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Molecular generation is an important but challenging task in drug design, as it requires
optimization of chemical compound structures as well as many complex properties. Most
of the existing methods use deep learning models to generate molecular representations.
However, these methods are faced with the problems of generation validity and semantic
information of labels. Considering these challenges, we propose a cross-adversarial
learning method for molecular generation, CRAG for short, which integrates both the
facticity of VAE-based methods and the diversity of GAN-based methods to further exploit
the complex properties of Molecules. To be specific, an adversarially regularized encoder-
decoder is used to transform molecules from simplified molecular input linear entry
specification (SMILES) into discrete variables. Then, the discrete variables are trained
to predict property and generate adversarial samples through projected gradient descent
with corresponding labels. Our CRAG is trained using an adversarial pattern. Extensive
experiments on two widely used benchmarks have demonstrated the effectiveness of our
proposed method on a wide spectrum of metrics. We also utilize a novel metric named
Novel/Sample to measure the overall generation effectiveness of models. Therefore,
CRAG is promising for Al-based molecular design in various chemical applications.

Keywords: molecular generation, adversarial learning, projected gradient descent, adversarially regularized
autoencoder, generative adversarial network

1 INTRODUCTION

The primary goal of the drug design process is to find new chemical compound structures that can
adjust the given protein activities in a desired way. This process takes about 10 years and is
accompanied by a huge expenditure of funds. Generally, a new drug needs to go through four stages
before putting into the market: drug discovery, pre-clinical research, clinical research, and approval
of listing (Khan et al., 2021). De novo drug design (Hartenfeller and Schneider, 2010) through
existing computer technology can speed up drug development and save research costs. The tasks
involved in de novo drug design include molecular generation (Gomez-Bombarelli et al., 2016; Cao
and Kipf, 2018; Jin et al., 2018; You et al., 2018; Madhawa et al., 2019; Popova et al., 2019; Zhang et al.,
2019; Hong et al., 2020; Zang and Wang, 2020; Bagal et al., 2021), drug and drug interactions (DDI)
(Li et al,, 2021; Lin et al., 2021; Lyu et al., 2021; Zhao et al., 2021), disease associations (Ding et al.,
2020; Lei et al., 2020; Lei and Zhang, 2020; Mudiyanselage et al., 2020; Lei X.-J. et al., 2021; Lei X.
etal, 2021; Wang Y. et al,, 2021; Lei and Zhang, 2021; Yang and Lei, 2021; Zhang et al., 2021), and so
on. Traditional molecular generation tasks follow a two-step strategy to design new molecules:
synthesizing alternative compounds clinically and conducting experiments. However, these methods
are faced with two huge challenges. One is that the chemical molecule space is discrete and vast,
which has been estimated to be between 10** and 10%° (Polishchuk et al., 2013). The other is that the
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Based on SMILES

Based on molecule graph

Based on spherical harmonic function

Based on coordinate feature

RNN
Drug analogy to text Word2Vec
Seq2Seq

High accuracy of reconstruction => VAE

Recurrent neural network
Variational autoencoder
Generative adversarial network

Flow-based model

relation between molecule structure and properties is quite
sensitive, even small structural changes will lead to significant
molecule property variations.

