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Antioxidant proteins can not only balance the oxidative stress in the body, but are also an
important component of antioxidant drugs. Accurate identification of antioxidant proteins
is essential to help humans fight diseases and develop new drugs. In this paper, we
developed a friendly method AOPM to identify antioxidant proteins. 188D and the
Composition of k-spaced Amino Acid Pairs were adopted as the feature extraction
method. In addition, the Max-Relevance-Max-Distance algorithm (MRMD) and random
forest were the feature selection and classifier, respectively. We used 5-folds cross-
validation and independent test dataset to evaluate our model. On the test dataset, AOPM
presented a higher performance compared with the state-of-the-art methods. The
sensitivity, specificity, accuracy, Matthew’s Correlation Coefficient and an Area Under
the Curve reached 87.3, 94.2, 92.0%, 0.815 and 0.972, respectively. In addition, AOPM
still has excellent performance in predicting the catalytic enzymes of antioxidant drugs. This
work proved the feasibility of virtual drug screening based on sequence information and
provided new ideas and solutions for drug development.

Keywords: antioxidant proteins, random forest, MRMD, antioxidant drugs, drug screening and discovery

INTRODUCTION

In the process of biological metabolism, reactive oxygen species (ROS) are produced. The antioxidant
system in the organism can eliminate ROS, but there is a limit. Too high concentrations of ROS are
not eliminated in time and will cause oxidative stress (OS) (Birben et al., 2012; Yang et al., 2020; Zhao
S et al., 2021). According to research, OS response plays an important role in the pathogenesis of
many diseases. Long-term response to OS will destroy the structure of macromolecules and even
affect the senescence and death of cells. Research by Azhwar Raghunath’s team (Raghunath et al.,
2018) has shown that the protective effect against oxidative stress is a cis-acting element of
antioxidant proteins in the regulation of Nrf2 target genes, which plays a key role in redox
homeostasis. Therefore, antioxidant proteins have been used in the development and screening
of antioxidant drugs, which can treat cancer, neurodegenerative diseases, cardiovascular, metabolic
and other diseases with oxidative stress (Liguori et al., 2018; Eleutherio et al., 2021; Zia et al., 2021).

Traditional antioxidant drug screening and discovery are carried out through biochemical
experiments, which not only has a long time period and high cost, but also has the risk of
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failure in experiments (Lv et al., 2020a; Cheng et al., 2020; Cheng
Y et al., 2021; Lv Z et al., 2021; Dong et al., 2021; Goto et al., 2021;
Zeng et al., 2022). With the continuous improvement of
computer technology and genome databases, methods such as
data mining and machine learning are more and more widely
used in biological information, drug screening and other fields
(Cheng et al., 2018; Wang et al., 2018; Ding et al., 2019; Wang
et al., 2019; Zeng et al., 2020a; Zhang CH et al., 2020; Zhang J
et al., 2020; Lyu et al., 2020; Zhao X et al., 2021; Niu et al., 2021).
In recent years, many researchers have been exploring machine
learning models suitable for identifying antioxidant proteins. The
Feng team adopted the Naive Bayesian method and the AodPred
model to identify antioxidant proteins, which proposed in 2013
(Feng et al., 2013) and 2016 (Feng et al., 2016) respectively.
AodPred is based on a vector machine model with 3 spaced
residual pairs, which is significantly better than Naive Bayes but
its ability to identify antioxidant proteins is still limited. In 2016,
the integration method used by Zhang showed that the secondary
structure of proteins helps distinguish antioxidant proteins from
non-antioxidant proteins, but the method of feature extraction
for this model is complicated and time-consuming. Subsequently,
both Xu et al. (2018), Meng et al. (2019) adopted the support
vector machine model to identify the target protein. In 2020 (Zhai
et al., 2020), our team explored the random forest combined with
SMOTE to identify antioxidant proteins. The ability to identify
antioxidant proteins has improved a lot compared to the original
Feng. However, when dividing the training set and the data set for
the three of them, there are ambiguities and the test set does not
reflect the original data distribution. In addition, these
researchers did not consider whether the model can be applied
to the screening of antioxidant drugs and other practical
problems when they created the model for identifying

antioxidant proteins (Wang et al., 2020; Chen et al., 2021). In
fact, this is a very good idea, but no one has done so yet.

