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Pathological myocardial hypertrophy can be caused by a variety of diseases,

mainly accompanied by myocardial interstitial fibrosis (MIF), which is a diffuse

and patchy process, appearing as a combination of interstitial micro-scars and

perivascular collagen fiber deposition. Different stimuli may trigger MIF without

cell death by activating a variety of fibrotic signaling pathways in mesenchymal

cells. This manuscript summarizes the current knowledge about the

mechanism and harmful outcomes of MIF in pathological myocardial

hypertrophy, discusses the circulating and imaging biomarkers that can be

used to identify this lesion, and reviews the currently available and potential

future treatments that allow the individualized management of patients with

pathological myocardial hypertrophy.
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1 Introduction

Myocardial hypertrophy can be broadly defined as the increase of heart mass

(Bernardo et al., 2010). The main function of the heart is to maintain the perfusion

of peripheral organs to meet the needs of normal and stress conditions. However, the

growth of postnatal heart is affected by its functional load. In order to accomplish this task

with increased preload or afterload, the size of cardiomyocytes typically increases, which is

called hypertrophy. Hypertrophy can be divided into physiological hypertrophy and

pathological hypertrophy. Both types of hypertrophy involve the enlargement of single

cardiomyocytes, which were initially developed as an adaptive response to cardiac stress,

while they remarkably differ in potential molecular mechanisms, cardiac phenotypes, and

prognosis (Nakamura and Sadoshima, 2018). Physiological hypertrophy is mainly caused

by normal postpartum growth, pregnancy, and exercise (Perrino et al., 2006). Pathological

hypertrophy is caused by chronic hypertension, aortic stenosis, mitral or aortic

regurgitation, myocardial infarction, storage diseases (e.g., lipid, glycogen and

misfolded protein storage diseases), and hereditary cardiomyopathy (e.g., hypertrophic

cardiomyopathy) caused by gene mutations encoding sarcomere protein (Devereux et al.,

2000; Turkbey et al., 2010). Over time, physiological hypertrophy can maintain cardiac
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function, while pathological hypertrophy is highly accompanied

by cardiomyocyte death, leading to interstitial and perivascular

fibrosis and adverse cardiovascular events, including heart failure

(HF), arrhythmia, and death.

At the cellular level, pathological hypertrophy is caused by

cardiomyocyte hypertrophy, expansion of surrounding stroma,

and loss of extracellular homogeneity (Rodrigues et al., 2016). As

the key component of pathological hypertrophy, interstitial

expansion is the result of the joint action of extracellular

edema and interstitial fibrosis, which is mainly secondary to

the aggregation of mature cross-linked collagen fibers (Halliday

and Prasad, 2019). The diffuse and unbalanced accumulation of

collagen in myocardial stroma is called myocardial interstitial

fibrosis (MIF) (González et al., 2018). MIF is a diffuse and patchy

process. It is a histological marker of several heart diseases that

change myocardial structure and function, and can be associated

with the progression of HF. The main manifestations of MIF

were interstitial micro-scar formation, perivascular collagen fiber

deposition, and increased thickness of tendon collagen chain

(Díez et al., 2020). Although a large number of research evidences

have explained the mechanism of MIF in pathological

myocardial hypertrophy, it has not yet fully realized the

transformation of these knowledge into a practical and

effective treatment of pathological myocardial hypertrophy.

This review will focus on the currently available and potential

future treatment methods of MIF in pathological myocardial

hypertrophy caused by hypertensive heart disease (HHD), aortic

stenosis, diabetic cardiomyopathy, hypertrophic

cardiomyopathy and so on.

1.1 Classification and characteristics of
myocardial interstitial fibrosis

Myocardial fibrosis is mainly divided into replacement

fibrosis and interstitial fibrosis. Replacement fibrosis occurs in

myocardial injury (i.e., myocardial infarction), which is

characterized by excessive collagen deposition and micro-scar

formation. The reason is that after myocardial cells are damaged,

they are replaced by activated fibroblasts to form the main scar

containing type I collagen (de Jong et al., 2011). MIF can be

further divided into reactive MIF and invasive MIF (Herum et al.,

2017). Reactive MIF is the accumulation of collagen in the

extracellular space due to the imbalance of collagen

metabolism without cell death (Liu et al., 2021). It may be

manifested as a thick fibrotic sheath located around the

intramural coronary artery and arterioles, or around the

cardiac muscle bundle (i.e., perimuscle) and a single

cardiomyocyte (i.e., intima) (Halliday and Prasad, 2019).

Invasive MIF occurs in patients with Fabry disease which is a

rare genetic disease characterized by dysfunction of sphingolipid

function and catabolism (Disertori et al., 2017). The potential

reason why MIF does not lead to cardiomyocyte death may be

that MIF is often secondary to some harmful stimuli such as

pressure overload or myocardial inflammation, which do not

lead to cardiomyocyte death. Replacement fibrosis and reactive

interstitial fibrosis coexist in the majority of patients. It is

essential to clarify whether these two histological types of

fibrosis represent different entities or whether they represent

different stages of development of the same disease (Halliday

et al., 2017). For instance, the latest research on patients with

hypertrophic cardiomyopathy showed that fibrosis is initially

characterized by perivascular, perisomatic and intramuscular

deposits, while as the disease progresses, fibrosis is mainly

characterized by alternative scars (Galati et al., 2016).

