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Drug–drug interactions play a vital role in drug research. However, they may also cause
adverse reactions in patients, with serious consequences. Manual detection of drug–drug
interactions is time-consuming and expensive, so it is urgent to use computer methods to
solve the problem. There are two ways for computers to identify drug interactions: one is to
identify known drug interactions, and the other is to predict unknown drug interactions. In
this paper, we review the research progress of machine learning in predicting unknown
drug interactions. Among these methods, the literature-based method is special because
it combines the extraction method of DDI and the prediction method of DDI. We first
introduce the common databases, then briefly describe each method, and summarize the
advantages and disadvantages of some prediction models. Finally, we discuss the
challenges and prospects of machine learning methods in predicting drug interactions.
This review aims to provide useful guidance for interested researchers to further promote
bioinformatics algorithms to predict DDI.
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INTRODUCTION

Drug–drug interactions (DDI) can occur when two or more drugs are used in combination (Baxter
and Preston, 2010). Such interactions may enhance or weaken the efficacy of drugs, cause adverse
drug reactions (ADRs) that can even be life-threatening in severe cases (Classen et al., 1997; Agarwal
et al., 2020), and cause a drug to be withdrawn from the market (Lazarou et al., 1998). According to
the U.S. Centers for Disease Control and Prevention, more than 10% of people take five or more
drugs at the same time. Even worse, 20% of older adults take at least 10 drugs (Hohl et al., 2001),
which greatly increases the risk of ADR. With an increasing number of approved drugs, the
possibility for interactions between drugs increases accordingly (Khori et al., 2011). Therefore,
predicting DDI in advance is both urgent and increasingly difficult in clinical practice.

In vivo and in vitro experiments can facilitate the identification of DDI, but cannot be performed
in some cases due to laboratory limitations and/or high cost (Safdari et al., 2016). Thus, it is
particularly important to develop computational methods to solve problems of identifying DDI.
Current computational approaches to identify DDI can be divided into two categories: 1) extraction
of DDI from literature, electronic medical records, and spontaneous reports; 2) use of known DDI to
predict unknown DDI.
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Extraction of DDI
A large number of DDI are contained in unstructured articles, but
with the explosion of biomedical literature, it has become a huge
challenge to identify useful information from the vast literature
and synchronize it within drug databases (Rodríguez-Terol et al.,
2009; Pathak et al., 2013). Extraction of DDI is achieved by one of
two approaches: pattern-based approaches and characteristics-
based machine learning. The current pattern-based approach is
being phased out because it relies on domain knowledge to
manually classify DDI. With the emergence of annotated
corpus (Segura et al., 2013), the method of extracting DDI
based on machine learning becomes more and more popular.
Moreover, extracting DDI from unstructured text data does not
provide an early warning or identify unknown DDI, while
machine learning can effectively predict it in advance
(Kanehisa et al., 2010; Chen et al., 2019; Song et al., 2021).

Prediction of DDI
Only known DDI can be extracted from unstructured articles.
However, if the relevant DDI can be predicted in advance before a
drug is put onto the market, drugs that cannot be used in
combination can be identified. These identified DDI’s can
prevent many medical errors. We first divide machine learning
into traditional and non-traditional categories. In traditional
machine learning methods, it is divided into similarity—based
method and classification—based method. There are four broad
categories of non-traditional machine learning. 1) Network
propagation-based approach. The network propagation-based
approach can be divided into link prediction and graph
embedding according to different methods of network (graph)
processing. The link prediction method takes biomedical entities

as nodes and their complex interactions as edges to predict
unknown relationship interactions and identify false or
missing interactions. The method of graph embedding is to
transform the known network (graph) into a low-dimensional
space through the embedding layer and retain the information of
the network (graph). 2) Matrix factorization. The matrix
factorization method is to decompose the known drug
interaction matrix into N low-dimensional space matrices
using different decomposition methods, and then recombine
them to obtain the matrix predicting drug interaction. 3)
Ensemble-based approaches. The ensemble-based approaches
which combine various methods for predicting drug
interactions with the goal of achieving better results. 4)
Literature-based methods. This approach first uses NLP to
extract drug interactions from unstructured data as data sets.
The extracted data are then used to predict unknown drug
interactions. In the following article, the first part will
introduce the database frequently used in the experiment in
detail. The second part introduces several methods for
predicting DDI. As shown in Table 1. The third part
summarizes the article and gives their own views.