In the past few years, with the development of deep learning
techniques, deep learning based methods have been proposed to
overcome the problems in previous methods. Most of the existing
methods learn to represent the molecular characteristics using
deep networks and construct the relationship between atoms to
express atomic information. Figure 1 illustrates the mainstream
molecular generation methods, which can be summarized into
two directions, i.e., bond-based methods and 3D structure-based
methods. Among the bond-based methods, simplified molecular
input linear entry specification (SMILES) (Merkwirth and
Lengauer, 2005) and molecular graph (Simonovsky and
Komodakis, 2018) are two widely used methods. The SMILES
usually regards drug as a sequence with rich semantics. Most of
the SMILES methods extract molecular information through
recurrent neural networks (Segler et al, 2017), word2vec
(Jaeger et al, 2018), seq2seq (Xu et al, 2017), or other
language models. Besides, variational auto-encoders (VAEs)
can achieve high reconstruction accuracy, which is of great
significance for molecular generation tasks. Rafael et al.
(Gémez-Bombarelli et al., 2016) propose to convert discrete
representations  of molecules into  multi-dimensional
continuous ones. Molecular graph based methods generally
express atomic information through a node tensor, and the
relation between atoms through an adjacency matrix to retain
more molecular information. Researchers generally process
molecular graphs according to four technical routes, based on
the RNN model (Popova et al., 2019), based on the VAE model
(Simonovsky and Komodakis, 2018), based on the GAN model
(Cao and Kipf, 2018; Wang F. et al., 2021), and based on the flow
model (Zang and Wang, 2020; Ma and Zhang, 2021). Among
them, the methods based on the VAE model and the GAN model
both show excellent effects. At present, researchers mainly
advance in-depth research on bond-based generation models.
In order to improve the effect of the generation models,
researchers also mine the 3D structure information of
molecules. The current methods are mainly based on spherical

harmonic function (Tanaka et al., 1993) and based on coordinate
feature (Guu et al., 2015).

However, both the VAE-based and GAN-based methods
mentioned above still remain some problems. Firstly, the
majority of the VAE-based models utilize Kullback-Leibler
divergence to approximately calculate the distribution of the
source sampling space and the target space. This will cause the
generation distribution of the final generative model can be
greatly different from the actual distribution. Because the exact
characteristics of the target distribution are unknown, VAE-based
methods may result in unnatural molecules and reduce the
validity of generated molecules. Secondly, the GAN-based
model only trains a generator and a discriminator, which
makes the representation of the latent vector unknown and
the model difficult to be controlled. Thirdly, most GAN-based
methods can not make good use of data labels and waste the
properties information of the molecules.

To address the above issues, in this paper, we propose a cross-
adversarial learning method for molecular generation taking the
advantages of both VAE-based and GAN-based methods, namely
CRAG. On one hand, an adversarially regularized autoencoder
(Zhao et al.,, 2018) is combined with a discrete autoencoder to
generate the GAN-regularized latent representation, which
utilizes a more flexible prior distribution to provide a
smoother discrete coding space. On the other hand, we utilize
an adversarial method of projected gradient descent (Madry et al.,
2018) to generate adversarial samples, which achieves data
augmentation without changing the real molecular distribution
and solves the problem of estimating the representation
distribution. The method of training CRAG based on GAN-
like structure through adversarial samples is called cross-
adversarial learning. Therefore, our model can achieve high
validity and uniqueness in molecular generation.

In general, the contributions of this paper can be summarized
as follows:

e We propose an adversarially regularized encoder-decoder
based on projected gradient descent to generate discrete
variables, namely CRAG. CRAG combines the advantages
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TABLE 1 | Mainstream methods of molecular generation.

Method RNN VAE
DeepGMG Li et al. (2018) v -
MolecularBNN Popova et al. (2019) v -
GraphVAE Simonovsky and Komodakis. (2018) - v
JT-VAE Jin et al. (2018) — v

MoIGAN Cao and Kipf. (2018) -
GCPN You et al. (2018) - —
ARAEHonNg et al. (2020) - v
GraphNVP Madhawa et al. (2019) - -
MoFlow Zang and Wang. (2020) - -

Ours — v

of both the VAE-based and GAN-based methods, which can
provide a smoother discrete coding space.

e We utilize an adversarial method of projected gradient
descent to generate adversarial samples with property
information, which augmented data without changing the
real molecular distribution and solves the problem of
estimating  the representation  distribution. = This
generation process through adversarial training achieves
cross-adversarial training of the CRAG.

e The effectiveness of the proposed approach is analyzed and
confirmed through extensive experiments on two public
datasets. The results show that CRAG outperforms state-of-
the-art models in terms of the validity, uniqueness, and
novelty of each generated molecule.