In response to these problems, we exploited a method, AOPM,
which is a pipeline for identifying antioxidant protein sequence
data. This model can also be used in the application of virtual
antioxidant drug screening. To facilitate understanding, Figure 1
shows the flow chart of AOPM. The feature extraction part
adopted amino acid composition and physical and chemical
properties to extract 188-dimensional features (Liu T et al.,
2020) from protein sequences, which was same with Xu. The
Composition of k-spaced Amino Acid Pairs (CKSAAP) (Usman
and Lee, 2019) was also adopted as the feature extraction
methods. In addition, we preferred a very mature feature
selection method, the Max-Relevance-Max-Distance algorithm
(MRMD) (Zou et al., 2016; Lv et al., 2020b), which was based on
the Pearson correlation coefficient and could be exploited to
single out the best feature subset for reducing the computational
complexity and noise. On the contrary, we chose a 5-fold cross-
validation as the model selection method and random forest
(Liaw and Wiener, 2002; Lv et al., 2019) as the classifier, which
has the characteristics of a fast running speed and less overfitting,
rather than the very popular support vector machine.

Finally, on the antioxidant protein test dataset, after AOPM
processing. The sensitivity (SN), specificity (SP), accuracy (ACC),
Matthew’s Correlation Coefficient (MCC) and an Area Under the
Curve (AUC) reached 87.3, 94.2, 92.0%, 0.815 and 0.972,
respectively, which were significantly better than the results
with the AodPred and Zhai. In addition, AOPM still has
excellent performance in identifying the proteins that make up
antioxidant drugs, providing new ideas for exploring the research
of drug components. In addition, when using AOPM to predict
the 36 protein sequences located in the DrugBank (Wishart et al.,

FIGURE 1 | The function structure of AOPM.
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2018) data set, 11 of them were judged to have the function of
antioxidants. Among them, Superoxide dismutase [Cu-Zn] is
indeed a protein with antioxidant capacity (Dzięgielewska-Gęsiak
et al., 2014; Tiwari et al., 2019; Ściskalska et al., 2020). This work
proved the feasibility of virtual drug screening based on sequence
information and provided new ideas and solutions for drug
development (Liu J et al., 2020; Jakhar et al., 2020; Shaker
et al., 2021; Yan et al., 2021; Zhu et al., 2021).

MATERIALS AND METHODS

Availability of Data and Materials
We first collected proteins with antioxidant activities from
the antioxidant protein database (AOD) (Feng et al., 2017).
AOD (Antioxidant Protein Database) is a manually planned

and experimentally verified antioxidant protein database.
The data and information are extracted from UniProtKB/
Swiss-Prot (release 2016_11) according to the following steps:
1) only proteins with experimentally proven antioxidant
activities were selected; and 2) ambiguous proteins were
excluded, such as those containing nonstandard letters like
“B,” “X,” and “Z”. After this rigorous screening, we obtained
710 protein sequences as the original positive samples for the
experiment. The negative samples were 1552 PDB proteins
with identical values <20%, which were picked by PISCES-
culled.

Then we divided the original data set into training set and test
set according to the ratio of 4:1. The training set contains 568
antioxidant proteins and 1242 non-antioxidant proteins. The rest
of the data are the test set, including 142 antioxidant proteins and
310 non-antioxidant proteins. The detailed data set information
is shown in Table 1.

In addition, in the DrugBank database, 19 drugs were found to
have antioxidant properties. On this basis, we screened out 36
protein sequences of enzymes that play a catalytic role in
antioxidant drugs. This data set was used to test the prediction
performance of AOPM in the real data set. The UniProt IDs of 36
protein sequences were shown in Table 2. In addition, a protein

TABLE 1 | Antioxidant protein datasets information.

Dataset Sample Class Positive num Negative num

Train dataset 1810 2 568 1242
Test dataset 452 2 142 310

TABLE 2 | The UniProt ID of 36 protein sequences.