MIF is a scar event in myocardium, which is associated with

myocardial hypertrophy. It occurs in almost all types of heart

disease and has different manifestations (Weber et al., 2013;

Segura et al., 2014). For example, MIF in HHD is composed of

fine connective tissue and mainly manifested as interfiber

fibrosis, while the MIF of hypertrophic cardiomyopathy is

composed of coarse collagen fibers and mainly manifested as

plexiform fibrosis (Sugihara et al., 1988). Collagen deposition is

the leading feature of MIF, especially type I and type III collagen,

as well as (Liu et al., 2021) type I and type III collagen fibers are

the main structural proteins forming fibrous tissue (Whittaker,

1995; Fomovsky et al., 2012). Although MIF is patchy, the area of

fibrosis increases from the outer to the inner third of the

ventricular free wall in some patients with heart diseases, such

as HHD, aortic stenosis, and hypertrophic cardiomyopathy

(Treibel et al., 2018). This may be related to transmural

pressure, wall stress, and changes of coronary

microcirculation, leading to relative endocardial ischemia

(Díez et al., 2020). An evidence showed that MIF is not only

related to the scope of fiber deposition, but also related to the

collagen composition and physicochemical properties of fibers.

For instance, in pathological myocardial hypertrophy caused by

hypertension or aortic stenosis, the content of type I collagen is

higher than that of type III collagen due to the excessive

accumulation of type I collagen fibers (López et al., 2014;

Echegaray et al., 2017). However, in diabetic cardiomyopathy,

the content of type III collagen is higher than that of type I

collagen (Shimizu et al., 1993). In hypertrophic cardiomyopathy,

there is no difference between the content of the two types of

collagen (Boerrigter et al., 1998). Collagen fibers have physical

and chemical properties such as insolubility, degradation

resistance and hardness. The insolubility, degradation

resistance and stiffness of collagen fibers depend on the

degree of intermolecular covalent bonding (i.e., cross-linking)

between their constituent fibers (Díez et al., 2020). Type I

collagen fibers are mainly related to the coarse fibers that give

tensile strength, while type III collagen fibers usually form fine

fibers and maintain the elasticity of the matrix network (Kong

et al., 2014). Due to type I collagen fibers are heavily cross-linked,

the stiffness of type I collagen fibers in human myocardium is

higher than that of type III collagen fibers. Some studies have
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proved through Young’s modulus evaluation that there is a direct

correlation between the ratio of collagen type I to collagen type

III andmyocardial stiffness in HF patients caused by severe aortic

stenosis (López et al., 2021). However, it is still unclear how the

ratio of type I collagen to type III collagen affects the specific

pathological phenotype of MIF. Another feature of MIF is that

collagen with cross-linking density matures and then forms

fibrotic scars. This feature may increase the tensile strength of

the scar, affect the degree of cardiac relaxation and contractility,

and limit cardiac function (La et al., 2017).

2 Mechanism of myocardial
interstitial fibrosis

Myocardial fibrosis is secondary to various stimuli, including

ischemia, poisoning, metabolism, infection, genetics, and

hemodynamics. These stimuli directly activate the fibrotic

pathway or lead to cardiomyocyte dysfunction (González

et al., 2018). In reactive MIF, without cell death, a variety of

fibrotic signaling pathways in mesenchymal cells (e.g.,

fibroblasts) may be activated by different stimuli to cause

fibrosis, including the following stimuli: mechanical stress

associated with pressure overload of HHD and aortic stenosis,

defects caused by various causal mutations in sarcomere

structure and function of hypertrophic cardiomyopathy,

metabolic damage associated with hyperglycemia in diabetic

cardiomyopathy, or coronary microvascular endothelial

damage in HF with preserved ejection fraction (HFpEF) (Díez

et al., 2020). Fibroblasts undergo a response known as

“activation”, which is characterized by a transition of

quiescent cells into myofibroblast-like phenotype, while some

other cells, including macrophages, cardiomyocytes, and

endothelial cells, indirectly participate in the fibrotic response

by secreting fibrogenic mediators (Kong et al., 2014). Fibroblasts

can sense damage-related molecular patterns (DAMP), which

lead to activate pro-inflammatory responses. Molecular patterns

associated with injury include proinflammatory cytokines

(i.e., interleukin-1α), intracellular molecules released by dead

cells (i.e., heat shock proteins), extracellular matrix (ECM)

molecules up-regulated by injury (i.e., fibronectin), or

molecules modified by a pathological environment

(i.e., advanced glycation end products (AGEs)). Fibroblasts

also provide membrane receptors for many growth factors,

cytokines, and neurohumoral factors that regulate signaling

pathways, including platelet-derived growth factor (PDGF),

angiotensin-II (especially type 1 receptor), connective tissue

growth factor (CTGF), and transforming growth factor- ß

(TGF-β). In injured myocardium caused by a variety of

physical and chemical factors, cardiomyocytes, macrophages,

and endothelial cells can release cytokines, chemokines, and

growth factors (e.g., transforming growth factor-β (TGF-β)).
These factors work together with mechanical stress and

neurohormone activation to make fibroblasts proliferate and

differentiate into myofibroblasts through a variety of signal

pathways. These signaling pathways include DAMP-dependent

pathways, inflammatory signalling cascades (triggered by

cytokines and chemokines), mechanosensitive mechanisms

(mediated by integrins and ion channels), and neurohumoral

pathways (such as renin-angiotensin-aldosterone system).