2 RELATED WORK

2.1 Molecular Generation

Molecular generation is a part of de novo drug design. The
generative model can capture potential rules for data
distribution, so that the model can infer the molecules
through the reverse mapping between the structure and the
properties under the constraints of the given property
conditions. The generative model needs to have high
reconstruction accuracy, and the model should make the
generated new molecules have high validity, high uniqueness,
and high novelty.

We can classify the widely used molecular generation models
based on the methods of learning data distribution and the way of
generating molecules. According to the idea of “drug analogy to
text”, DeepGMG (Li et al.,2018) and MolecularRNN (Popova
et al.,2019) can analyze molecular information by constructing
recurrent neural networks, which is in a step-by-step fashion by
adding nodes and edges one by one. But the reconstruction
accuracy of these models is very low. Therefore, researchers
utilize the high reconstruction accuracy of VAE-based models,
which assume a simple variational distribution of the latent
vectors. Such as GraphVAE (Simonovsky and Komodakis,
2018), which generates a molecular in a one-shot fashion by a
single step. JT-VAE (Jin et al, 2018) also presents good
performance on molecular generation by using junction trees.
In order to solve the problem that it is difficult for VAE-based

GRAG

GAN Flow One-shot Sequential
— — — v
— — — v
— / —
— — — v
4 — v —
v — — v
v v —
— 4 v
v — v —

models to estimate the distribution, GAN-based models such as
MOoIGAN (Cao and Kipf, 2018) and GCPN (You et al., 2018)
have appeared. Of course, for the purpose of taking advantages
of both VAEs and GANSs, the ARAE (Hong et al., 2020) method
is a wise choice. Flow-based model is another major type of
generative model method besides the above methods. For
example, the more well-known are GraphNVP (Madhawa
et al,, 2019) and MoFlow (Zang and Wang, 2020). Details are
shown in Table 1.

2.2 Adversarially Regularized Autoencoder
Adversarially Regularized Autoencoder (ARAE) (Zhao et al,
2018) was proposed to address the aforementioned problem of
VAE-based and GAN-based methods. It combines a discrete
autoencoder with a GAN-regularized latent representation,
which utilizes a more flexible prior distribution to provide a
smoother discrete coding space (Kong and Kim, 2019). The
encoder network parameterized by 0 outputs the true latent
vector z from the given input x. The decoder network
parameterized by ¢ reconstructs the inputs from the latent
vector. According to the idea of GANs, the generator
parameterized by y outputs the distribution of generated
random vector z. Thus, adversarially regularized autoencoder
proposes an objective function as:

%BEx'vp,(x)[ﬁrec (6) ¢) +W(P9(Z))pw (2))]> (1)

where the reconstruction loss caused by encoder and decoder can
be written as:

Lyec (6,¢) = Eopy [ -logpy (215)], )

and W is the Wasserstein distance (Arjovsky et al., 2017) between
Pe» the distribution from a discrete encoder model, and p,, a prior
distribution. The W function which is adversarially optimized for
the generator and encoder, can be written as:

W(pe(2), py (9)) = maxEep, [ fu (2)] = Eevpy [ fu (D)),
(3)

with the 1-Lipschtiz continuity | f,[<1. After training, the
distributions of ps and py become identical, and we can also
use these generated samples as the input of the decoder to
generate new molecules.
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FIGURE 2| llustration of the overall architecture. CRAG consists of an adversarially regularized encoder-decoder block, a property predictor block, and a projected
gradient descent block. In particular, pg(z|x) and gy(x|z) denote the probabilistic encoder and the probabilistic decoder. The property prediction network £, is used to
predict the property of molecules. Projected gradient descent block generates adversarial samples Z and labels f (2). The discriminator is only used in the training process
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2.3 Projected Gradient Descent
Projected gradient descent is a first-order attack method (Madry

et al., 2018), which demonstrates excellent adversarial robustness.
Adversarial training through the projected gradient descent can
effectively improve the robustness of the model. The model is
divided into two parts, which are the maximization of the internal
loss function and the minimization of external experience risk.
For each data point x, we introduce a set of perturbations S that
formalizes the manipulative power of the adversary. Considering
underlying the case of a standard classification task, whose basic
data distribution D is on the paired example x and the
corresponding label y. Assume that a suitable loss function
L(6,x,y) is obtained. 0 is the set of classification model
parameters. Our goal is to find 6 that minimizes the risk E . )).p:

PO) =E (D rglee}sxﬁ(ﬁ,x +8,9)| (4)

Equation 4 shows the implementation details of the projected
gradient descent for our CRAG. The goal of inner maximization
is to find the corresponding adversarial samples in the original
data, so that it can achieve high loss. The goal of outer
minimization is to find suitable network parameters to train a
more robust neural network to defend against attacks samples.

3 METHODS

In this section, we will elaborate on the details of the proposed
cross-adversarial learning method. As shown in Figure 2, CRAG
mainly consists of the following components: an encoder and a
decoder are used to learn latent representation, a property
predictor that is used to predict molecular properties, a

projected gradient descent block for generating adversarial
samples, and a discriminator that is used to judge whether the
input molecule is a true or adversarial sample.

3.1 Adversarially Regularized

Encoder-Decoder Block

Adversarially regularized encoder-decoder block combines a
discrete autoencoder with a GAN-regularized latent
representation (Zhao et al., 2018). It is trained to optimize
three parts of the model (Kong and Kim, 2019). The first part
of the adversarially regularized encoder-decoder is a variational
autoencoder, which minimizes the reconstruction loss to obtain a
continuous latent representation of a molecule. The second part is
a discriminator, which maximizes the distance between real data
distribution and fake data distribution to achieve an adversarial
attack. The third part is the encoder and generator, which
minimizes the distance between real data distribution and fake
data distribution to generate adversarial samples.

3.1.1 Autoencoder

Define x € R? to be a set of molecules where d presents molecular
features. The encoder network pg(z|x) aims to convert the given
input data x into a latent vector z. The input data x of the model
are the SMILES representation of the molecular structure, which
is a discrete random variable. The decoder network g4(x|z) aims
to convert the latent vector z into molecule X. According to Eq. 5,
we can obtain X by argmax function.

X = argmax g, (x[z) (5)

The parameters are trained based on the cross-entropy
reconstruction loss:
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‘Crec (9> ¢) = "x - 5&"2 (6)

Our goal is to minimize the reconstruction loss of the
autoencoder. Thus, we can not only find a suitable drug
molecule representation but also help to find the specific
structure of the molecule in the de novo drug design.

3.1.2 Generative Adversarial Networks
GANSs are a class of parameterized implicit generative models
(Goodfellow et al., 2014). GAN-based methods mainly focus on
two optimization goals: one is the problem of maximizing the
distribution distance of the discriminator, and the other is the
problem of minimizing the distribution distance between encoder
and generator. This optimization process can be regarded as a
dynamic game between the discriminator and the generator.
For the first optimization, the goal of the discriminator is to
distinguish the generated samples from the real data as much as
possible, which can be written as:

r“}g/\r} Leyi(w) = rur;le%\)/( E2~ps [fm (Z)] - ]E2~gw [fw (2)]’ (7)

where f,, is the property prediction network parameterized by w.
During the training process, the generating samples z are used to
train the discriminator g, The discriminator generates a score for
each input and performs gradient backpropagation through the
loss function composed of the score and the label.