DATASETS

Predicting DDI requires the use of multiple characteristics of
drugs and known DDI. The most commonly used databases are:
DrugBank (Knox et al., 2010), SIDER (Kuhn et al., 2016),
TWOSIDES (Tatonetti et al., 2012a), Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2017). Certain
databases were common in the literature-based approach, such as

TABLE 1 | DDI prediction methods based on machine learning.

Category Method Description

Traditional similarity Vilar et al. (2012), Rus-Rao Zhang et al. (2009), Gottlieb et al. (2012) Drug A and drug B interact to produce A specific effect, and it is likely
that A drug similar to drug A (or drug B) interacts with drug B (or drug
A) to produce the same effect

Traditional classification Li et al. (2015), Jian-Yu et al. (2016), Kastrin et al. (2018) The prediction task is simulated as a binary classification problem.
Drugs interaction and non-interaction pairs were used to construct
classification models

Network
diffusion

Link prediction PPIN Cami et al. (2013), Yan et al. (2019), Zhang et al. (2015), Park
et al. (2015), Sridhar et al. (2016)

Using drugs as nodes, and their extensive connections and
interactions as edges, to predict unknown interactions. Lable
propagation, recursive least squares (RSL), traversal of graph and
other methods are also used for link prediction

Graph
embedding

Decagon Wu et al., 2020, Feng et al. (2020), Ma et al. (2018), Liu
et al. (2019), DeepDDI Ryu et al. (2018), Lee et al. (2019), Hou et al.
(2019), Yifan et al. (2020)

Transform the graph into a low-dimensional space in which the
information about the structure diagram is preserved. Automatically
learn node representation in low dimensional space for prediction

Matrix factorization IPF Vilar et al. (2013), MRMF Zhang et al. (2018), Shtar et al. (2019),
ISCMF Rohani et al. (2020), DDINMF Yu et al. (2018), TMFUF Shi
et al. (2018)

Matrix factorization decomposes the known DDI matrix into several
potential matrices constrained by collective similarity, and then
reconstructs the potential matrix to obtain a new interaction matrix

Ensemble-based approach MLKNN Zhang et al. (2017) Combine multiple methods to predict unknown DDI.

Based on literature Tari et al. (2010), Tatonetti et al. (2012b), Kolchinsky et al. (2013) Firstly, statistical or text mining methods are used to extract the
reasonable relationship between drugs from unstructured data
sources, and then machine learning methods are used to predict the
unknown drug-drug interaction from the extracted drug-drug
interaction information
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MedlinePlus and PubChem (Kim et al., 2019). The database is
described in Table 2. DrugBank contains more than 4,100 drug
entries, more than 800 FDA-approved small molecule and
biotech drugs, and more than 3,200 experimental drugs. In
addition, more than 14,000 protein or drug target sequences
were associated with these drug entries. Each drug entry contains
more than 80 data fields, with half of the information dedicated to
drug/chemical data and the other half dedicated to drug target or
protein data. SIDER newly released version of SIDER 4
incorporates data about drugs, targets and side effects into a
more complete picture of drug mechanisms of action and how
they cause adverse reactions. Included 1,430 drugs, 5,880 ADRs.
PubChem is an open repository of chemical structures and their
biological test results. Contains 247.3 million substance
descriptions, 96.5 million unique chemical structures, provided
by 629 data sources from 40 countries. It also contains 237million
bioactivity test results from 1.25 million bioassays covering more
than 10,000 target protein sequences. A valid database of KEGG
protein pathway information. The database is used to capture
drug pathways by mapping drug targets. There are currently 75
protein pathway maps. KEGG drug database has 10,979 pieces of
drug related information and 501,689 pieces of DDIs relationship.
TWOSIDES is a database of drug-drug interactions with side
effects. The database contains 868,221 significant associations
between 59,220 drug pairs and 1,301 adverse events. MedLinePlus
contains 233 abstracts of biomedical articles.