Among them, TGF-β is the main regulator of fibrogenesis

through SMAD-dependent pathway and none-canonical signal

cascade. Ang II also plays an important role in cardiac fibrosis,

which activates profibrotic cascades, such as TGF-β/SMAD,

ERK1/2 (extracellular-signal- regulated kinase1/2), AKT

(protein kinase B) and MAPK (mitogen-activated protein

kinase) signal transduction (Subbaiah et al., 2022). The

pathophysiological role of Ang II can reconnect the

transcriptome of fibroblasts to promote the activation of

fibroblasts with enhanced their ability to migrate, proliferate,

secrete proinflammatory mediators, and produce ECM proteins

(Subbaiah et al., 2022) (Figure 1). Additionally, myofibroblasts

can also be transformed from circulating fibroblast precursor

cells, epicardial epithelial cells, and endothelial cells (Gyöngyösi

et al., 2017).

Myofibroblasts are the main mediating cells in MIF,

possessing the characteristics of proliferation and secretion.

They regulate cytokine secretion and collagen synthesis,

promote the formation of non-functional scar, and contribute

to the renewal of extracellular matrix and collagen deposition

(Liu et al., 2021). Myofibroblasts possess the characteristics of

synthetic active fibroblasts because they have the combined

ultrastructural and phenotypic features of smooth muscle cells

obtained through the formation of contractile stress fibers and de

novo expression of a-smooth muscle actin, as well as extensive

endoplasmic reticulum (Weber et al., 2013). The fiber secretory

group of myofibroblasts is composed of molecules required to

change the collagen turnover of extracellular fibrils and promote

MIF, as well as autocrine and paracrine factors that further

simulate their proliferative and metabolic activities, so as to

perpetuate the fiber formation in the damaged myocardium,

thereby maintaining fiber formation (Bomb et al., 2016). The

most important proteins secreted by myofibroblasts are type I

and type III procollagen precursors and enzymes that directly

interfere with the extracellular synthesis, deposition, and

degradation of type I and type III collagen fibers, such as type

I procollagen amino terminal protease (disintegrin and matrix

metalloproteinase (MMP)) and type I procollagen carboxyl

terminal protease, or procollagen C-proteinase (PCP, also

known as bone morphogenetic protein-1) (Ricard-Blum,

2011). These enzymes convert terminal propeptides of the

procollagen precursors secreted by myofibroblasts into mature

collagen fibroin molecules by lysing them. Subsequently, lysyl

oxidase (LOX) family plays a catalytic role in formation of the

final collagen fibers that may deposit in the myocardium through

covalent bonds (i.e., cross-linking) between adjacent fiber
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FIGURE 1
Major signalling pathways involved in the activation of cardiac fibroblasts. In response to increased mechanical stress and to cardiac injury,
inflammatory signalling cascades (triggered by cytokines and chemokines), mechanosensitivemechanisms (mediated by integrins and ion channels),
and neurohumoral pathways (such as renin-angiotensin-aldosterone system) can activate fibroblasts into extracellular matrix-synthesizing
myofibroblasts. Among them, TGF-β is the main regulator of fibrogenesis through SMAD-dependent pathway and none-canonical signal
cascade. Ang II also plays an important role in cardiac fibrosis, which activates profibrotic cascades, such as TGF- β/SMAD, ERK1/2, AKT and MAPK.
AT1R, type 1 angiotensin II receptor; CCL2, CC- chemokine ligand 2; CCR, CC- chemokine receptor; ERK, extracellular-signal- regulated kinase; FAK,
focal adhesion kinase; IL-11RA, IL-11 receptor subunit- α; MAPK, mitogen-activated protein kinase; MR, mineralocorticoid receptor; PI3K,
phosphoinositide 3-kinase; RHOA, transforming protein RHOA; TAK1, TGFβ-activated kinase 1; TGFβR1, TGFβ receptor type 1.

FIGURE 2
The Process of Myocardial Interstitial Fibrosis in pathological myocardial hypertrophy. Steps in the process of myocardial interstitial fibrosis,
including major mechanisms and consequences. MIF, myocardial interstitial fibrosis.
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polypeptide chains (Díez et al., 2020). The increase of mature

fibers destroys the balance between fiber production and

degradation and extracellular expansion, that is, fiber

formation and deposition are dominant, rather than its

degradation and removal (Bishop and Laurent, 1995). The

diffuse and unbalanced aggregation of final mature fibers in

myocardial stroma leads to MIF (Figure 2).