For the second optimization, The goal of the generator g, is to
generate real samples to deceive the discriminator as much as
possible. We introduce a property predictor block to replace the
traditional generator. In the traditional adversarially regularized
autoencoder structure, a generator takes latent vector Z sampled
from a noise distribution A ~ (0, 1). Through training, the gap
between the generated sample and the real data is continuously
narrowed to confuse the discriminator. Eq. 8 shows the
optimization process.

n&%’n L:gen (0’ V/) = ngt/n EZ~P9 [fw (Z)] - Efﬂw [f“’ (2)] (8)

In this paper, we utilize a projected gradient descent block to
generate adversarial samples with property information and
achieve cross-adversarial of our CRAG. The projected gradient
descent block will be presented in the next section.

3.1.3 Property Predictor Block

In order to improve efficiency, the property predictor f, is
implemented as a two-layer perceptron, which can effectively
mine the real data distribution information. After the training of
the predictor, the generated adversarial samples can be labeled to
the corresponding adversarial labels by the predictor.

3.2 Projected Gradient Descent Block

Based on the adversarially regularized autoencoder, we use
projected gradient descent to add property information for
adversarial samples and achieve cross-adversarial learning for
CRAG. Projected gradient descent is a gradient-based adversarial
attack model (Madry et al, 2018). Through the previous
introduction, the property predictor is parameterized by w.
For each latent vector z, we introduce a set of allowed

GRAG

perturbations S € R?, which can formalize the manipulative
power of the adversary. With the gradient descent method, the
perturbation is gradually added based on the original
classification label, as shown in Figure 3. After calculating the
gradient by the property predictor, the projected gradient descent
block can generate adversarial samples for CRAG.

As a result, the adversarial sample z can be written as:

zZ= H (z +asgn(V.L(w, 2, ¥))), 9)

z+S

where L(w,z,y) is the cross-entropy loss for the property
predictor, and « is a set of steps.

3.3 Overall Model and Training

After introducing all the building blocks of our work, we give the
final training objective and explain the optimization process, as
shown in Algorithm 1. First, we trained an autoencoder to convert
discrete data forms into continuous latent vectors. Then we put the
obtained latent vector z into the PGD module to generate
adversarial samples z. Based on the adversarial samples, we can
alternatively train the discriminator and the generator with a GAN-
like structure. This training process can be regarded as cross-
adversarial training.

Algorithm 1. CRAG training.

1: for each training iteration do

2 (1) Train the encoder/decoder for reconstruction(6, ¢)

3: Sample x and compute z by encoder py(z|z)

4 Backprop loss, min £,cc(0, ¢) = min ||z — &||?
0,6 0,6

s: (2) Generate the adversarial samples (%)

6: Compute z = [, s(z + asgn(V.L(w, z,¥)))

7: (3) Train the discriminator (w)

8: Sample true data z and adversarial data 2

9: Backprop loss, min Lei(w) = max By, [fu(2)] = Eseg, [fu(2)]
weW weW :

10: Clip discriminator w to [—e, €]

11: (4) Train the encoder/generator adversarially 6,

12: Sample true data z and adversarial data 2

13: Backprop loss, I})lin Lgen(0,0) = Iélin Ezmpy [fur(2)] = Ezng, [fu(2)]

KU KO
14: end for

The training process of CRAG involves the optimization
process of three objectives, as shown in Eq. 10. The first is to
minimize the reconstruction loss of the variational autoencoder,
the second is to maximize the distribution distance of the
discriminator, and the third is to minimize the distribution
distance between the encoder and the generator.

n(;l%bn Lyec (6> ¢) = IrHl}bn llx - 56”2
min Lo, (@) = maxE.p, [ fo (2)] = Ezeg, [fu (2] (10)
rﬁivn Lgen (0,y) = n&iwn Eoop[fo (D] = Eing, [fu (2)]

4 RESULTS

In this section, to verify the effectiveness of our method CRAG,
we perform the experiences on two publicly available datasets
(Polykovskiy et al., 2018) which are widely used for molecular
generation.

Frontiers in Pharmacology | www.frontiersin.org

January 2022 | Volume 12 | Article 827606


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Wu et al.

