
Identification of target groups
and individuals for adherence
interventions using tree-based
prediction models

Johannes Wendl1*†, Andreas Simon2, Martin Kistler2,
Jana Hapfelmeier2, Antonius Schneider1‡ and
Alexander Hapfelmeier1,3‡

1Institute of General Practice and Health Services Research, School of Medicine, Technical University
of Munich, Munich, Germany, 2Vilua Healthcare GmbH, Berlin, Germany, 3Institute of AI and
Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany

Background: In chronically ill patients, medication adherence during

implementation can be crucial for treatment success and can decrease

health costs. In some populations, regression models do not show this

relationship. We aim to estimate subgroup-specific and personalized effects

to identify target groups for interventions.

Methods:We defined three cohorts of patients with type 1 diabetes (n = 12,713),

type 2 diabetes (n = 85,162) and hyperlipidemia (n = 117,485) from German

claims data between 2012 and 2015.We estimated the association of adherence

during implementation in the first year (proportion of days covered) and mean

total costs in the three following years, controlled for sex, age, Charlson’s

Comorbidity Index, initial total costs, severity of the disease and surrogates for

health behavior. We fitted three different types of models on training data: 1)

linear regression models for the overall conditional associations between

adherence and costs, 2) model-based trees to identify subgroups of patients

with heterogeneous adherence effects, and 3) model-based random forests to

estimate personalized adherence effects. To assess the performance of the

latter, we conditionally re-estimated the personalized effects using test data,

the fixed structure of the forests, and fixed effect estimates of the remaining

covariates.

Results: 1) our simple linear regression model estimated a positive adherence

effect, that is an increase in total costs of 10.73 Euro per PDC-point and year for

diabetes type 1, 3.92 Euro for diabetes type 2 and 1.92 Euro for hyperlipidemia

(all p ≤ 0.001). 2) The model-based tree detected subgroups with negative

estimated adherence effects for diabetes type 2 (-1.69 Euro, 24.4% of cohort)

and hyperlipidemia (-0.11 Euro, 36.1% and -5.50 Euro, 5.3%). 3) Our model-

based random forest estimated personalized adherence effects with a

significant proportion (4.2%–24.1%) of negative effects (up to -8.31 Euro).

The precision of these estimates was high for diabetes type 2 and

hyperlipidemia patients.
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Discussion: Our approach shows that tree-based models can identify patients

with different adherence effects and the precision of personalized effects is

measurable. Identified patients can form target groups for adherence-

promotion interventions. The method can also be applied to other

outcomes such as hospitalization risk to maximize positive health effects of

an intervention.

KEYWORDS

adherence, costs, personalized effects, subgroups, model-based trees, model-based
random forest

Introduction

While adherence to medication is believed to play a crucial role

in the efficacy of a treatment in many real life settings, its full

implementation remains challenging (Dunbar-Jacob andMortimer-

Stephens 2001). This is also the case in chronically ill patients.

Hence, a vast variety of different interventions to increase adherence

has been suggested (Nieuwlaat et al., 2014). These interventions

finally aim to avoid negative health outcomes and/or additional

health care costs. Ideally, an intervention can cover its expenditures

by avoiding the costs of more severe health developments, which

requires higher adherence to be associated with lower total costs and

increased health. However, some studies have shown that higher

adherence can also be associated with higher total costs, for example

when additional drug costs exceed savings in inpatient and

outpatient costs (Iuga and McGuire 2014; Cutler et al., 2018).

These and many other studies model the relationship of

adherence and costs in a study population and estimate an overall

effect of adherence. For example, the usually applied linear

regression model estimates the average effect of adherence for

the population. In our case, in contrast, we assumed that there

might be individual effects that express in different size or even

sign. For example, even when the overall effect is positive, there

might still be some patients with a negative effect of adherence on

costs. We therefore exploited methods provided by the increasing

field of personalized medicine research (Weisberg 2015). The

objective was to model treatment effects depending on patients’

characteristics, to explore the stratified and personalized effects

of adherence.