3 Adverse consequences of
myocardial interstitial fibrosis

MIF is associated with the adverse effects of myocardial

function and can lead to a variety of adverse consequences,

including cardiomyocyte atrophy, increased passive tissue

stiffness, electrical remodeling and enhanced arrhythmia, and

reduced oxygen supply to the remaining cardiomyocytes (Weber

et al., 2013). These adverse consequences may lead to the left

ventricular (LV) dysfunction, arrhythmia, and other disorders,

affecting the prognosis of cardiac function in patients with

pathological myocardial hypertrophy, which indicates

uncontrolled and progressive accumulation of fibrotic tissue

(Figure 3).

3.1 Cardiomyocyte atrophy

Fibrosis was reported as a “key determinant” of myocardial

heterogeneity in heart diseases (Weber et al., 2013). Although

the size of cardiomyocytes in the myocardium is mainly

variable, (Campbell et al., 1989), this heterogeneity is more

prominent in the diseased heart, because fibrous collagen

tendrils produced by scar tissue trap adjacent

cardiomyocytes, reducing the workload of cardiomyocytes,

thereby inducing cardiomyocyte atrophy (Fidziańska et al.,

2010). For instance, atrophic, while viable cardiomyocytes

trapped by fibrillary collagen at scar and perivascular fibrotic

sites are anatomically separated from cardiomyocytes with

smaller remodeling sites found in pressure-overload

hypertrophic hearts. Re-expression of the expressed ß-

myosin heavy chain (β-MHC) gene is a well-documented

marker of pathological cardiac hypertrophy (Pandya et al.,

2006; López et al., 2011).

3.2 The increased passive tissue stiffness

The increase of collagen cross-linking may lead to the

hardening of fibrous tissue, and the stiffness of type I collagen

fiber is higher than that of type III collagen fiber. Therefore, the

passive tissue stiffness increased with the increase of the

deposition of rigid and highly cross-linked type I collagen

fibers (López et al., 2012). At the same time, hardened fibrous

tissue can also further promotes fibrosis via mechanosensitive

pathways and via liberation of latent TGF-β.With the increase of

myocardial stiffness caused by collagen accumulation, diastolic

dysfunction may occur (Ohsato et al., 1992; Díez et al., 2002). A

previous study showed that MIF is associated with the LV

stiffness and diastolic dysfunction in patients with HHD,

aortic stenosis, hypertrophic cardiomyopathy, and HFpEF

through histological evaluation or CMR imaging (Maragiannis

et al., 2018).

3.3 Electrical remodeling and enhanced
arrhythmia

The electrical remodeling and enhanced arrhythmia

caused by MIF are due to the accumulation of matrix

protein and the existence of myofibroblasts. The

pathophysiological mechanism is mediated by intracellular

Ca2+-overload and oxidative stress (Hothi et al., 2008). A

previous study demonstrated that MIF impairs myocardial

electrophysiology by slowing down propagation of action

potential, initiating reentry, promoting posterior

depolarization, and increasing ectopic autonomy, which

together lead to an increased risk of ventricular

arrhythmia (Nguyen et al., 2017). For instance, in patients

with hypertrophic cardiomyopathy, MIF has a certain

influence on the electrophysiological changes that mediate

ventricular arrhythmia (Kawara et al., 2001). Ventricular

arrhythmia is affected by the degree of MIF, and is not

correlated with other confounding factors, including the

LV dysfunction. Moreover, it has been reported that the

relationship between MIF and ventricular arrhythmia has

no dependency on LV function in patients with HHD

(McLenachan and Dargie, 1990). MIF has been recognized

as a risk factor for sudden cardiac death in patients with

HHD, hypertrophic cardiomyopathy, and non-ischemic

dilated cardiomyopathy (Bockstall and Link, 2012; Gulati

et al., 2013; Shenasa and Shenasa, 2017).

FIGURE 3
Adverse consequences of MIF. MIF, myocardial interstitial
fibrosis.
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3.4 The reduced oxygen supply to the
remaining cardiomyocytes

The heart is a specialized aerobic organ. Its long-term

performance requires a stable oxygen supply to maintain the

energy demand. The coronary vasodilatory reserve is mainly used

to ensure the delivery of sufficient oxygen to meet the oxygen

demand of cardiomyocytes. Therefore, the myocardium can

adapt to significant changes in oxygen demand beyond its

aerobic threshold and before beginning anaerobic metabolism

(Weber et al., 1980). Perivascular fibrosis of intramural coronary

arteries and arterioles, as well as the presence of myofibroblasts,

can lead to coronary lumen stenosis and threaten the survival of

cardiomyocytes (Warnes et al., 1984; Olivotto et al., 2011). In

patients with HHD, hypertrophic cardiomyopathy or diabetes

cardiomyopathy, the severity of MIF is related to the severity of

coronary microvascular disease, including the anatomical

abnormality of vascular wall and the rarefaction of capillaries

(Mohammed et al., 2015).

As for whether MIF is a direct harmful cause of cardiac

function, studies have evaluated collagen deposition and/or

collagen cross-linking through histological analysis, proving

that there is a direct correlation between MIF severity and

diastolic dysfunction in patients with HF, which supports the

direct involvement of MIF in LV diastolic dysfunction (Izawa

et al., 2005). However, there are differences in this regard,

because several articles have proved that fibrosis itself does

not cause electrical problems or arrhythmias.