GRAG

z=2z+8z

-

N

No

7 SDeIr:z:ttllvOl: Perturbation
nsitivity Selection
Estimation

Misclassification
Check for:
f(z+ é6z)

Yes  Adversarial Sample
Misclassified by a DNN

1

Property Prediction
N

\

1

Property Prediction

%
/

FIGURE 3 | Details of the projected gradient descent block. Projected gradient descent continues to add small perturbations & to the real sample z until it
successfully interferes with their label categories, thereby generating adversarial sample Z with property information.

4.1 Experimental Setup
4.1.1 Evaluation Metrics

In the molecular generation task, three metrics of validity,
uniqueness, and novelty are commonly used to evaluate the
effect of the generative model. These three metrics are usually
checked by using RDKit (Bento et al., 2020). In order to evaluate
the comprehensive performance of the CRAG on these three
metrics, we have introduced a new metric called Novel/Sample
(Hong et al., 2020), which refers to the multiplication of the three
metrics. Specifically, we utilize the following four metrics to
evaluate the performance of our method.

¢ Validity refers to the ratio of the number of valid molecules
to the number of generated samples.

e Novelty refers to the ratio of the number of molecules not
included in the training set to the number of unique
molecules.

¢ Uniqueness refers to the ratio of the number of unrepeated
molecules to the number of valid molecules.

¢ Novel/Sample (Hong et al., 2020) refers to the ratio of the
number of valid, unique, and novel molecules to the total
number of generated samples.

4.1.2 Evaluation Baselines
To demonstrate the effectiveness of CRAG, we compare CRAG
with state-of-the-art molecular generation methods as follows.

e Chemical VAE (Gomez-Bombarelli et al., 2016) converts the
SMILES representation of molecules to form a
multidimensional continuous representation based on
variational autoencoder, which is jointly trained on properties.

e GrammarVAE (Kusner et al., 2017) encodes and decodes
directly to parse trees, which are represented as context-free
grammar. GrammarVAE can effectively guarantee the
validity of the generated outputs.

e GraphVAE (Simonovsky and Komodakis, 2018) is
formulated in the framework of variational autoencoder,
sidestep hurdles associated with linearization of discrete
structures by having a decoder output a probabilistic fully

connected graph of a predefined maximum size directly
at once.

e GraphVAE/imp (Simonovsky and Komodakis, 2018) is
implicit node probability based on the GraphVAE model,
which assumes the independence of node and edge
probabilities, and allows for isolated nodes or edges.
Taking further advantage of the fact that the molecule is
a connected graph, studied the effect of making node
probabilities a function of edge probabilities.

e GraphVAE NoGM (Simonovsky and Komodakis, 2018)
learns to reproduce particular node permutations in the
training set based on the GraphVAE model. It investigates
the importance of graph matching by using identity
assignment instead, which corresponds to the canonical
ordering of SMILES strings from RDKit.

¢ MolGAN (Cao and Kipf, 2018) uses Generative Adversarial
Networks (GANs) to directly manipulate graph structure
data and is combined with reinforcement learning
objectives to encourage the generation of molecules with
specific desired chemical properties.

e ARAE (Hong et al., 2020) basically uses latent variables like
VAEs, but the distribution of the latent variables is obtained
by adversarial training like GANG.

4.1.3 Datasets

In order to train and test CRAG, we used QM9 and ZINC
datasets, which are widely used in experiments and
comparisons of various data-driven molecular property
prediction methods (Irwin et al., 2012). The QM9 dataset
(Ruddigkeit et al.,, 2012) contains about 133, 885 molecules of
up to 9 heavy atoms: carbon (C), oxygen (O), nitrogen (N),
fluorine (F), and so on. (Ramakrishnan et al., 2014). Among
them, 10,000 molecules are selected as the test set. The ZINC
dataset used in our experiments contains about 249, 455
molecules, which were randomly selected from the drug-like
subset of the ZINC database. Data is split in the same way as
the QM9 data set, and 10,000 molecules are also selected as the
test set. The processing details of the ZINC database are
consistent with ChemicalVAE (Gomez-Bombarelli et al., 2016).
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FIGURE 4 | Convergence of the four evaluation metrics with the ZINC
dataset.