The identification of patients with a negative relation

between adherence and costs can be an aspect of selecting a

target group for an intervention. This has been considered to be

important for the efficiency of an intervention and can help to

reduce the number of people who need to be targeted (Fuchs

2008). An intervention often is applied to a specific group where

the need or the expected effect is highest. One area of application

is to identify a subgroup of patients of which we can expect the

avoided costs (by increased adherence) to be greater than the

additional costs of its expenditures.

The identification of these subgroups can be defined

theoretically in a hypothesis-driven approach. So far, to our

knowledge there are only two studies about subgroup-specific

effects in adherence-costs relationship. One of it, by Roebuck

et al. (2015) analyzed a population ofMedicaid enrollees with low

income. They segmented the population according to their basis

of eligibility for Medicaid in blind or disabled, other adults, and

children and modeled these subpopulations separately. In a

preceding study, Roebuck et al. (2011) used interaction effects

to estimate age and sex-specific effects of adherence within a

single model. The main disadvantage of this approach is that it

either requires prior knowledge or strongly depends on

assumptions about the functional form of the underlying

effect. A major advantage is that subgroups can be compared

directly when modeled simultaneously.

The other main approach for the identification of subgroups

is data-driven, often by using modern statistical methods to

automatically detect subgroups in the data structure. For this

purpose, we use decision-tree-based methods to detect subgroups

and to estimate subgroup-specific regression models of

adherence effects (Seibold et al., 2016). Respective model-

based random forests can even be exploited to differentiate

between effects on the individual patient level (Seibold et al.,

2018). The goal of the present paper is threefold: 1) evaluate the

overall relation between adherence and costs, 2) identify

subgroups with significantly better response to medication

adherence, and 3) provide a model to estimate a patient’s

individual conditional adherence effects. To reach our

research goals, we focused on the development and the

application of novel predictive models which transfer the

regression approach to a machine learning procedure. We

specifically do not want to propose or apply a specific

intervention to a group of patients. Instead, we suggest an

approach to identify target groups and individuals to

maximize the effect of an intervention, given that this

intervention is able to increase adherence.

Materials and methods

Data

We used a database of German claims data of the years

2007–2016. It contains over 3.5 million statutory insured persons

with data about their age, sex, charges, diagnoses coded
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according to the German modification of the international

classification of diseases (ICD-10-GM), filled prescription

drugs by date, package size, Anatomical Therapeutic Chemical

(ATC) classification code and Defined Daily Dose (DDD)

according to WHO Collaborating Centre for Drug Statistics

Methodology (2021). Also, information about the participation

in one of six disease management programs (DMP) for asthma,

breast cancer, chronic obstructive pulmonary disease, type

1 diabetes, type 2 diabetes and coronary heart disease are

available for all persons in the complete period.

Study population

We extracted data of the latest 4.5 fully available years (July

2011 until December 2015) and defined data of 2012 as baseline

and the years 2013–2015 as follow-up. Only patients with year-

round coverage in these years were considered in the present

study. We focused on patients with chronic diseases to observe

the adherence-costs relationship over a longer period of time.

Patients with at least one diagnosis within each observational

year of type 1 diabetes (T1D: ICD-10-GM code E10), type

2 diabetes (T2D: E11), or hyperlipidemia (E78) were selected

for three cohorts. Patients with multiple of the diagnoses of

interest were selected for multiple cohorts.

We excluded patient years with excess costs (top 5% total

charges of each cohort) to avoid costs which are rather influenced

by expensive treatments like dialysis or severe accidents than by

the chronic disease itself. These patient years might distort the

estimation of adherence effects. Moreover, all patients having no

data or fills of corresponding prescription drugs in 2012 were

excluded. See Supplementary Table S1 for the definition of

diseases and drugs.