4 Diagnosis of myocardial interstitial
fibrosis

Because MIF affects the clinical outcome of patients with

pathological myocardial hypertrophy, MIF may need to be used

as an evaluation indicator of clinical treatment for these patients.

Endomyocardial biopsy has higher accuracy in characterizing

interstitial changes and can specify their components, while it

cannot be used routinely and continuously because of its

limitations, such as invasiveness, complications, and sampling

errors (Halliday and Prasad, 2019). Therefore, a routine practice

requires alternative non-invasive methods, such as

cardiovascular magnetic resonance (CMR) imaging and

circulating biomarkers.

CMR imaging-derived parameters are commonly used to

evaluate myocardial fibrosis, including late gadolinium

enhancement (LGE) and T1 mapping, which can be divided

into natural T1, post contrast T1, and extracellular volume

fraction (ECV). LGE can be utilized to identify focal collagen

deposition in scars after large-area infarction, while T1 mapping

can be used to identify diffuse collagen deposition in MIF (Díez

et al., 2020). Clinical studies have demonstrated that ECV and

LGE can evaluate the degree of diffuse collagen deposition by

collagen volume fraction, and ECV is superior to LGE (Diao

et al., 2016). On the other hand, neither LGE nor ECV can

qualitatively judge the composition and molecular organization

of collagen fibers in MIF (Messroghli et al., 2017). Therefore, due

to this limitation of CMR-derived biomarkers, another method

based on circulating biomarkers may be needed to quantitatively

and qualitatively judge MIF.

Of the several proposed MIF biomarkers, only a limited

number of them are associated with histologically confirmed

MIF, such as serum carboxy terminal propeptide of type I

procollagen (PICP), serum amino terminal propeptide of type

III procollagen (PIIINP), and the ratio of serum type I collagen

terminal peptide to serum matrix metalloproteinase 1 (López

et al., 2015). PICP is formed during the extracellular conversion

of type I procollagen to type I collagen by PCP enzyme. It was

found that the PICP level was closely associated with the

deposition of type I collagen in myocardium of patients with

HHD and HF (López et al., 2012). PIIINP is produced during the

extracellular transformation of type III procollagen into type III

collagen by procollagen amino terminal protease. It was also

found that its level is highly correlated with the degree of

myocardial type III collagen deposition in patients with

ischemic heart disease or idiopathic dilated cardiomyopathy

and HF (Klappacher et al., 1995). Similarly, there are some

limitations in the detection of MIF biomarkers. For instance,

they do not have heart specificity, and the change of their

concentration may represent the comprehensive abnormality

of cardiovascular collagen or the influence of complications

affecting collagen metabolism.

5 Treatment of myocardial interstitial
fibrosis

Existing clinical evidence shows that MIF may affect the

response of patients with pathological myocardial hypertrophy to

treatment, and there is no routine use of specific anti fibrosis

drugs in clinical practice. Therefore, for patients with

pathological myocardial hypertrophy, anti-fibrosis and cardiac

protection strategies need to be developed, which are mainly

introduced from the following three aspects. But cardiac fibrosis

is an important part of the pathophysiological response to injury.

Sometimes appropriate fibrosis has a protective effect on the

heart, so different pathological backgrounds of fibrosis need

different treatments.

5.1 Drugs with some exhibited clinical
benefit

The clinical studies have shown that MIF is a target of drugs

interfering with the renin-angiotensin- aldosterone axis. A large

number of drugs were found to play an anti-MIF role by acting
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on this axis. For instance, in the treatment of patients with HHD,

the use of angiotensin receptor blocker losartan or angiotensin-

converting enzyme inhibitor lisinopril can reduce the degree of

fibrosis deposition and LV stiffness, and improve LV diastolic

dysfunction accordingly (Tacke and Trautwein, 2015). Similarly,

mineralocorticoid receptor antagonist spironolactone can also

reduce collagen deposition and LV stiffness in patients with HF

and improve diastolic dysfunction (Izawa et al., 2005). These

drugs have been reported to have anti-MIF efficacy and safety,

but there is still a residual burden of fibrosis. Therefore, new

treatment methods are urgently required for more effective anti-

fibrosis treatment. For instance, torasemide, a new loop diuretic,

may directly target MIF. Studies have demonstrated that the use

of torasemide in patients with HHD can affect the degree of

collagen deposition, reduce PCP activation and LOX expression

(López et al., 2009). However, this was obtained in the study of a

small number of patients receiving short-term treatment.

Rigorous and large-scale clinical studies are still needed to

prove whether torasemide targets MIF in a clinically effective

manner (Díez et al., 2020).