UniProt ID Drug Type

P47989 Carvedilol, Allopurinol enzyme
P16662 Carvedilol enzyme
P06133 Carvedilol enzyme
P22309 Carvedilol, Silibinin enzyme
Q16881 Ascorbic acid, Selenium enzyme
P00441 Vitamin E, alpha-Tocopherol succinate enzyme
Q96I15 Selenium enzyme
P16435 Lipoic acid enzyme
P15559 Vitamin E, alpha-Tocopherol succinate enzyme
P05164 Melatonin enzyme
P78329 Tocopherol, alpha-Tocopherol acetate enzyme
P14902 Melatonin enzyme
P09601 Vitamin E, alpha-Tocopherol succinate enzyme
P46597 Melatonin enzyme
P05091 Nitric Oxide enzyme
Q06278 Allopurinol enzyme
Q03154 Acetylcysteine enzyme
P11511 Melatonin enzyme
P04798 Melatonin, Resveratrol, Carvedilol enzyme
P05177 Nitric Oxide, Pentoxifylline, Melatonin, Resveratrol, Carvedilol enzyme
Q16678 Melatonin, Resveratrol enzyme
O43174 Vitamin A enzyme
P20813 Nitric Oxide enzyme
P33261 Melatonin, Dimethyl sulfoxide enzyme
P10632 Quercetin enzyme
P11712 Melatonin, Carvedilol enzyme
P10635 Dimethyl sulfoxide, Anisodamine, Carvedilol enzyme
P05181 Carvedilol enzyme
P08684 Vitamin E, Nitric Oxide, Dimethyl sulfoxide, Resveratrol, Tocopherol, alpha-Tocopherol acetate, Carvedilol enzyme
P48506 Vitamin E, alpha-Tocopherol succinate enzyme
P00390 Selenium enzyme
P09210 Vitamin E, alpha-Tocopherol succinate enzyme
P21266 Vitamin E, alpha-Tocopherol succinate enzyme
P78417 Vitamin E, alpha-Tocopherol succinate enzyme
P09211 Vitamin E, alpha-Tocopherol succinate enzyme
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can act as a catalytic enzyme in different antioxidants, as shown in
Figure 2.

Under Sampling Processing
The number of antioxidant proteins is relatively small. Although
the ratio of the number of antioxidant proteins to the number of
non-antioxidant proteins in the training set is 1:2, in order to find
the characteristics of more clearly distinguishing antioxidant
proteins, we performed the training dataset under sampling
process. In this study, we selected five different under
sampling methods in KEEL (Triguero et al., 2017) to resemble
the sample. These five methods included CNN_TomekLinks,
CPM, NCL, OSS, and RandomUnderSample.

In the processed data set, the number of antioxidant proteins
and non-antioxidant proteins are not exactly the same. The
operation of this step is to highlight the characteristics that are
beneficial to distinguish antioxidant proteins as much as possible.

Feature Extraction
In order to obtain sequence information more
comprehensive, we adopted feature extraction methods
from two perspectives, including sequence composition
and the physical and chesmical properties of amino acids
(Zulfiqar et al., 2021a; Cheng L et al., 2021; Zhang et al.,
2021). Among them, we used the 188D method to extract the
characteristic information about the physical and chemical
properties of the sequence, and select the Composition of

k-spaced Amino Acid Pairs (CKSAAP) (Chen et al., 2007)
method to obtain the characteristic information about the
sequence composition (Naseer et al., 2020; Long et al., 2020).

188D
The expression form of the amino acid sequence is a string
sequence or a discrete multidimensional vector. The
multidimensional vector representation method lacks the
content of amino acid position information and arrangement
sequence; therefore, the research value is small. The descriptive
form of the string sequence is that each of the 20 amino acids is
represented by a letter, and the letter sequence is used to represent
a protein sequence. Since the classifier cannot recognize the
string, the feature extraction function of this project uses the
188D feature extraction method to extract useful numerical
information from the amino acid sequence as the input of
the model.

The 188D feature extraction method is based on 188
features extracted based on protein sequence information
and physical and chemical properties. In 2003, the
researchers proposed this feature extraction method, which
combines the physical and chemical properties of proteins.
The 188-dimensional features can be divided into two
categories: one is composed of 20 amino acids, and the
other is physical and chemical properties, including
hydrophobicity, polarity, normalized van der Waals
volume, surface tension, charge, polarizability, solvent

FIGURE 2 | The number of catalytic enzymes contained in different antioxidants. The catalytic enzymes of antioxidant drugs are diverse. For example, for
antioxidant drugs such as Vitamin E and Carvedilol, the number of enzymes that can catalyze is as high as 9 types. Of course, some antioxidant drugs can only be
catalyzed by a specific enzyme, Such as Anisodamine, Silibinin, and Lipoic acid.
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accessibility, and secondary structure. The dimensions of the
different characteristics are shown in Table 3.