Definition of variables

The outcome variable was mean annual total costs in follow

up years. We used a time lag between adherence measured at

baseline and costs measured during follow-up to avoid reverse

causality. Reverse causality might appear when major adverse

health events and hospitalization increase costs and likewise

result in initiation of drug therapy and influence adherence

(Stuart et al., 2014; Roebuck et al., 2015). In an earlier, not yet

published work, we found that the mean annual total costs are

appropriate for our approach. Therefore, we summed up all

patient’s individual charges per year and calculated the mean of

the follow-up years 2013–2015 with all prices converted to Euros

2015 according to the annual inflation of the healthcare sector as

stated by the German Federal Statistical Office (Statistisches

Bundesamt (Destatis) 2022).

In this paper, we focus on medication adherence during

treatment as the “extent to which a patient’s actual dosing

corresponds to the prescribed dosing regimen” (Vrijens et al.,

2012). Adherence at baseline year 2012 was defined as

proportion of days covered (PDC) by any diagnosis specific

medication. We used the PDC, because even in case of

oversupply—in contrast to the often used medication

possession ratio (MPR)—it is still limited to the range

0–100. To calculate the PDC, we counted a day as covered

when at least one dose of any diagnosis specific drug,

distinguished by its ATC code (WHO Collaborating Centre

for Drug Statistics Methodology 2021), was available to the

patient. We assumed this was the case 1) within the period

after the prescription fill for the number of days calculated by

total package size divided by the DDD (WHO Collaborating

Centre for Drug Statistics Methodology 2021) or 2) during

hospitalization if the patient had filled the same drug within

3 months before or after the hospital visit. In both cases we

proportionally considered fills and hospitalizations in the last

half of 2011 if the covered days reached into 2012. We divided

the number of covered days by the number of days between the

first covered day and the last day of 2012 and used the

continuous PDC—instead of a dichotomized PDC—to

avoid loss of information and the risk of bias (Tueller

et al., 2016).

We further extracted some baseline characteristics, such as

age and sex as sociodemographic variables, Charlson’s

Comorbidity Index (CCI) in its ICD-10 version with updated

weights (Charlson et al., 1987; Quan et al., 2005, 2011) and initial

total costs to reflect the general health status, and a two- or three-

level severity variable of the chronic diseases based on treatment

guidelines and prescription drug fills to include the degree of

severity of a given disease (Supplementary Table S2).

Furthermore, participation in any DMP and influenza

vaccination at baseline were used as proxys for health

behavior which has been discussed to be an important

confounder but is not directly available in the analyzed claims

data (Shrank et al., 2011).

Statistical analysis

All statistical analyses were performed in R version 3.6.2 (R

Core Team 2019). Hypothesis testing was performed at

exploratory two-sided 5% levels of significance. We split our

cohorts into a training and a test data set of 50% each and fitted

the different types of models on the training data set. The test

data set was used to evaluate the model-based random forest.

Linear regression
To estimate the overall conditional effect of adherence on

total costs we used a multivariable linear regression model with

mean annual total costs as outcome; adherence as main

predictor; and age, sex, CCI, initial total costs, severity,

participation in any DMP, and influenza vaccination as
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covariates. The linear regression model assumes the estimated

adherence effect is constant for all patients.

Model based decision tree
To identify potential subgroups of patients with different

estimated conditional adherence effects, we used a model-

based tree in the framework of model-based recursive

partitioning (Seibold et al., 2016). This method builds a

decision tree which splits the cohort into subgroups by

pre-specified candidate partitioning variables. A split is

performed when the model parameters are found to be

statistically significant dependent on any of the

partitioning variables. Then, an optimal cut-point of the

partitioning variable is determined as it maximizes the

sum of the likelihoods of the two resulting models fit to

the respective subsets of the data. This procedure of refitting

models to subsets of the data continues recursively until no

further statistically significant associations are found or no

further splits are possible because of restrictions on the

minimally required subgroup sizes.

In our case, we used a linear regression model as the base

model and searched for subgroups that differ in the estimated

effect of adherence on total costs. In the model-based tree, we

specified initial costs, age, CCI and severity as candidate

partitioning variables because we expected them to

potentially modify the effect of adherence. The procedure

thereby implicitly models interactions between the

partitioning variables and adherence. We further defined

the minimal subset size (terminal node size) to 5% of the

cohort to avoid subgroups that are too small for interventions

in practice.