4.1.4 Implementation Details

Our whole architecture is optimized with Adam (Kingma and Ba,
2015) optimizer. Specifically, the initial learning rates of the
autoencoder, generator, and discriminator are set as 107, 107>,
and 2 x 107°, respectively. Each of the encoder and the decoder
are composed of a single LSTM layer, and the dimension of
outputs is 300. The LSTM layer of the encoder reads sequential
SMILES strings and transforms them into latent vectors. For

GRAG

adversarial training, we use two fully-connected layers with a
hidden dimension of 200 for the generator and the discriminator.
The predictor network is also composed of two fully-connected
layers with a hidden dimension of 200. Our model is
implemented with PyTorch.

4.2 Experimental Results

4.2.1 Smoother Discrete Coding Space

It is well known that the training of generative adversarial
networks (GANSs) is relatively unstable. Here, we show the
convergence of the four evaluation metrics for the first 80
epochs with the ZINC dataset in Figure 4.

In each epoch, 10, 000 molecules were generated and the
four metrics were calculated. In the process of generating
molecules, the PGD module is used to gradually increase
the tiny noise to generate molecules with tiny changes. The
research of the variation process of the generated molecules
in the latent space is of great significance to the application
of molecule generation. Figure 5 shows the visualization
of the latent space for molecular generation by a given
molecule.

4.2.2 Performance of CRAG on Molecular Generation
We compare the performance of CRAG to those of
ChemicalVAE, GrammarVAE, GraphVAE, MolGAN, and
ARAE. All of these models are trained based on VAEs or

=
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FIGURE 5 | Visualization of the latent space for molecular generation by a given molecule. The red circled molecule is the given molecule.
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TABLE 2 | Performance of benchmark models and our CRAG model on the QM9 and the ZINC datasets. Baseline results are taken from (Cao and Kipf, 2018), and Baseline

results are based on the QM9 dataset.

Method Validity (A) Uniqueness (B) Novelty (C) Novel/Sample (AxBxC)
ChemicalVAE 0.103 0.675 0.900 0.063
GrammarVAE 0.602 0.093 0.809 0.045
GraphVAE 0.557 0.670 0.616 0.261
GraphVAE/imp 0.562 0.52 0.758 0.179
GraphVAE NoGM 0.810 0.241 0.610 0.129
MoIGAN 0.981 0.104 0.942 0.096
ARAE 0.862 0.935 0.371 0.299
CRAG (QM9) 0.872 0.937 0.382 0.312
CRAG (ZINC) 0.976 0.971 1.000 0.948

Bold values indicate the best performance w.r.t. the corresponding metric.

GANs. We summarize the metrics of validity, uniqueness, and
novelty, as shown in Table 2.

As expected, CRAG combines the advantages of the VAE-
based methods and the GAN-based methods and improves the
uniqueness and novelty of these models, but our model does not
perform well in terms of validity. This is caused by the huge
chemical space of the ZINC dataset, limiting the chances of
producing new molecules. MolGAN, similar to our model, is
trained based on the idea of adversarial attack. From Table 2, we
can find that MolGAN shows high validity. This is because it
sacrifices uniqueness, which means that a high value of a metric
can be achieved by sacrificing other metrics. It is not advisable in
the real task of de novo drug design. Therefore, we propose to use
another metric: Novel/Sample (AxBxC), which is combined with
validity (A), uniqueness (B), and novelty (C). This metric can be
more suitable to evaluate the practicability of the generative
model in real tasks. On the other hand, CRAG combines
projected gradient descent to generate adversarial samples,
which provides property information for adversarial samples
and achieves cross-adversarial learning for CRAG. The model
performance of CRAG is better than the ARAE-only (Hong et al.,
2020) model.