First, we calculated the corresponding frequencies of the 20
amino acids, which can be expressed as n1,n2,n3,/n20, where L is
the length of the sequence and Fai is the frequency of the i-th
amino acid. The frequency formula for the appearance of 20-
dimensional amino acids is as follows.

Fai � ni
L
, i ∈ [1, 20] (1)

The 20 amino acids are divided into three types according
to their physical and chemical properties. These three
categories include content (C), distribution (D) and
bivalent frequency (B), which are adopted to describe the
physical and chemical properties of proteins. Table 4 shows
the amino acid grouping table of the 8 physicochemical
properties.

First, we calculated the frequency characteristics of the three
categories, which are represented as CS1, CS2, and CS3. Their
frequency characteristics are expressed as:

(Fq1, Fq2, Fq3) � (CS1
L

,
CS2
L

,
CS3
L

) (2)

For each group, the first and 25, 50, 75 and 100% dipeptide
chain positions are represented by DSij, where i is the group
number, and the value range is 1–3; j is the dipeptide chain
position, and the value range is 1–5.

(Fq4, Fq5, Fq6, Fq7, Fq8) � (DS11
L

,
DS12
L

,
DS13
L

,
DS14
L

,
DS15
L

) (3)

(Fq9, Fq10, Fq11, Fq12, Fq13) � (DS21
L

,
DS22
L

,
DS23
L

,
DS24
L

,
DS25
L

)
(4)

(Fq14, Fq15, Fq16, Fq17, Fq18) � (DS31
L

,
DS32
L

,
DS33
L

,
DS34
L

,
DS35
L

)
(5)

In addition, we also calculated the number of dipeptides from
different groups and obtained the parameters BS1, BS2, and BS3
so that the frequency of the doublet sequence is calculated as:

(Fq19, Fq20, Fq21) � (BS1
L
,
BS2
L
,
BS3
L
) (6)

In the above formula, Fqi represents the i-th feature of a
physical and chemical property. A total of (3 + 3 + 3 × 5) � 21
feature vectors are extracted from each attribute, and finally, all
21 × 8 � 168 feature vectors are extracted from 8 physical and
chemical properties. In addition, the 20 amino acid frequencies
are added, and finally, 168 + 20 � 188 dimensional feature
vectors are obtained.

Composition of K-Spaced Amino Acid Pairs
The Composition of k-spaced Amino Acid Pairs (CKSAAP)
feature delegates the component of amino acids. It represents
the frequency calculation of two amino acids separated by k
residues. Experiments have confirmed that the three-spaced
residue pair feature is beneficial to the classification of
antioxidant proteins, so we only adopted k � 3 in this method,
which selected 400 dimensions. 20 kinds of amino acids were
brightly combined in pairs to obtain 400 amino acid pairs. We
can calculate the frequency of 400 amino acid pairs in a protein
sequence. Then, a 3-spaced feature vector can be defined as:where
nij is the number of times the ij-th amino acid pair appears in a
protein sequence and N is the length of the protein sequence. In
addition, ij is the amino acid pair of 20 kinds of amino acids in
two groups.

Fij � nij
N − 4

(7)

Feature Selection
Feature selection obtains the most effective feature subset for
classification and recognition of the many features (Wang et al.,
2010;Mo et al., 2020; Sheng et al., 2021;Wu et al., 2021). That is, it
captures a set of “small but precise” classification features with a

TABLE 3 | Ingredients contained in the 188-dimensional feature of a protein.

Physicochemical property Dimensions

Amino acid composition 20
Hydrophobicity 21
Van der Waals volume 21
Polarity 21
Polarizability 21
Charge 21
Surface tension 21
Secondary structure 21
Solvent accessibility 21
Total 188

TABLE 4 | List of the 3 categories divided according to the physical and chemical properties of proteins.