Model-based trees again assume the estimated effect is

constant for patients within each subgroup, while this must

not be true for all patients as a whole (Seibold et al., 2018).

The effect is essentially modeled as a step function of the selected

partitioning variables. This assumption may be too restrictive

when the interaction function is smooth and personalized effect

estimates are more appropriate.

Model based random forest
To estimate personalized effects, we used weighted linear

regression models derived from a model-based random forest

(Seibold et al., 2018). The random forest is an ensemble of the

aforementioned model-based trees fitted to random samples

of the data and random selections of the partitioning variables.

The procedure provides a natural measure of similarity

between observations. Therefore, one can count the number

of times each pair of observations is allocated to the same

subset in each of the many trees of the forest. For example, in a

forest consisting of 500 trees, patient A could be in the same

defined subgroup as patient B or patient C in 250 and

300 trees. Fitting a personalized model for patient A would

consequently assign weights of 1, 250/500 = 0.5 and 300/500 =

0.6 to the observations of patient A, B and C in the data. The

linear regression models are otherwise specified as outlined

above. We fitted the model-based random forest by the

implementation of transformation forests introduced by

Hothorn and Zeileis (2021). We applied different

specifications of the minimal subset size (terminal node

size) of the trees (ns = 200, 500 or 1,000) to allow three

levels of similarity, with larger subgroups consisting of less

similar patients and vice versa.

For further investigation of estimated personalized effects,

we plotted partial dependence plots which show the relation of

the partitioning variables age, initial costs, CCI, and severity

to the personalized adherence effects by means of a smooth

curve (Seibold et al., 2018). We also developed a new

calibration-like approach. Therefore, we conditionally re-

estimated the personalized adherence effects by using the

test data, the fixed structure of the forests and fixed effect

estimates of the remaining covariates of the model. We fixed

the estimates of the covariates as we subtracted their estimated

effects from the outcome before re-estimating the adherence

effect in the test data. For a subsample of 1,000 patients, we

compared the effects estimated by the forest to the conditional

effects re-estimated on test data. We used univariate

regression models of these two estimates to explore model

calibration and to assess the precision the estimates. Because

the scatter plot of the two estimates showed deviations from a

linear fit, we fitted three GAMLSS regression models with

different assumptions (Stasinopoulos et al., 2017). The first

assumes a linear fit, the second assumes a nonlinear fit

estimated with cubic splines, and the third additionally

models the variance with cubic splines.

The 95% prediction intervals of the regression models were

used to identify patients of which we can expect a negative

adherence effect with the given certainty based on the respective

personalized effect estimation of the forest. When the upper limit

of the prediction interval is negative, we can expect a negative

personalized adherence effect on costs with the corresponding

certainty. We henceforth call them certainty-controlled

personalized estimated effects.

Results

Of the 2,644,212 patients with at least one year-round

coverage between 2012 and 2015 in the database, we finally

include 12,713 patients with T1D, 85,162 patients with T2D and

117,485 patients with hyperlipidemia. Figure 1 shows a flow chart

of included, and excluded patients per diagnose.

In T1D and T2D patients, the median PDC was higher than

in hyperlipidemia patients with 88 and 84 compared to

64 respectively. Being extremely left skewed, 62% and 54% of

the diabetes patients had a PDC higher than 80. In the

hyperlipiedemia cohort, only 30% had a PDC higher than
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80 and the distribution was more balanced. The total costs of all

cohorts were right skewed. The median of the mean annual total

costs were highest in T1D with 4,848 Euro followed by T2D with

3,404 Euro and hyperlipidemia with 2,329 Euro. These and

further descriptive statistics are given in Table 1.

The simple linear regression model estimated a positive

adherence effect on total costs of 10.73 Euro per PDC-point

and year for T1D, 3.92 Euro for T2D and 1.92 Euro for

hyperlipidemia (all p ≤ 0.001) when we controlled for age,

sex, CCI, initial total costs, severity, participation in any DMP

FIGURE 1
Flowchart of cohorts.

