presence of tumors or tumors releasing CTCs.

To further investigate this, principal component analysis
(PCA), taking into account the gene expression levels (ΔCt) in
the different “health conditions” and isolation method, was
performed. As expected, samples are grouped by extraction
method, although in the case of solid tissue, distances are

greater than in the other two (Figure 5). In all extraction
methods, the CTC-positive groups have lower values for PC1
(influenced mainly by Egr1, Nfkbia, Zc3h12a, Tgfb1, Il15ra, Il15,
Pmepa1, Dusp10, and Klf4, as compared with the other two,
which by itself would be enough to separate the three health states
in solid tissue. PC2 (driven by Ptgs2, Ptges, Inhba, Tacstd2, and
Nfat5) could help distinguish between tumor and healthy,
although in the Parsortix samples, healthy falls between the
two tumor conditions on the PC1 axis. This confirmed that

FIGURE 2 |mRNA levels of the indicated genes in mouse colon and CT29 cell-derived orthotopic allografts as estimated by RT-qPCR. −ΔΔCT values are shown
(ΔCTnormal colon-ΔCTsample). Mann–Whitney U test was performed for statistical significance of the differences in gene expression. *: p < 0.05; **: p < 0.001.
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this group of genes could serve to distinguish between healthy,
tumor-bearing, and tumor plus CTC-bearing mice.

DISCUSSION

COX2 expression and activity has been has been long considered
to play a very important role in colon tumorigenesis, cancer
progression, and metastasis (Kawai et al., 2002; Cathcart et al.,
2011), and its inhibition has been shown to have both great
preventive and treatment value (Rothwell et al., 2011; Rothwell
et al., 2021). Thus, it is logical to expect a possible role for COX2
in tumor dissemination in the form of CTCs. In fact, other
authors have shown a certain association of COX2 expression
in CTCs and colon cancer metastasis (Cai et al., 2019). We sought

to investigate the mRNA levels of Ptgs2 in our mouse model of
colon cancer, CT26 cells-Balb/c mice, as well as those of the group
of COX2 effector genes we identified in human colon cancer.
First, we confirmed that COX2 activity can change the expression
of some of the genes we have identified as COX2-target or effector
genes in human cancer (Stamatakis et al., 2015; Jiménez-Martínez
et al., 2019; Jiménez-Segovia et al., 2019; Hidalgo-Estévez et al.,
2020), namely, Ptge2, Ptges, Dusp10, Pmepa1, Inhba, Il15, and
Nfkbia. There was also a tendency for Klf4, Tacstd2, Nfat5, Tgfb1,
and Il15ra to be upregulated with COX2 overexpression in CT26
cells, as it happened in HT29 human cells, but without reaching
statistical significance. These results indicate that the regulation
of these genes is similar in both species, regarding COX2 activity.
Cell line-specific effects that could explain the differences cannot
be discarded. The regulation of these genes by COX2 was also

FIGURE 3 | CT26-Luc-Gfp allograft growth in Balb/c mice. (A) In vivo and ex vivo bioluminescence imaging at the indicated times and at sacrifice. (B) Bright-field
(upper panels) and Gfp fluorescence (lower panels) microscopy of the cells retained in the Parsortix system cassette, from aCTC-positive and a healthymouse. Arrows of
the same color indicate the same cell in the upper and lower panel. Yellow and orange lines indicate cells with lower fluorescence intensity, possibly necrotic. Notice the
absence of GFP fluorescence in the healthy mouse cassette, although numerous cells can be seen in brightfield. Green line indicates autofluorescence spot.
Although in the image it might appear similar to a cell, it is fluorescent in all channels, thus it can be easily distinguished.
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FIGURE 4 | mRNA levels of the indicated genes in solid tissue (green, normal colon or tumor), Ficoll isolate (black), and Parsortix isolate (red) in healthy (Healthy),
tumor-bearing (wTumor), and tumor-bearing with detectable CTCs (wCTCs) mice, as estimated by RT-qPCR. ΔCt values are shown, with SEM, plotted on an inversed
axis, to facilitate interpretation: left = high ΔCt = lowmRNA levels; right = low ΔCt = high mRNA levels. Wilcoxon test was performed for statistical significance. *: p < 0.05
when compared to healthy of the same extraction method. &: p < 0.05 when compared to wTumor of the same extraction method.
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confirmed when analyzing gene expression in mouse allografts of
the CT26 cells. Ptgfr levels were lower, both in culture as in
tumors, agreeing with the human tumor data (Hidalgo-Estévez
et al., 2020) and the notion that, during cancer development and
progression, the arachidonate/prostanoid pathway is tuned
towards PGE2 production and detection, downregulating
synthases and receptors of PGF2α and PGD2 (Cebola et al.,
2015). It is important to note that our mouse allograft model
is immunocompetent, simulating better the situation in patients.
Immune infiltration, interaction with the tumor cells, and
selection pressure may be the responsible for the differences
found in the expression of Klf4, Tacstd2, Zc3h12a, Il15, Il15ra,
andNfkbia. Since the implications of the regulation of the COX2-
effector genes have been discussed elsewhere, we focus on the
gene expression differences when we group individuals for CTCs
existence.