MACHINE LEARNING-BASED APPROACH

Similarity-Based Approach
The basic concept of traditional similarity-based approaches for
prediction of DDI is as follows: if drug A and drug B interact with
each other to produce a specific effect, then drugs like drug A (or
drug B) are likely to produce the same effect with drug B (or drug
A). With regard to drug similarity, interactions between new
drugs are predicted through the fusion of similar characteristics of
multiple drugs (Su et al., 2019a; Zeng et al., 2019; Zeng et al.,
2020a; Fu et al., 2020; Mo et al., 2020; Zhuang et al., 2020; Shaker
et al., 2021).

Vilar et al. (2012) proposed a large-scale approach based on
identification of molecular similarities to analyze interactions of

multiple types of drugs caused by inhibition of metabolic
enzymes, transporters, and even pharmacological targets. To
obtain molecular similarity, the authors first collected and
processed drug molecules, then represented the resulting
molecular structure as a bit vector that encoded the presence
or absence of molecular features, where each feature was assigned
a specific location. Finally, the calculation and data representation
of similarity measurement are presented. Tanimoto coefficient
(TC) was used to measure molecular fingerprints. 0 indicates the
greatest dissimilarity, and 1 indicates the greatest similarity.

Ferdousi et al. (2017) calculated the similarity of drug pairs
using the Rus-Rao approach based on similarity measurements of
12 binary vectors. The greater the similarity, the greater the
likelihood of drugs interactions. Pharmacokinetic DDI (Zhang
et al., 2009) describes the process by a drug affects the absorption,
distribution, metabolism, or excretion of another drug; whereas,
pharmacodynamic DDI (Imming et al., 2006) involves the
process by which two or more drugs affect the same receptor
to cause synergistic or harmful effects. Gottlieb et al. (2012) used a
logistic classifier to infer interactions between
pharmacodynamics and pharmacokinetics, as well as their
severity, by integrating the similarity measurements of seven
different drugs and building classification characteristics.

Classification-Based Approach
The traditional classification-based approach involves simulating
the DDI prediction task as a binary classification problem. DDI
pairs and non-DDI pairs are used to build classification models.
For binary classification, known interactions are used as inputs,
and other drug pairs may have undetected or unobserved
interactions that need to be predicted. In machine learning,
similar problems are generally converted to semi-supervised
learning tasks (Zhao et al., 2020; Hu et al., 2021a). In the
classification task, a model is often built using classifiers such
as logistic regression, Bayesian, k-nearest neighbor, random
forest, and support vector machines (SVM) to predict DDI.

Li et al. (2015) designed a probability ensemble approach
employing a Bayesian network model and similarity algorithm to
predict drug pairs from molecular and pharmacological
characteristics. Jian-Yu et al. (2016) proposed a new semi-
supervised fusion algorithm based on a local classification
model and Dempster–Shafer evidence theory. With this

TABLE 2 | Common database used to predict drug interactions.

Database Entities URL Brief description

DrugBank Drugs, Targets,
Proteins

http://www.drugbank.ca/ Contains a lot of drug information and protein or drug target information

SIDER Drugs, ADRs http://sideeffects.embl.de/ Adverse drug reactions of large drugs

TWOSIDES Drugs, ADRs http://tatonettilab.org/resources/tatonetti-stm.
html

Adverse drug reactions of large drugs

PubChem Structure https://pubchem.ncbi.nlm.nih.gov/ An open repository of chemical structures and their biological test results

KEGG DDIs, Proteins http://www.kegg.jp/ Metabolic pathways of hyperlinks between metabolites and protein/enzyme
information

Medline Abstract https://en.wikipedia.org/wiki/MEDLINE/ Contains abstracts of several biomedical articles
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approach, new DDI may be predicted based on structural and
side-effect similarity (Zhao et al., 2019). Kastrin et al. (2018)
treated the process of predicting DDI as a binary classification
task by predicting unknown interactions of randomly selected
drugs in five large DDI databases using a link-prediction
technique, and enhanced the network topology characteristics
using four semantic characteristics.