Frontiers in Pharmacology frontiersin.org05

Wendl et al. 10.3389/fphar.2022.1001038

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1001038


and influenza vaccination (Supplementary Table S3). In all three

cohorts, higher adherence was associated with higher total costs.

When we applied model-based trees, we detected subgroups

defined by initial total costs, CCI and age in all three cohorts

(Table 2). Of the candidate partitioning variables, only severity

was never used to define the subgroups. T1D patients were split

in three subgroups by initial total costs: in the largest subgroup

(77.5% of T1D patients) with initial total costs lower than

7,813 Euro, the subgroup-specific estimated effect of

adherence on total costs was lowest with 4.21 Euro per PDC-

point and year. It was therefore lower than the overall effect, but

still positive. The other two subgroups defined by higher initial

costs had an adherence effect above average. Due to the small

sample size of the T1D cohort, the effect in all subgroups did not

reach statistical significance.

T2D patients were split in five subgroups by initial total

costs and age. Patients with lower initial total costs than

3,130 Euro and an age of 63 or younger formed a large

subgroup (24.4%) in which higher adherence was

associated with lower total costs with an estimated effect

of -1.69 Euro per PDC-point and year. Of the other

subgroups, two had an adherence effect below average. The

TABLE 1 Descriptive summary statistics of cohorts of 3 chronic diseases: Median (IQR) for continuous and absolute (relative) frequencies for
categorical variables.

Variable T1Da T2Db hyperlipidemia

PDCc 88.3 (68.0, 99.7) 83.6 (53.8, 98.1) 63.9 (37.6, 88.2)

Female (Yes) 6,155 (48.4%) 44,709 (52.5%) 61,159 (52.1%)

Age 59.0 (44.0, 72.0) 68.0 (58.0, 76.0) 69.0 (59.0, 76.0)

Severity

light 4,892 (38.5%) 28,824 (33.8%) 107,061 (91.1%)

medium 7,821 (61.5%) 26,885 (31.6%) 10,424 (8.9%)

severe - 29,453 (34.6%) -

Initial Costs 4,183.4 (2,662.0, 7,325.8) 2,534.5 (1,247.1, 5,305.1) 1,792.8 (847.7, 4,147.9)

CCId 3.0 (2.0, 5.0) 3.0 (2.0, 5.0) 2.0 (1.0, 4.0)

DMP (Yes)e 9,537 (75.0%) 63,537 (74.6%) 47,016 (40.0%)

Vaccination (Yes) 3,222 (25.3%) 26,228 (30.8%) 35,733 (30.4%)

Total Costs 4,847.9 (3,089.6, 8,159.1) 3,403.7 (1,730.0, 6,489.4) 2,328.7 (1,126.3, 4,755.6)

aType 1 Diabetes.
bType 2 Diabetes.
cProportion of Days Covered.
dCharlson’s Comorbidity Index.
eDisease Management Program.

TABLE 2 Adherence effect estimates and subgroups detected by model-based decision trees.

Diagnosis Subgroup Estimate p-value n (%)

T1D initial costs <= 15,996 and initial costs <= 7,813 4.21 0.069 4,927 (77.5)

T1D initial costs <= 15,996 and initial costs >7,813 13.41 0.062 1,055 (16.6)

T1D initial costs >15,996 16.45 0.248 374 (5.9)

T2D initial costs <= 7,307 and initial costs <= 3,130 and age <= 63 -1.69 0.087 10,394 (24.4)

T2D initial costs <= 7,307 and initial costs <= 3,130 and age >63 1.86 0.069 14,154 (33.2)

T2D initial costs <= 7,307 and initial costs >3,130 and age <= 76 9.17 0.000 7,930 (18.6)

T2D initial costs <= 7,307 and initial costs >3,130 and age >76 1.60 0.612 2,851 (6.7)