5.2 Drugs that have shown promise but
only in pre-clinical models

On the other hand, data obtained from experimental studies

revealed that some drugs with proven safety that have been used

in clinical practice may treat MIF in pathological myocardial

hypertrophy through newmechanisms (Johnson et al., 2017). For

instance, in HFmice with cardiac pressure overload and diabetes,

the combined use of enkephalinase inhibitors and angiotensin

receptor blockers, sacubitril/valsartan (a new class of drugs called

angiotensin receptor neprilysin inhibitors) relieved MIF and

improved LV function (Burke et al., 2019). The antifibrotic

effect of sacubitril/valsartan may be due to the specific

inhibition of neutral lysozyme beyond the effect of

angiotensin receptor blockers. The mineralocorticoid receptor

antagonist eplerenone can prevent increased collagen deposition

and left ventricular systolic dysfunction in pressure overloaded

mice (Franco et al., 2006). In addition, riociguat, the soluble

guanylate cyclase stimulator, can reduce collagen deposition in

HF mice caused by transverse aortic coarctation (Pradhan et al.,

2016).

Studies have shown that sodium glucose cotransporter 2

(SGLT2) inhibitors, used as hypoglycemic drugs in patients

with diabetes, also have anti MIF effects and can reduce the

risk of cardiovascular death in patients with pathological

myocardial hypertrophy. Such as, empagliflozin can attenuate

MIF and improve diastolic dysfunction in diabetic mice (Habibi

et al., 2017). Some studies have also shown that in pressure

overloaded mice caused by transverse aortic coarctation,

dapagliflozin treatment can reduce collagen deposition and

improve left ventricular function (Shi et al., 2019). However,

because SGLT2 is not expressed in the heart and its antifibrosis

effect is not related to metabolic and/or hemodynamic changes,

some people believe that it may reflect the direct pleiotropic effect

of drugs on myocardium (Packer et al., 2017). Therefore, it

remains to be tested whether SGLT2 inhibitors can effectively

reduce MIF.

Celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor,

has been shown in a study to reduce pathological cardiac

hypertrophy and fibrosis (Zhao et al., 2021). A number of

evidences show that COX-2 is related to cardiac hypertrophy

and fibrosis. Specific overexpression of COX2 promotes cardiac

hypertrophy, while COX-2 inhibition can improve the

hypertrophy and fibrosis induced by angiotensin and

aldosterone (Wang et al., 2010). This study used cryoinjury

(CI) to establish a mouse model of cardiac hypertrophy and

fibrosis. It was found that celecoxib inhibited the production of

proinflammatory cytokines and the expression of adhesion

molecule genes, increased the recruitment of M1 like

macrophages, and reduced cardiac hypertrophy and fibrosis

(Zhao et al., 2021). However, the regulatory mechanism of

COX-2 in immune-mediated cardiac hypertrophy and fibrosis

is not completely clear.

Platycodin D (PD) is a triterpenoid saponin isolated from the

widely used traditional Chinese medicine extracted from the root

of Platycodon grandiflorum (PG), which has anticancer and

antiangiogenic effects (Lee et al., 2015). Studies have shown

that PD can reduce the incidence rate and mortality of

cardiovascular disease by inhibiting cardiac fibrosis and

hypertrophy (Lin et al., 2018). PD can reduce the

accumulation of collagen in cardiac hypertrophy rats caused

by hypertension, possibly by reducing the expression of MMP2,

MMP9 and TGF- ß 1 to inhibit cardiac hypertrophy and fibrosis.

In addition, in preclinical animal models, PD treatment did not

show related mortality at up to 2000 mg/kg, indicating that PD

has great potential for clinical use because it has no obvious

toxicological signs (Lee et al., 2011).

It has also been reported that the liver X receptor (LXR)

agonist AZ876 can prevent pathological cardiac hypertrophy and

fibrosis in a study (Cannon et al., 2015). This study has shown

that AZ876 treatment can inhibit the induction of profibrotic

gene expression and reduce MIF in a mouse model of

pathological cardiac hypertrophy caused by chronic pressure

overload. Its potential mechanism may be related to the

weakening of TGF-β - Smad2/3 signal transduction. Two

major cell types in the cardiac, cardiomyocytes and fibroblasts,

express LXR. These two kinds of cells are the direct targets of

AZ876 mediated cell protection from hypertrophy and fibrosis

(Cannon et al., 2015). AZ876 activation can prevent TGF-β and

Ang II induced collagen synthesis and myofibroblast

differentiation. AZ876 has dual effects of anti-myocardial

hypertrophy and anti-fibrosis, and can also reduce

atherosclerosis without affecting the liver or plasma

triglyceride levels (van der Hoorn et al., 2011). However, the
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cardiac protective potential of AZ876 remains to be further

explored.

Finally, pirfenidone and tranilast, two inhibitors of TGF-β
signaling, have also been shown to have anti-fibrotic effects in

several MIF models (Edgley et al., 2012). Because the long-term

use of either of these two drugs may produce hepatotoxicity and

lead to liver failure, further experiments are needed to alleviate

MIF via studies that support safely and effectively targeting of

TGF-β signaling (Fang et al., 2017).