In general, CRAG outperforms other models. The average
effect of CRAG on the three metrics is expressed by Novel/
Sample, which also shows that CRAG can be well applied on
actual tasks.

4.2.3 Performance of CRAG on Conditional Molecular
Generation

In the field of de novo drug design, generation models are often
required to generate related molecules based on specified
molecular properties. In this section, we perform conditional
molecular generation tasks based on the CRAG model, namely
CCRAG (Conditional CRAG). In order to quantitatively compare
the effectiveness of the generated molecules, we use the following
three auxiliary indicators: logP, SAS, and TPSA. The water-
octanol partition coefficient (logP) is defined as the ratio of a
chemical’s concentration in the octanol phase to its concentration
in the aqueous phase of a two-phase octanol/water system.
Synthetics Accessibility Score (SAS) reflects the difficulty of
synthesizing drug molecules. The score of SAS is between 1

TABLE 3 | Performance of CRAG on Conditional Molecular Generation on the
ZINC dataset, where the three conditions of logP, SAS, and TPSA are
simultaneously controlled.

Condition Validity (A) Uniqueness (B) Novelty (C)
(1.5, 2.0, 30) 0.913 0.937 0.999
(1.5, 2.0, 100) 0.834 0.992 0.999
(1.5, 5.0, 30) 0.892 0.995 1.000
(1.5, 5.0, 100) 0.603 1.000 1.000
(4.5, 2.0, 30) 0.894 0.998 1.000
(4.5, 2.0, 100) 0.826 1.000 1.000
(4.5, 5.0, 30) 0.579 1.000 1.000
(4.5, 5.0, 100) 0.273 1.000 1.000

(easy to make) and 10 (very difficult to make). Topological
polar surface area (TPSA) estimates the polar surface area
(PSA) of a compound from the bonding mode (topology) of
the atoms in the molecule without considering the three-
dimensional structure of the molecule. We simultaneously
controlled the three properties of the molecule (logP, SAS, and
TPSA), resulting in 10,000 molecules with given target properties.
logP, SAS, and TPSA can be calculated by RDkit (Bento et al,,
2020).

Table 3 summarizes the performance of CCRAG on the four
indicators of validity, uniqueness, and novelty. CCRAG has a
high success rate in conditional generation tasks, so CCRAG can
easily control the generation of multi-property molecules under
given fixed conditions.

4.2.4 Property-Targeted Molecule Optimization
Optimizing a given molecule according to specific molecular
properties is also one of the common tasks in de novo drug
design. Here, we performed the quantification of drug-like
properties (QED) (Bickerton et al., 2012) to the greatest extent
given a single molecule. QED reflects the underlying distribution
of molecular properties, which is intuitive, transparent, and
straightforward to be implemented in many practical settings,
and allows compounds to be ranked by their relative merit.
Figure 6 demonstrates a simple linear regression yields
successful molecular optimization. We trained a linear
regression model for molecular optimization with QED values.
We selected a molecule with a low QED score and visualize the
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QED = 0.527

QED =0.610

FIGURE 6 | Chemical property optimization. Given the left-most molecule, we optimize the molecule in the direction of maximizing its QED property.
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optimization process. The molecule can be optimized according
to its gradient direction, so the molecule can obtain a greater
increase in QED value with smaller possible changes.

5 CONCLUSION

In this paper, we propose a cross-adversarial learning method,
named CRAG, for molecular generation using adversarial
examples. Our model combines both the facticity of VAE-
based methods and the diversity of GAN-based methods to
further exploit the complex properties of Molecules. CRAG is
based on a latent variable model to obtain the latent variables
directly in GANs through adversarial training, rather than
approximated by a predefined function. In adversarial
training, CRAG uses continuous latent vectors instead of
discrete molecular structures to avoid the difficulty of dealing
with discrete variables. In addition, we also generate adversarial
molecules through projected gradient descent to provide more
property information and achieve cross-adversarial learning of
CRAG. Extensively conducted on two benchmark datasets,
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