T2D initial costs >7,307 6.21 0.012 7,252 (17.0)

hyperlipidemia initial costs <= 3,179 and initial costs <= 1,563 and cci <= 2 -0.11 0.819 21,233 (36.1)

hyperlipidemia initial costs <= 3,179 and initial costs <= 1,563 and cci >2 2.98 0.009 5,661 (9.6)

hyperlipidemia initial costs <= 3,179 and initial costs >1,563 and age <= 60 -5.50 0.000 3,125 (5.3)

hyperlipidemia initial costs <= 3,179 and initial costs >1,563 and age >60 3.60 0.000 9,593 (16.3)

hyperlipidemia initial costs >3,179 2.03 0.027 19,130 (32.6)
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effects in all of these mentioned subgroups were not

statistically significant.

In hyperlipidemia patients we detected five subgroups

defined by initial costs, age and CCI. In two subgroups higher

adherence was associated with lower costs. In a large subgroup

(36.1%) of patients with initial costs lower than 1,563 Euro and a

CCI of two or lower, the estimated effect was -0.11 Euro per

PDC-point and year. In another small subgroup (5.3%) with

medium initial costs between 1,563 Euro and 3,179 Euro and an

age of 60 or younger, the estimated effect was -5.50 Euro. In the

latter subgroups the effect was statistically significant. The other

subgroups had an adherence effect higher than the overall effect.

Table 2 gives an overview of all subgroups. A graphical

representation of the trees can be found in the Supplementary

Figures S1–S3.

The model-based random forest estimated a significant

proportion of negative personalized adherence effects

(Table 3). These proportions ranged from 0.0% to 4.2% for

T1D, 6.0%–20.5% for T2D and 16.6%–24.1% for

hyperlipidemia, depending on the level of similarity, which

is controlled by the minimally required subset size (ns) in the

forest models. We estimated personalized adherence effects of

up to -1.17 Euro, -7.45 Euro, and -8.31 Euro, respectively. For

higher levels of similarity—and therefore lower subset

sizes—we obtained more diverse personalized effect

estimates and, in consequence, a larger proportion of

negative effects.

However, smaller subset sizes may also lead to increased

variability and therefore decreased precision in effect

estimation. We therefore applied our calibration-like

approach to assess the quality of effect estimation. The

estimated personalized effects are plotted against the

conditional ones re-fitted on test data, while regression

models were used to assess their relation. A visual

comparison of model fits showed the best fit for the

GAMLSS model with a nonlinear fit of mean and variance

in almost all cases (Supplementary Figures S4, S5). The

calibration plot in Figure 2, where perfect precision is

illustrated by a diagonal red line, shows that the effect

estimates for T2D and hyperlipidemia patients were well-

calibrated, which is not the case for those for T1D patients.

In the latter, lower estimated effects seem to be overestimated

because the regression curve of the GAMLSS model (blue line)

is systematically lower than expected in case of perfect

precision (red line). The regression curve of T2D and

hyperlipidemia is closer to perfect precision.

The 95%-prediction interval of the GAMLSS regression

models (light blue area) identifies 0.0%–6.3% of patients with

T1D, 0.6%–3.9% of patients with T2D and 4.0%–8.3% of

patients with hyperlipidemia with a negative certainty-

controlled personalized estimated effect. For high level of

similarity we can expect a negative adherence effect with

the given certainty when the estimated effect of the forest

was lower than 0.22 Euro, -3.21 Euro and -1.72 Euro,

respectively. The value for T1D is counterintuitivly positive

because this model is not well calibrated. Again, the variance

of re-estimated effects is higher and the prediction intervals

wider—indicating lower precision—if the defined level of

similarity was higher.

The partial dependence plots of T2D with a high level of

similarity (Figure 3) show the relation of the personalized

effect estimates to the partitioning variables. They increase

continuously by initial costs until around 6,000 Euro. The data

gets more sparse and the smooth curve starts fluctuating. The

age effect on the personalized effect estimates also increases in

the main age groups between 50 an 80, as well as the CCI’s

effect. More severe T2D patients’ effect estimates are higher

on average. Patients with T1D and hyperlipidemia show

similar patterns (Supplementary Figures S6–S13). In T1D

patients, the increase of personalized effects by initial costs

can be observed at higher initial costs and there are no

differences in severity. For hyperlipidemia patients, there

was almost no effect of initial costs and a reverse severity

effect. In all partial dependence plots, apart from some age

TABLE 3 Proportion (range) of negative personalized estimated effects of adherence on costs.