Similarity based on the traditional method and based on the
traditional classification method are obtained to predict the
unknown drug interactions between very good results, but in
these methods, the characteristics of drugs and drug interactions
cannot get a good integration between known, there would be no
way to use the known information to fully predict drug
interactions. So, we need to develop more efficient
computational methods to predict unknown drug interactions.

Network Propagation-Based Approach
The network propagation-based approach predicts unknown
DDI using a network of drug structural information or a
network formed on the basis of known DDI (Lotfi Shahreza
et al., 2018). In biomedical research, it is common to use
information available in the network (figure) to predict
unknown information or interactions, such as drug–disease
associations, DDI, and protein–protein interactions. To solve
these problems, link-prediction and graph-embedding
approaches are generally used as detailed below.

Link Prediction
Link prediction uses biomedical entities as nodes, and their
extensive connections and interactions as edges, to predict
unknown interactions and identify false or missing
interactions. In Figure 1. Initially, link-prediction approaches
assessed the similarity between nodes based on local topological
characteristics (Zhou et al., 2009). However, random walk
algorithms have become more frequently used for link
prediction thanks to the development of global network
topology. In addition, many approaches have been employed
for link prediction, such as label propagation (Zhang P et al.,
2015), probability soft logic (PSL) model (Bach et al., 2015), and
graph traversal algorithms (Hu et al., 2020; Hu et al., 2021b).

The similarity-based approaches mentioned above often
ignore the structural information encoded in drug biological
networks and their interactions. Both the network similarity-
based approach and memory network reasoning approach can
solve this problem. Specifically, the network similarity-based
approach is presented with graphs or reasoned directly
through graph structures. Yan et al. (2019) proposed a binary
vector-based approach incorporating drug chemistry, biological,
and phenotypic data. Briefly, comprehensive drug characteristic
similarity was calculated by the isotope similarity approach, a
node-based drug network diffusion approach was used to
calculate the initial score of the relationship between new
drugs, and new DDI were deduced using the recursive least
squares (RLS) algorithm.

Cami et al. (2013) described that the DDI of unknown drugs
may be predicted by building a network of known DDI. In such a
network, drugs are expressed as nodes, while known interactions
between known drugs are expressed as edges to predict unknown
edges. The first is to integrate data from a number of different
sources, including safety data, taxonomic data and data related to
the intrinsic characteristics of the drug. The authors construct a
network representation of all DDI, where each node represents a
drug, and each connecting two nodes represents a known
interaction between the two drugs. Next, the binary variables
representing the presence or absence of interactions between drug
I and drug J were modeled as Bernoulli random variables and
three types of covariate functions. By fitting all possible univariate
logistic regression models, the authors began to develop models
to assess the univariate effect and significance of each covariable.

Most approaches use only first-order similarity, while label
propagation considers higher-order similarity. Zhang W et al.
(2015) proposed prediction of DDI by integrating clinical side
effects extracted from prescription drug packages and
United States Food and Drug Administration (FDA) Adverse
Event Reporting System, as well as chemical structures extracted
from PubChem. They also proposed a framework for
comprehensive label propagation that considers similarities of
higher-order interactions. First, the authors used the Jaccard
index to calculate the similarity between all fingerprints. The
authors then create a matrix so that the rows and columns
represent the drug, and each cell represents the TC between
the fingerprint and the drug. Therefore, drug information from
chemical structure, prescription package inserts, and FAERS is
transferred to a matrix of chemical similarity, label side effect
similarity, and off-label side effect similarity. The authors then
use a tag propagation algorithm. The label propagation algorithm
solves the following problem: given a weighted network without
direction, estimate the labels of the remaining unlabeled nodes.
The author takes different drugs as nodes on the network and
calculates the edge weights on the network using the drug
similarity evaluated by the method in the last section. For
each drug, all other drugs in the labeling network are positive,
and unlabeled drugs will have DDI with this drug if they know
there is a DDI associated with this drug, and use the label to
spread the likelihood of this drug network estimate.