5.3 Other potential treatments

The clinical principle of anti-MIF strategies mainly aims to

reduce the excessive deposition of fibrous tissue, which may be

achieved through the inactivation of inflammatory pathways and the

establishment of anti-inflammatory microenvironment, or the

inactivation and elimination of myofibroblasts, or the excessive

synthesis and deposition of collagen (Díez et al., 2020). Based on

this principle, we can find new anti-MIF markers in pathological

myocardial hypertrophy, such as non-coding RNAs (ncRNAs),

epigenetic modifiers, Endoplasmic reticulum (ER),mitochondrion

and so on, which can be used as new molecular drug targets

(Park et al., 2019). However, these new potential anti MIF

strategies are still not really used in clinical treatment, and more

research is needed to clarify.

NcRNAs play a key role in DNA replication, transcription and

post transcriptional gene expression, chromatin processing, and

maintaining mRNA stability and genomic integrity (Yang et al.,

2016). In terms of pathological cardiac hypertrophy and MIF,

microRNA (miRNA or miR), long-chain noncoding RNA

(lncRNA) and circular RNA (circRNA) are currently the most

studied ncRNAs with high therapeutic potential (He et al., 2020).

It has been found thatmiR-21 can increase the activity of ERK-MAP

kinase in fibroblasts, affect its structure and function, and control the

degree of MIF (Thum et al., 2008). It has been reported that in the

animal model of ischemia/reperfusion injury, inhibition of miR-21

can lead to the reduction of MIF and cardiac hypertrophy, and the

overall improvement of cardiac function (Hinkel et al., 2020). In

addition, in pressure overload induced cardiac hypertrophy rats,

miR-1 can reduce cardiac fibrosis and reverse cardiac hypertrophy

by targeting Fibulin-2 (Fbln2), a protein involved in extracellular

matrix remodeling. The cardioprotective effect of miR-1 is the result

of extracellular matrix remodeling, the improvement of calcium

treatment and the inactivation of mitogen activated protein kinase

(MAPK) (Karakikes et al., 2013). It has also been proved that

inhibition of miR-221 and miR-222 can lead to increased fibrosis

and left ventricular dilatation in a pressure overload induced

hypertrophic mouse model. MiR-221/222 family inhibits

myocardial fibrosis and plays a cardioprotective role by down-

regulating JUN N-terminal kinases 1 (JNK1), a kind of regulator

of TGF-β signal pathway (Verjans et al., 2018). Although ncRNA

targeting therapy for MIF in pathological myocardial hypertrophy

shows good therapeutic prospects, there are still many limitations in

its real use in clinical practice. For example, ncRNA can target

different signal pathways in different organs at the same time, which

is easy to produce adverse off target effects.

Epigenetic modification refers to dynamic and reversible

changes in chromatin accessibility and post-translational

modification of histone tails without changing nucleotide

sequences (Prinjha et al., 2012). Histone acetylation is the

earliest and most deeply studied epigenetic modification,

which plays an important role in chromatin remodeling and

transcriptional regulation (Scher et al., 2007). Histone acetylation

regulated gene transcription relies on “epigenetic readers”, that is,

acetyl-binding proteins that recognize acetylated lysine in

histones and recruit transcription regulatory complexes to

chromatin (Wang et al., 2021). Almost all “epigenetic readers”

contain bromodomains - about 110 amino acid modules that

exist in many chromatin related proteins (Scher et al., 2007). The

bromodomain and extra terminal domain (BET) family is a

subfamily of bromodomain containing proteins (BRDs), which

is composed of four proteins (BRD2, BRD3, BRD4 and BRDT)

(Gyuris et al., 2009). Therefore, epigenetic modifications and

protein translation can be regulated by affecting the BET family,

and protein translation regulation may inhibit the

transdifferentiation of fibroblasts into myofibroblasts through

transcriptional elongation or inhibition of SMADs signaling.

Studies have shown that in the mouse model of cardiac

hypertrophy induced by aortic coarctation, BRD4 down-

regulation can reduce collagen accumulation and inhibit

myocardial fibrosis by reducing the production of reactive

oxygen species (ROS) (Zhu et al., 2020, 4). In cardiac

fibroblasts, TGF-β1 leads to the production of ROS that

regulates the transdifferentiation of myofibroblasts. The

significant role of ROS in fibrosis can be initiated by TGF-β1/
SMADs signaling (Rhyu et al., 2005). BRD4 inhibition can reduce

the expression of TGF-β1 and p-SMAD2/3 triggered by Ang II,

thereby reducing ROS production to inhibit cardiac fibrosis and

relieve cardiac hypertrophy (Zhu et al., 2020, 4). It has also been

reported that BRD2 knockout can reverse cardiac hypertrophy,

cardiac fibrosis and cardiac dysfunction in rats with pathological

cardiac hypertrophy induced by isoprenaline (Lin et al., 2022).

The mechanism may be related to BRD2 regulating the

expression of citrate cycle gene, but the specific process is not

clear. Therefore, BET family may be a new therapeutic target

against MIF in pathological myocardial hypertrophy.

ER is an organelle involved in protein folding, lipid

biosynthesis and calcium homeostasis (Kaufman, 1999). ER

stress refers to changes in the intracellular environment that

interrupt protein processing, lead to the accumulation of

unfolded proteins in the endoplasmic reticulum and activate

the unfolded protein response (UPR) (Ron and Walter, 2007).