Diagnosis Model Estimated effect Certainty-controlled
estimated effect

T1D ns = 200 4.2% (-1.17; -0.06) 6.3% (-1.17; 0.22)

ns = 500 0.0% (-) 0.0% (-)

ns = 1,000 0.0% (-) 0.0% (-)

T2D ns = 200 20.5% (-7.45; -0.01) 3.9% (-7.45; -3.21)

ns = 500 10.9% (-3.53; -0.02) 3.9% (-3.53; -1.18)

ns = 1,000 6.0% (-0.77; 0.00) 0.6% (-0.77; -0.59)

hyperlipidemia ns = 200 24.1% (-8.31; -0.01) 8.3% (-8.31; -1.72)

ns = 500 21.3% (-3.50; -0.01) 5.0% (-3.50; -1.50)

ns = 1,000 16.6% (-1.43; 0.00) 4.0% (-1.43; -0.96)
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groups of hyperlipidemia patients, the smoothed curve of the

adherence effects is positive. Comparison of different levels of

similarity showed similar patterns, but the between-person

differences were smaller as expected.

Discussion

In T1D, T2D and hyperlipidemia patients, model-based

trees and forests often identified patients with negative

estimated effects of adherence on costs, while simple

multivariable linear regression models showed a positive

association overall. In general, patients with negative

estimated effects of adherence on costs were healthier and

younger. Our approach shows that tree-based models can

identify patients with different effects up to the individual

level, while the quality of effect estimation of such models can

be assessed simultaneously.

Using model-based trees, we stratified the overall effects

estimated by the linear regression models and detected large

FIGURE 2
Calibration plots with non-linear fit (blue line) and 95% prediction interval (light blue area).
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subgroups with an estimated effect below average in all

cohorts. In T2D and hyperlipidemia, there were subgroups

with a negative estimated effect of adherence on costs, which

consists of around 25% and 40% of our cohort respectively.

This was not the case in T1D in which the subgroup with the

lowest adherence effect still had a positive association of

adherence and costs. With few exceptions, the effect of

adherence on costs is lower in younger patients, as well as

when initial costs are low and the CCI indicates less

comorbidities. Although the cut-points are model-specific,

it seems like healthier patients have a lower, and in some

cases even negative, effect of adherence on costs.

Going beyond stratified effects towards personalized

effects, the model-based random forest also identified

patients with an estimated adherence effect below average.

Here, in all three cohorts up to around 5%, 20% and 25% of

patients could be identified as having a negative estimated

effect of adherence on costs. Further investigation of the

personalized effects showed a similar pattern as observed in

the model-based decision trees. The effects of adherence on

costs increase with higher initial costs, more comorbidities

and higher age. Again, differences by severity of disease were

inconsistent and comparatively low. In addition, it seems like

there is no single variable which explains negative individual

FIGURE 3
Partial dependence plots of T2D patients with high level of similarity.
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differences alone, but it might be a combination of different

characteristics—like low initial costs and few

comorbidities—that make a negative effect of adherence on

costs more likely.

Despite the similarities between the three diagnoses, we also

found some differences. In the T1D cohort, no or considerably

fewer patients were identified having a negative adherence effect.

The reason might be that the overall effect was comparatively

high, but also—as smallest cohort—sample size may have

restricted detection of differences in the data structure. The

cohort of hyperlipidemia patients had less initial costs, lower

CCI, and—according to our classification of severity—mainly

milder forms of the disease. Here, initial costs do not

substantially explain differences of personalized effects in the

random forest. Furthermore, the subgroup with the lowest

estimated effect consists of medium initial costs.

In the only study with an interaction model, Roebuck et al.