Physicochemical property Ⅰ Ⅱ Ⅲ

Hydrophobicity RKEDQN GASTPHY CVLIMFW
Van der Waals volume GASCTPD NVEQIL MHKFRYW
Polarity LIFWCMVY PATGS HQRKNED
Polarizability GASDT CPNVEQIL KMHFRYW
Charge KR ANCQGHILMFPSTWYV DE
Surface tension GQDNAHR KTSEC ILMFPWYV
Secondary structure EALMQKRH VIYCWFT GNPSD
Solvent accessibility ALFCGIVW RKQEND MPSTHY
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small probability of error. While reducing the dimensionality of
the feature space in this way, it also speeds up the construction of
the classifier model (Yu XP et al., 2021; Long et al., 2021; Yang
et al., 2021). In AOPM, the Max-Relevance-Max-Distance
algorithm (MRMD) was used for feature selection, which was
proposed by Zou.

The MRMD score of each feature consists of two parts: the
correlation and distance value between the feature and other
features. The Pearson correlation coefficient was used to calculate
the correlation between features. It represents the degree of linear
correlation between features. The larger the absolute value is, the
stronger the degree of linear correlation. The value of MRi (max-
relevance) for feature i is defined as follows:

maxMRi �
∣∣∣∣∣∣∣PCC(Fi

→
, Ci

→)
∣∣∣∣∣∣∣ (8)

where Fi
→

is the i-th feature of each instance and Ci
→

is the i-th
target class of each instance. The distance value provides four
calculation methods. In addition to the three mature distance
calculation methods, there is another method that is, based on the
average of the three methods to obtain the distance value. The
three traditional methods are Euclidean distance, cosine
similarity and Tanimoto coefficient, which are designated by
the symbols EDi, COSi, and TCi. The mean of these is
designated by the symbol MEANi. Finally, the value of MDi

(max-distance) for feature i is defined as follows:

maxMDi � EDi (9)

maxMRi � COSi (10)

maxMRi � TCi (11)

maxMRi � MEANi (12)

MEANi � (EDi + COSi + TCi)
3

(13)

According to MRi and MDi, the MRMD score is defined as:

max(MRi +MDi) (14)

All features are arranged in descending order according to the
MRMD score. One feature with the highest MRMD score is
sequentially added to the feature subset. Then, the feature subset
is input into the selected classifier for classification, and the
classification accuracies of different feature subsets are
recorded. In the end, the feature subset with the highest

accuracy and the least number of features is the result of
feature selection.

Random Forest
Random forest is an ensemble algorithm that integrates multiple
trees through the idea of ensemble learning. It has been widely
used in bioinformatics (Jin et al., 2019; Manavalan et al., 2019a;
Manavalan et al., 2019b; Riaz and Li, 2019; Su et al., 2019;
Ściskalska et al., 2020; Zeng et al., 2020b; Ao et al., 2021;
Zulfiqar et al., 2021b). It consists of N decision trees. After the
sample is input into the random forest, each decision tree will get
a classification result, and then N trees will get N classification
results. Count the voting results of all classification results, and
the category with the most votes is the final output.

In our research, we use the random forest as the classifier
because it has several advantages that suit our data. The
dimensionality of the extracted feature set is high, even after
dimensionality reduction, it still belongs to high-dimensional
data. Random forest is less affected by parameters, and when
processing high-dimensional data, the accuracy is not affected. In
addition, using random forest processing, the running speed is
fast, there is no need to debugmany parameters like SVM, and the
time cost is low.

RESULTS

Measurement
At present, AOPM can only deal with two classification problems.
There are three commonly used evaluation methods, including
the independent data set sampling test, the k-fold cross validation
and the jack-knife test (Wang et al., 2008; Wei et al., 2014; Wei
et al., 2017; Basith et al., 2018; Wei et al., 2018; Lv H et al., 2021;
Yu L et al., 2021; Wu and Yu, 2021). To simplify the calculation,
we adopted 5-fold cross-validation to compare the classifiers. And
test the robustness of the model on the test dataset.

In addition to the commonly used evaluation indicators
sensitivity (SN), specificity (SP) and accuracy (ACC), AOPM
also provided a Matthew’s Correlation Coefficient (MCC) and an
Area Under the Curve (AUC) to evaluate the performance of the
ensemble classifier, and the formulas were defined as follows
(Liang et al., 2019; Lv et al., 2020c):

SN � TP

TP + FN
(15)

TABLE 5 | Classification results of different under-sampling methods on the train
dataset.