Although the causes of cardiac hypertrophy and fibrosis are

diverse, they may all be expressed in the form of ER stress

response in a common cellular mechanism (Luo et al., 2015a). At
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present, the mechanism of ER stress regulating myocardial

hypertrophy and interstitial fibrosis is not clear, but some

people have proposed that it may be related to involvement of

CaN-MEF2c signaling pathways in cardiomyocytes and TGFβ1-
SMAD2/3 signaling pathways in cardiac fibroblasts (Zhang et al.,

2010; Luo et al., 2015b). Studies have shown that 4-phenylbutyric

acid (4-PBA), an inhibitor of ER stress, can prevent myocardial

hypertrophy and interstitial fibrosis caused by pressure overload

by reducing ER stress (Luo et al., 2015a). 4-PBA inhibits ER stress

by directly targeting mutant and/or misfolded proteins in cells

and assisting appropriate protein transport to eliminate

intracellular UPR (Gonzales et al., 2015). In addition,

stimulator of interferon genes (STING), which mainly exists

in ER, has also been shown to affect myocardial hypertrophy

and fibrosis. In aortic coarctation induced cardiac hypertrophy

mice, STING knockout in cardiomyocytes inhibited ER stress

and the release of inflammatory factors, thereby inhibiting the

fibrosis of cardiac fibroblasts (Zhang et al., 2020). All these

indicate that inhibiting ER stress may be an effective

treatment strategy to improve MIF in pathological cardiac

hypertrophy.

Recently, the fundamental role of mitochondrial dysfunction in

fibrosis has noticeably attracted clinicians’ attention.

Cardiomyocytes are obligatory aerobic cells, and their survival

depends on oxidative metabolism and stable demand for energy,

which is provided by theirmitochondria.Mitochondrial dysfunction

is mainly manifested in mitochondrial structure and DNA damage,

as well as changes in cellular oxidative protein activity (Li et al.,

2020). Mitochondria are the main source of reactive oxygen species

(ROS), a byproduct of oxygen metabolism. When mitochondria are

dysfunctional, Ca2+ overload in mitochondria will lead to the

induction of oxidative stress and the loss of ATP synthesis,

resulting in an imbalance between biogenesis and the elimination

of reactive oxygen species.When the production rate of ROS exceeds

the detoxification rate of endogenous antioxidant defense, the

permeability transition pore of mitochondrial inner membrane

opens, which makes solute enter passively and leads to

mitochondrial osmotic swelling (Weber et al., 2013). Eventually,

these basic organelles degenerate and cardiomyocytes undergo

necrosis, followed by fibrosis. This mechanism of cardiomyocyte

necrosis “mitochondriocentric signal-transducer-effector “pathway.

One strategy to reduce myocardial fibrosis is an intervention

targeting mitochondria to prevent cardiomyocyte necrosis. The

aim of this mitochondrial targeted cardiac protection strategy is

to block the necrosis caused by the mitochondrial central signal

transduction pathway by preventing mitochondrial Ca2+-overload

under the sarcolemma. This includes the use of targeted antioxidants

or inhibition of the opening of mitochondrial intimal permeability

transition pores (Dai et al., 2011; Asemu et al., 2013; Segura et al.,

2014). Such strategies include nutrients (flavonoids), drugs

(cyclosporin A or third-generation ß-adrenoreceptor antagonists),

inhaled hydrogen or expressed microRNAs (Bomb et al., 2016). For

instance, some experiments have shown that in mice with ischemia-

reperfusion injury, miRNA-214 regulates cardiomyocyte Ca2+ by

inhibiting Na2+/Ca2+ exchange, preventing cardiomyocyte necrosis

caused by cytosol and mitochondrial Ca2+ overload, so as to play a

cardiac protective role (Aurora et al., 2012). In addition, it has also

been proposed that miR-574 regulates the expression of family with

sequence similarity 210 member A (FAM210A)and antagonizes

cardiac fibrosis in mice with cardiac hypertrophy caused by aortic

constriction. FAM210A acts as a novel regulator of the expression of

mitochondrial encoded proteins, while miR-574 restricts the

expression of FAM210A and may act as a molecular brake to

maintain mitochondrial homeostasis and normal cardiac function

(Wu et al., 2021).

6 Conclusion

MIF can be accompanied by pathological myocardial

hypertrophy caused by various heart diseases, which can be

induced by different stimuli in different heart diseases. In

patients with pathological myocardial hypertrophy, due to

different causes, the specific manifestations and characteristics of

MIF are also different. And in patients with pathological myocardial

hypertrophy, MIF affects their outcome and prognosis, so the

evaluation of the etiology and degree of MIF should be paid

attention to and are worthy of further investigation. Accordingly,

the diagnosis and treatment of MIF in pathological myocardial

hypertrophy should also be based on disease specificity and case-

specific analysis, so as to provide individualized management for

patients with pathological myocardial hypertrophy.Moreover, CMR

imaging and circulating biomarkers should be reasonably used to

ensure the accuracy and precision. Finally, although several anti-

MIF strategies have been proposed, most of these strategies are

idealized and difficult to implement in clinical practice, thus, the

transformation from theory to practice still needs to be developed.
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