The random walk algorithm provides a powerful function to
randomly select objects from adjacent nodes in the network, and

FIGURE 1 | (A) Blue represents known interactions with the input drugs
(D1, D2), and orange represents drugs whose unknown interactions need to
be predicted. (B) Search the whole network with different methods to find the
drugs most similar to D1 and D2, which are represented by yellow drugs
in the figure. Finally, the possibility of interaction between yellow drugs and
input drugs was predicted.
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then repeats this process constantly to capture information in the
network. Park et al. (2015) conceived the method of predicting
pharmacokinetic DDI by comparing signal propagation and
protein–protein interactions in the network. To achieve this,
they applied random walk and restart algorithms to simulate
signal propagation from drug targets and capture the possibility
of distant interference. The probability of each protein was
calculated by the random walk with restart (RWR) algorithm.
Protein probabilities are used to represent the effect of drug
targets on the protein-protein interaction (PPI) network. The
RWR algorithm simulates randomwalkers until the probability of
all proteins on the PPI network is saturated. Next, the authors
calculated the protein fraction, which represents the overlapping
effects of the two drugs on the same protein. In addition,
DDIScore is calculated by summing up the protein fractions of
all proteins. The authors used DDIScore as a measure of the
likelihood of DDI occurring between drugs.

The advantages of PSL are highly extensible and easy to extend
(Bach et al., 2015). Sridhar et al. (2016) inferred DDI from the
similarities of multiple drugs and networks of their known
interactions, using the joint probability under the PSL
framework. Importantly, this approach can be easily extended
by different informants and similarities for a variety of
applications.

Graph-Embedding Approach
The purpose of graph-embedding approaches is to transform a
graph into a low-dimensional space in which structural
information about the diagram is preserved. Nodes in the low-
dimensional space of automatic learning indicate that prediction
has been conducted. Notably, in the field of biology graph-
embedding approaches have proven to be more effective in the
field of biology than traditional approaches (Tang et al., 2015). In
Figure 2. Below, graph convolution network (GCN), automated
encoders and deep neural networks (DNN) used to predict DDI
are described.

The GCN summarizes all the characteristic vectors of adjacent
nodes in the graph by considering the characteristics of data
structure extraction, and then forms a summary in the spatial
domain (Wu et al., 2020). Marinka et al. (2018) built a GCN

architecture (Decagon) for predicting DDI. Multi-model
diagrams were constructed using protein-protein interactions,
drug-protein interactions, and drug-drug interactions. By using
Decagon to predict multi-relation link on multi-model graph, we
can not only identify whether any two drugs interact with each
other in the graph, but also determine the type of interaction. Ma
et al. (2018) considered each type of drug characteristic as a view,
calculated the similarity of each view, and then used a multi-view
graphical automatic encoder to integrate drug similarity.
Subsequently, an attention mechanism was employed to select
the view, therefore improving the explanatory nature of the
experiment. For modeling, each drug was a node in the drug
association network, which was extended by the GCN to embed
the characteristics and edges of the multi-view node.

Feng et al. (2020) Combination of GCN and DNN models has
also been used to extract structural drugs from the DDI network,
in order to predict DDI. DDI predictions can be solved in a three-
step approach. First, the potential eigenvectors of each drug were
obtained through the function F1. Then the potential vectors of
the two drugs are aggregated into an eigenvector to represent the
drug pair. Finally, the network is reconstructed through F2. The
F1 function is called a feature extractor and the F2 function is
called a predictor. Firstly, the GCN model was established to
extract the latent features of low dimensional embedding of drugs
from DDI network. The latent eigenvectors of the drug are then
aggregated to represent drug pairs. Finally, the fused eigenvectors
are fed into DNN to predict DDI.

An automatic encoder is an unsupervised neural network
whose input and output errors can be minimized through an
encoder and decoder. Liu et al. (2019) proposed a multi-pattern,
deep autoencoder, drug expression-learning approach based on
DDI prediction, which can simultaneously learn the uniform
expression of the drug from its functional network. The authors
integrate all four characteristics of the drug (chemical
substructure, target, enzyme and pathway) to learn about drug
characterization and then develop an effective model to predict
drug interactions. Consider each drug data set as a view of the
drug signature network, so there are five drug signature networks.
We use deep neural networks to deal with representational
learning. In the DDI-MDAE model, each drug signature

FIGURE 2 | Start by creating the graph structure of the DDI. D 1 through D j+1 indicates the drug number. Nodes represent drugs and edges represent relationships
between drugs. The high dimensional graph structure is transformed into low dimensional vector by embedding layer.
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network is trained through a deep automatic coding channel and
shares the representation of the drug in the hidden layer for
simultaneous learning. A unified sharing representation captures
the interrelationships between different networks. On this basis,
the author employs four operators to represent drug pairs and
train a random forest classifier to predict potential drug-drug
interactions.