Feature extration methods Performance metrics (%)

SN SP ACC MCC AUC

188D 0.877 0.917 0.897 0.795 0.964
188D + CKSAAP (g � 0) 0.840 0.945 0.893 0.79 0.961
188D + CKSAAP (g � 1) 0.849 0.942 0.895 0.794 0.960
188D + CKSAAP (g � 2) 0.833 0.947 0.890 0.785 0.961
188D + CKSAAP (g � 3) 0.836 0.960 0.898 0.802 0.964
188D + CKSAAP (g � 4) 0.833 0.945 0.889 0.783 0.961
188D + CKSAAP (g � 5) 0.827 0.942 0.885 0.774 0.959

Bold values indicates the highest value of each indicator.

TABLE 6 | Classification results of different under-sampling methods on the train
dataset.

Under-sampling methods Performance metrics (%)

SN SP ACC MCC AUC

OSS 0.919 0.802 0.872 0.732 0.951
CNNTomekLink 0.952 0.631 0.868 0.641 0.892
CPM 0.944 0.576 0.836 0.584 0.892
RUS 0.836 0.960 0.898 0.802 0.964
Without under-sampling 0.79 0.966 0.911 0.79 0.96

Bold values indicates the highest value of each indicator.
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SP � TN

TN + FP
(16)

ACC � TN + TP

TP + TN + FP + FN
(17)

MCC � TP × TN − FP × FN�������������������������������������(TP + FN)(TP + FP)(TN + FP)(TN + FN)√ (18)

where TP is the number of samples judged as positive for the
positive class, FP is the number of samples judged as positive for
the negative class, FN is the number of samples judged as
negative for the positive class, and TN is the number of
samples judged as negative for the negative class. MCC is an
index used in machine learning to measure the classification
performance of two categories. In addition, the AUC value was

obtained by calculating the area of the ROC curve and the area
surrounded by the X- and Y-axes, where the X- and Y-axes of the
ROC curve were (1-SP) and SN, respectively.

The Influence of Different Combinations of
Feature Selection Methods on the Final
Result
According to existing research, a series of feature extraction
methods have been proved to be effective for the classification
of antioxidant proteins, such as g-gap dipeptide feature, CTD,
188D, etc. However, the existing methods all use a certain method
alone, and do not use them in combination. Therefore, in the
planning stage of the experiment, we chose CKSAAP and 188D to

FIGURE 3 | The classification results of different classifiers on the train dataset. The SP, ACC, MCC, and AUC of random forest were much higher than other
traditional classifiers, which were 0.960, 0.898, 0.802, and 0.964, respectively. Compared with the Bagging classifier with the highest SN value, the SN value reaches
0.836, which was nearly lower than the highest value of 0.027.

FIGURE 4 | The classification results of the state-of-art methods on the test dataset. The SN, ACC, and AUC of AOPMwere 0.873, 0.920, and 0.972, respectively.
That was much higher than that of AodPred and Zhai, whose SN was higher than 0.99 and 0.204, respectively.
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find the most suitable combination of features for the target
protein. Among them, CKSAAP is divided into pairs containing
g-spacer residues (g � 0, 1, 2, 3, 4, 5). The experimental results of
the random forest classifier and 5-fold cross-validation on the
training set were shown in Table 5.

Only 188D is selected as the feature extraction method, and
the SN value reaches 0.877, which was the highest value of all the
combination methods, but other indicators are not ideal. When g
� 3 for CKSAAP and 188D, all the values except SN are excellent.
The SP, ACC, MCC, and AUC were 0.960, 0.898, 0.802, and
0.964, respectively.

The Impact of the TrainingData Set Random
Under Sampling of the Results
In order to compare the most suitable under-sampling methods
for the antioxidant protein data set, we chose four under-
sampling methods, including CNN_TomekLinks, CPM, OSS,
and RandomUnderSample, to process the training data
separately. At the same time, we followed the single-variable
principle. All the parameters in the feature extraction and feature
selection of the five sets of data were exactly the same. Finally, 5-
fold cross-validation was adopted to obtain the classification
effect of the model in the random forest classifier. The
classification effect of 5 sets of data is shown in Table 6.