The CT26-Luc-GFP–Balb/c singeneic cancer model allowed
us to study tumor development and its interaction with the
immune system. Thanks to the Parsortix System, we were able
to detect CTCs specifically due to Gfp expression by these cells.
Thus, when we focused to compare the mRNA levels of each gene
in the different sample types, solid tissue, buffy coat, and
Parsortix cassette, we were able to group animals not only in
healthy and tumor-bearing groups but also for the presence of
CTCs. This allowed us to observe an interesting phenomenon
regarding Pmepa1 mRNA levels. Although they were higher in
tumor tissue than in normal colon, this was not so in tumors of
mice with CTCs detected, where Pmepa1 mRNA levels were
much lower than in healthy colon. PMEPA1 has been found to be

highly expressed in normal colon and most colorectal
adenocarcinomas and metastases (Brunschwig et al., 2003;
Zhang et al., 2019), but it would be interesting to compare
tumors that actively disperse CTCs with others that do not.
We have show that PMEPA1 increases cell proliferation while
it induces E-cadherin expression in ovarian tumor cells (Jiménez-
Segovia et al., 2019). While these cells are able to survive and
proliferate better, they are less invasive. If this also happens in
colon cancer cells, they would have to reduce PMEPA1 levels
before invading blood vessels and releasing CTCs. Another
possible explanation could be the effect of the tumor
microenvironment which can both contribute to gene
expression and shedding of CTCs. The combination of easily
detectable CTCs (e.g., expressing Gfp) with the Parsortix system
could greatly facilitate this kind of study, making it possible to
identify the events or characteristics of tumors of the same origin
(e.g., CT26-Gfp cells) to produce CTCs or not.

At the liquid biopsy level, the Egr1 and Klf4 mRNA level
reduction in the Parsortix samples could be a good marker for the
presence of CTCs. This reduction was also observed in the Ficoll
gradient samples, indicating that the level change is probably due
to a more generalized change in the expression of these genes in
peripheral blood lymphocytes, the percentage of CTCs not being
responsible, as it is negligible in the case of the buffy coat. Further
studies comparing broad gene expression between healthy,
tumor-bearing, and CTC-positive tumor-bearing individuals’
liquid biopsy samples will be able to provide accurate
biomarkers for CTC presence or even for cancer presence in
general, especially single-cell RNAseq. This is particularly

FIGURE 5 | Principal component analysis of the gene expression (ΔCt) data shown in Figure 4, represented as a biplot. Sample principal component score
centroids (dots) and loading of variables (vectors) are plotted. Confidence ellipses group samples by extraction type.
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supported by the fact that by just analyzing a small group of
genes, we were able to identify two genes of which expression
levels could indicate the presence or absence of CTCs. Moreover,
taking into account the mRNA levels of the 15 selected genes, we
could perform a principal component analysis that clearly separated
the healthy, the tumor positive–CTC-negative, and the tumor
positive–CTC-positive mice. Single-cell RNAseq studies on
Parsortix-isolated cells could increase the robustness of this liquid
biopsy method as a diagnostic tool for colorectal cancer.
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