Deep learning can automatically extract the characteristics of
drugs from a dataset and conduct autonomous learning through a
multi-layer network to predict unknown DDI. As an artificial
neural network with multiple processing layers, DNN can be used
to learn highly abstract expressions (Cheng et al., 2018; Su et al.,
2019b; Wang et al., 2020a; Cai et al., 2020; Jia et al., 2020; Li et al.,
2020; Zhu et al., 2020; Cai et al., 2021; Jin et al., 2021; Liu J et al.,
2021; Liu Q et al., 2021; Su et al., 2021; Zhao et al., 2021). To
predict unknown DDI, DNN-based approaches often build a
framework using a DNN generated from a variety of drug data.
Ryu et al. (2018) proposed that a variety of DDI can be predicted
by generating a structural similarity profile of drugs that can be
used as the “DeepDDI” for the prediction characteristic vector.
SMILES were used to generate a feature vector called structural
similarity profile (SSP) for each drug in the drug pair. The SSP is
designed to effectively capture the unique structural
characteristics of a given drug and correlate that characteristic
with a set of reported DDI types. In order to predict the DDI type
of a given drug pair, two SSPS were generated for each drug pair
and combined into a single vector after dimensionality reduction.
The combined SSP was the feature vector of the drug pair. A
combined SSP of all DDI in a DDI dataset was created and the
entire set was used to develop a DNN for accurately predicting
DDI types. The author uses cross entropy as loss function and
Adam optimization method to train DNN by minimizing
prediction error.

Lee et al. (2019) proposed the use of three automatic encoders
and a deep feed-forward network to predict DDI. Structural
similarity profiles (SSP), target gene similarity profiles (TSP)
and Gene Ontology (GO) term similarity profiles (GSP) were
measured by autoencoder for dimension reduction (Wang et al.,
2020b; Zeng et al., 2020b; Wang Y et al., 2020). The three
autoencoders are all isomorphic, the size of input layer and
output layer are 3194 and 600 respectively, and the size of
hidden layer are 1000, 200 and 1000 respectively. The deep
feedforward network has an input layer of size 600, six hidden

layers of size 2000 and an output layer of size 106. Batch size is
256, the learning rate of autoencoder is 0.001, and the learning
rate of feedforward network is 0.0001. The activation functions of
autoencoder and feedforward network are sigmoID and ReLU.
Sigmoid is used as the activation function of the output layer of
the feedforward network. The number of epochs was 850, using
Adam as the optimizer for the feedforward network and
RMSprop as the Autoencoder optimizer. To avoid overfitting,
The author uses apply dropout of 0.3 and batch normalization to
feedforward networks and Autoencoders.

Hou et al. (2019) proposed the use of DNN to predict DDI,
with drugs expressed as a characteristic generated by the SMILE
code and entered into a DNN. Yifan et al. (2020) proposed a DDI
multimodal deep-learning framework that predicts DDI event
types by combining chemical substructures, targets, enzymes, and
pathways with deep learning; four drug characterization vectors
were calculated and put into the DNN network for training.

Matrix Factorization-Based Approach
Matrix factoring provides a mathematical basis for various
modeling of the biological information problem (Martin et al.,
2016). The matrix-factoring approach breaks down the DDI
matrix into several matrices, extracts potential characteristics
therefrom, and rebuilds the matrix to identify new DDI. In
Figure 3. Traditional matrix-factoring approaches involve
single-value decomposition (SVD) (Sarwar et al., 2000), non-
negative matrix factoring (NMF) (Lee and Seung, 1999), and
probability matrix factorization (PMF) (Mnih and
Salakhutdinov, 2008). However, newly developed matrix
decomposition models based on neural networks have been
improved in terms of DDI performance. Although the matrix
factorization method can achieve good results in predicting drug
interactions, the explicability of matrix factorization method is
poor and further research is needed. In the matrix factorization
method, attention should also be paid to how to better integrate
the characteristics of drugs as constraints of matrix
decomposition.