(2011) found statistically significant age differences on the effect

of adherence in dyslipidemia and diabetes patients with higher

cost savings in patients older than 65 and no statistically

significant sex differences on the effect in these populations.

This is in contrast to our findings where younger patients had

costs savings. Hence, the applied methods to stratify and

personalize the effect estimates of adherence on costs are only

the first step and further studies are necessary to explain the effect

of the identified patients’ characteristics and differences between

diagnoses.

With our calibration-like approach, we were able to assess the

quality of the effect estimation by model-based random forests.

In such models, the estimated personalized effects depend not

only on the structure of the fitted forest, but also on the data used

to fit the personalized models. We exchanged this data by using

test data to assess the quality of effect estimation. Visual

comparison of the effect estimates obtained from training data

and test data—conditional on the forest structure and effect

estimates of other covariates—show whether the effect estimates

are precise. Precision was reduced in the models for T1D

patients, where we observed deviations between the two

estimated effects. Hence, the results should be interpreted

with caution. In the other two cohorts, the personalized effect

estimates were more precise. Moreover, the prediction interval of

the regression models of the two estimates show the range of the

expected personalized effects if fitted on test data with a certainty

of 95%. We identified patients with negative estimated effect also

when using these certainty-controlled estimated effects.

Of course, there are some limitations to the present study.

The training as well as the test data came from the same

population and the generalization of the results is limited. An

external validation would solve this problem and can make use of

the proposed method of calibration. In Germany, health

insurance is compulsory and the stationary insurances cover

almost 90% of the total population (Statistisches Bundesamt

(Destatis) 2020). Therefore, we expect our data to be

generalizable for Germany and with some limitations also for

other countries. Nevertheless, we would recommend training the

models on data as similar as possible to the final target

population.

In the model-based random forests, we observed a trade-off

between the variance and precision of estimates depending on the

defined level of similarity between patients. With decreasing

minimal subset size of the trees, in other words increasing

level of similarity, the variance of personalized effect estimates

increases for training and test data. This results in a larger

proportion of negative effect estimates on the one hand. On

the other hand, the prediction intervals are wider and thus there

is a smaller proportion of certainty-controlled negative effect

estimate. Further research on this aspect with the aim to identify

an optimal value is necessary.

Other methods to investigate the effect of patients’

characteristics on the effect of the main predictor are

available. A linear interaction of a continuous covariate

and the main predictor gives a robust estimation of the

effect in many scenarios, especially when the true

underlying effect is linear, and outperforms common

approaches like categorization by the median (Haller et al.,

2019). An advantage of the applied methods compared to a

regression model with interaction, is that they do not only

automatically select partitioning variables, but also select

their optimal cut-points to define the subgroups (Seibold

et al., 2016). In their study, Roebuck et al. (2011) chose a cut-

point of 65 for age without a reported justification and it is

unclear how a different cut-point would have influenced his

results. Especially when visualized graphically, model-based

trees are easy to interpret (Zeileis et al., 2008). The structure

of the tree and the underlying decision rules are both less

complex than higher order interactions of a regression model

and more flexible than other available methods (Seibold et al.,

2016). An important disadvantage of decision trees is their

instability, even when the data only changes slightly (James

et al., 2021). However, this is expected to be less of a problem

given the large sample size in the present study. In this

respect, random forests are more stable compared to a

single tree due to the large amount of included trees. But

because the effects are calculated from the ensemble of all

trees, the model cannot be interpreted directly anymore

(Hastie et al., 2009). Instead, partial dependence plots can

give insights into some properties of the forest and its effects.

In our case, the main advantage of model-based forests is

their ability to estimate personalized effects (Seibold et al.,

2018).

The identified patients can be assigned to target groups for

adherence-promotion interventions with the aim to increase

health and decrease associated costs. The proposed method

can also be applied to predict other outcomes such as

hospitalization risk to maximize positive health effects of

an intervention. Originally developed for clinical trails, the
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methods can also be applied to directly detect subgroups and

personalized effects during an intervention study.
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