After the random under-sampling method was used, the MCC
and AUC of the model reach 0.802 and 0.964, which were higher
than those obtained by other under-sampling methods and direct
classification. In addition, SP and ACC have the highest value
among all under sampling methods.

Comparison With Other Traditional
Classifiers
In order to find the most suitable classifier, we selected 8
traditional machine learning classifiers for comparison:
BayesNet, naive Bayes, logistic function, AdaBoostM1, bagging,
random forest, decision table, and J48. In addition, the results
obtained after random under sampling and MRMD processing of
the training data set was measured by 5-fold cross-validation in
different classifiers. Figure 3 shows the classification results of the
training dataset on different classifiers.

Compared with most basic classifiers, random forest showed
an exciting classification effect, all indicators were very
competitive in all classifiers. It was obviously that the SP,
ACC, MCC, and AUC of random forest were much higher
than other traditional classifiers, which were 0.960, 0.898,
0.802, and 0.964, respectively. Compared with the Bagging
classifier with the highest SN value, the SN value reaches
0.836, which was nearly lower than the highest value of 0.027.

FIGURE 5 | The predicted result of the enzyme of antioxidant drugs. The predicted value of protein P00441 reached 0.99, and the predicted value of protein
P48506 reached 0.79. According to related literature, protein P00441 and protein P48506 are the catalytic subunits of superoxide dismutase [Cu-Zn] and glutamate-
cysteine ligase, respectively. The prediction results of the remaining proteins are also around 0.6.
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Comparison With the State-of-the-Art
Methods
In order to verify the robustness of AOPM, we chose to
compare with two existing methods. They are the AodPred
developed by the Feng team and the random forest model
developed by ourselves in 2020. Because our data set is
different from the existing method, we retrained the model
according to the corresponding method and applied it on the
same test dataset to get the following results. Figure 4 shows
the classification results of the test dataset on the state-of-the-
art methods.

It was obviously that the SN, ACC, and AUC of AOPM were
much higher than that of AodPred and Zhai, whose SN was
higher than 0.99 and 0.204, respectively, indicating that AOPM
was more sensitive to the classification of target proteins, which
was also consistent with our goal. Although the SP value was
slightly lower than the two first, MCC value was higher than Zhai
and tinier lower than AodPred, this did not prevent AOPM from
being a model with excellent classification effects.

Predicted Results of Protein Contained in
Antioxidant Drugs
In DrugBank, the 36 protein sequences we screened were
subjected to the same feature extraction and screening
operations, and then they were input into AOPM to get their
prediction results. Among them, 11 proteins were predicted to be
antioxidant proteins, and the predicted value of protein P00441
reached 0.99, and the predicted value of protein P48506 reached
0.79. The predicted results are shown in Figure 5.

After consulting related literature, protein P00441 and
protein P48506 were Superoxide dismutase [Cu-Zn] and
Glutamate--cysteine ligase catalytic subunit, respectively.
Although they play a catalytic role in antioxidants, they
are also a strong antioxidant protein in themselves. We
have consulted many literatures about Superoxide
dismutase [Cu-Zn]. Superoxide dismutase [Cu-Zn] is the
catalytic enzyme of many antioxidant drugs, and it has
antioxidant properties. Although the current research does
not clearly show that the remaining proteins can play an anti-
oxidant effect, the sequence analysis can guide scientists to
try their biological and chemical experiments.

CONCLUSION

In this paper, we proposed a tool named AOPM to identify
antioxidant proteins. 188D and the Composition of k-spaced
Amino Acid Pairs were adopted to extract the feature set, and we
selected the optional feature set with MRMD. Using the 5-fold
cross-validation and random forest on the test dataset, we
obtained an average accuracy of 0.920. The sensitivity,
specificity, the Matthew’s Correlation Coefficient and an Area
Under the Curve were 0.873, 0.942, 0.815, and 0.972, respectively.
Compared with previous methods, we re-collect the antioxidant
protein data. After such processing, while the proportion of
positive and negative examples of the data set is reduced, the
characteristics of antioxidant proteins are also strengthened, and
the robustness of the trained model were greatly improved
compared with existing methods. In addition, AOPM also
made predictions on the real data set of DrugBank, and
indeed found proteins with antioxidant properties. This work
proved the feasibility of virtual drug screening based on sequence
information and provided new ideas and solutions for drug
development.
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