Vilar et al. (2013) developed a new approach based on drug
interaction profile fingerprinting (IPF). The IPF matrix is used to
measure the similarity of drugs, and the interactive probability
matrix is calculated by multiplying the DDI matrix by the IPF
matrix. New DDI are predicted from the resulting interactive
probability matrix. The author first generated an established

FIGURE 3 | The process of matrix factorizationmethod. Firstly, thematrix D n*n of knownDDI is constructed, and thematrix D is decomposed into A n * l and B l * n by
different matrix factorization methods. Multiply the two resulting matrices, and you get the matrix D pre l * n that predicts DDI.
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database of drug interactions (matrix M1). The collected DDI set
was converted into a binary matrix of 928*928, with a value of 1
indicating the interaction between the two drugs and a value of 0
indicating no interaction. Then, the similarity matrix M2 of
interactive profile is generated, which is divided into three
steps: the first step is IPFs calculation, the second step is
fingerprint similarity calculation, and the last step is M2
construction matrix. The matrix makes rows and columns
represent drugs, and each number represents contour
similarity based on TC interactions between corresponding
drug pairs. Finally, you can predict the new DDIs (matrix
M3). Multiply matrix M1 by matrix M2 to obtain M3, and
then generate a new set of predicted DDI from M3, and
capture the biological effects provided by the original DDI
source in M1 and associate them with the new DDI.

Rohani et al. (2020) proposed an integrated similarity
constraint matrix factorization (ISCMF) to predict DDI. It can
be divided into two steps: first, the integrated similarity matrix is
generated as the constraint matrix of matrix decomposition, and
then the matrix decomposing the matrices of known drug
interactions to obtain two matrices containing potential
similarity. Multiply these two matrices to get the matrix that
predicts DDI. In the generation of integration similarity, eight
similarity matrices were generated based on eight drug
characteristics, and k optimal subsets were selected by low
entropy and redundancy. Finally, Similarity matrix of K
subsets was integrated by similarity network fusion (SNF)
method. Based on the known drug interaction matrix, the
author decomposed this matrix as the input, integrated
similarity as the constraint conditions of decomposition, and
finally obtained two decomposition matrices. If you multiply
these two matrices, you get the matrix that predicts DDI. Because
in decomposition, the loss function has multiple regularization
and similarity constraints. Therefore, it can be assumed that the
new interaction is a combination of known interactions and
similarity matrices.

Zhang et al. (2018) considered multiple characteristics of
drugs to calculate similarity matrices. Next, they assumed that
the matrices were multiples, projected the drugs onto the low-
dimensional space of the interactive space, and introduced
multiple normalizations. This group also proposed multi
relational matrix factorization of DDI prediction, under which
potential DDI are predicted by introducing multi relational
matrix factorization of drug characteristics into the matrix
factorization. Shtar et al. (2019) proposed prediction of DDI
using adjacent matrix factorization (AMF) and adjacent matrix
factorization propagation (AMFP). The authors used only known
DDI as inputs to predict unknown DDI. AMF breaks down the
matrix into an adjacent matrix of DDI, while AMFP (an extension
of AMF) spreads potential factors from each drug to interacting
drugs on an AMF basis.

Traditional approaches for predicting DDI can only predict
their probability, not increases or decreases of drug efficacy
during interaction. Yu et al. (2018) proposed a DDI-non-
negative matrix factorization (DDINMF) approach to predict
conventional and synthetic DDI based on semi-non-negative
matrix factors. This approach can predict not only DDI, but

also whether such interactions will enhance or decrease drug
efficacy. DDINMF consists of a training stage and prediction
stage. The authors expressed interactions in the DDI dataset as a
symmetric interaction matrix, which was divided into basic and
potential matrices using NMF. Shi et al. (2018) designed the triple
matrix factorization (TMF)-based unified framework approach,
which uses TMF to connect the adjacent matrix of the DDI
network with the characteristic matrix of the drugs.

Ensemble-Based Approach
The ensemble-based approach combines multiple approaches to
predict unknown DDI. Zhang P et al. (2015) proposed that the
computational burden of multi-label cases may be reduced by
selecting appropriate information dimensions based on the
mutual characteristics and side effects of drugs. Combined use
of genetic algorithms and the multi-label k-nearest neighbor
algorithm can define the optimal characteristic size and
enables development of prediction models. A novel multi-label
K-nearest adjacency method based on function selection (FS-
MLKNN) is proposed, which can simultaneously determine key
feature sizes and construct high-precision multi-label prediction
models. FS-MLKNN takes two steps to establish the relationship
between characteristic vectors and side effects. Firstly,
information dimensions are selected by mutual information
between functional dimensions and side effects to reduce the
computational burden of multi-label learning. Then, genetic
algorithm (GA) and multi-label K-nearest neighbor point
method (MLKNN) were combined to determine the optimal
feature size and develop a prediction model.

Zhang et al. (2017) built a prediction model based on various
characteristics of drugs and known data about DDI according to
neighbor-recommendation, random walk, and matrix
disturbance approaches, which use flexible and diverse
frameworks to combine different models with different
ensemble rules. Deepika and Geetha (2018) predicted DDI
through positive-unlabeled (PU) learning (Elkan and Keith,
2008) and meta-learning (Lemke et al., 2015), and proposed a
learning framework for semi-supervised classifiers based on
SVM. The PU-based classifier was used to generate meta-
knowledge from the network, and the meta-classifier was
designed to predict the probability of DDI from the generated
meta-knowledge.

Literature-based Approach
Literature-based prediction of DDI consists of two steps: first,
extraction of the reasonable relationship between drugs from
unstructured data sources (Vilar et al., 2018) (literature,
electronic medical records, spontaneous reports, etc.) with a
statistical or text-mining method, followed by use of natural
language processing technique; second, prediction of unknown
DDI from extracted information about the interactions between
drugs using machine learning.

Tari et al. (2010) predicted DDI by combining text mining and
reasoning. The process involved two stages: natural language
extraction and reasoning. The authors used a parsing tree to
extract various interactions and applied logical rules to predict
interactions based on extracted interactions between new and
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existing drugs. Tatonetti et al. (2012b) divided FAERS into two
sets of data: reports involving only one drug and reports involving
two drugs, and constructed eight “clinically major” adverse event
models. In each model, the drug information described was an
introduction to the frequency of adverse events extracted from
FAERS, and a logistic regression classifier was used to distinguish
drugs that caused major clinical adverse events under study from
those that did not; prediction was conducted based on the drug
combination for each model. Kolchinsky et al. (2013) evaluated
the performance of several classifiers, such as logistics regression,
SVM, and discriminatory analysis, to distinguish relevant
abstracts and PubMed articles containing evidence for
pharmacodynamic DDI. Notably, their approach is also
helpful to link causal mechanisms to potential DDI.

CONCLUSION

The occurrence of DDI affects the treatment of patients and has
become a serious problem for patient safety and drug
management. The harm caused by DDI will be greatly reduced
if machine learning can be used to efficiently predict DDI. To this
end, it is urgent to develop better-performing machine learning
approaches. This article describes existing machine learning-
based approaches for predicting DDI. In the past 10 years,
machine learning has been widely applied in bioinformatics

and achieved good results. Under most of the existing
approaches, drug similarity is taken as the most fundamental
starting point for better prediction of DDI, assisted by a variety of
other means. However, most current DDI predictions are limited
to the interactions between two drugs. In the future work, we
should not only pursue the accuracy of predicting the probability
of drug-drug interactions, but also pursue the ability to accurately
predict the types of drug-drug interactions. However, because the
use of multiple drugs has become a trend in clinical medicine, it is
urgent to develop methods to predict interactions between
multiple drugs. It is our opinion that a number of excellent
ways to solve this problem will be available in the near future.
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