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RNA-dependent RNA polymerase (RdRp) is a potential therapeutic target for the

discovery of novel antiviral agents for the treatment of life-threatening infections

caused by newly emerged strains of the influenza virus. Being one of the most

conserved enzymes among RNA viruses, RdRp and its inhibitors require further

investigations to design novel antiviral agents. In this work, we systematically

investigated the structural requirements for antiviral properties of some recently

reported aryl benzoyl hydrazide derivatives through a range of in silico tools such

as 2D-quantitative structure-activity relationship (2D-QSAR), 3D-QSAR,

structure-based pharmacophore modeling, molecular docking and molecular

dynamics simulations. The 2D-QSAR models developed in the current work

achieved high statistical reliability and simultaneously afforded in-depth

mechanistic interpretability towards structural requirements. The structure-

based pharmacophore model developed with the docked conformation of

one of the most potent compounds with the RdRp protein of H5N1 influenza

strain was utilized for developing a 3D-QSAR model with satisfactory statistical

quality validating both the docking and the pharmacophore modeling

methodologies performed in this work. However, it is the atom-based

alignment of the compounds that afforded the most statistically reliable 3D-

QSAR model, the results of which provided mechanistic interpretations

consistent with the 2D-QSAR results. Additionally, molecular dynamics

simulations performed with the apoprotein as well as the docked complex of

RdRp revealed the dynamic stability of the ligand at the proposed binding site of

the receptor. At the same time, it also supported the mechanistic interpretations

drawn from 2D-, 3D-QSAR and pharmacophore modeling. The present study,

performed mostly with open-source tools and webservers, returns important

guidelines for research aimed at the future design and development of novel anti-

viral agents against various RNA viruses like influenza virus, human

immunodeficiency virus-1, hepatitis C virus, corona virus, and so forth.
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Introduction

Influenza is a severe infectious respiratory disease caused in

humans mainly by influenza A and influenza B viruses, though

other strains like influenza C and D are also identified (Krammer

et al., 2018; Javanian et al., 2021). Influenza A virus is mainly

responsible for sporadic pandemic outbreaks and is regarded as

the most the deadliest strain of influenza due to its antigenic shift

and drift, whereas both influenza A and Bmay cause an epidemic

or seasonal influenza (Ziegler et al., 2018). Symptoms of

influenza may vary from mild upper respiratory infection

(characterized by fever, soar throat, runny nose, muscle pain

and fatigue) to lethal pneumonia (Jochems et al., 2018). Apart

from lung, influenza infection may also damage the

cardiovascular, muscular, central nervous system, and other

organ systems. Furthermore, highly pathogenic influenza

strains such as H5N1 and H7N9 have emerged in recent years

with considerably higher transmission and mortality rates

(Krammer et al., 2018; Sherman et al., 2019). Similar to other

RNA viruses more deadly variants of influenza A may emerge in

near future (Su et al., 2017). As far as therapeutic options are

concerned, three major classes of anti-influenza drugs are

available and these include 1) M2 proton channel inhibitors,

2) neuraminidase inhibitors and 3) polymerase basic protein

1 inhibitors (De Clercq, 2006; Principi et al., 2019). However,

drug-resistant mutations have been frequently reported both in

M2 and neuraminidase enzymes restricting the therapeutic

potential of the inhibitors of these proteins (Samson et al.,

2013; Digard et al., 2015; Principi et al., 2019). Therefore, to

improve the availability of therapeutic options for highly

resistant influenza strains, it is imperative that new

therapeutic targets of influenza are investigated properly in

the search for novel anti-influenza agents. RNA-dependent

RNA polymerase (RdRp) is one of such potential therapeutic

targets that is highly conserved among various strains of

influenza A as well as among other RNA viruses like zika

viruses, coronaviruses, hepatitis C virus, dengue virus,

norovirus, and measles (Stubbs and te Velthuis, 2014;

Venkataraman et al., 2018). RdRp is a vital enzyme for the

viral replication process, catalyzing the viral RNA template-

dependent development of phosphodiester bonds using a

metal ion-dependent mechanism (Picarazzi et al., 2020; Tian

et al., 2021). The RdRp is a heterotrimer composed of three

covalently-bound subunits, namely: PA − endonuclease subunit

polymerase acidic protein, PB1 − polymerase catalytic subunit

polymerase basic protein 1, and PB2 − cap-binding subunit

polymerase basic protein 2 (Massari et al., 2016; Ren et al.,

2021). Compounds disrupting the function of any of these

subunits or blocking the interactions between any two

subunits may therefore function as potential lead molecules

against influenza A infection. Indeed, two compounds namely

favipiravir and Xofluza (baloxavir marboxil) have been approved

for influenza treatment (Nagata et al., 2014; Takashita et al.,

2016). Nevertheless, teratogenicity was reported with favipiravir

treatment whereas Xofluza, being a PA subunit inhibitor, is

susceptible to bring about a mutation (I38/T/M) leading

towards significant reduction of its efficacy (Nagata et al.,

2014; Agrawal et al., 2020). Therefore, new RdRp inhibitors

acting on subunits other than PA, such as PB1, should be

studied thoroughly to obtain novel lead molecules against

influenza A. In a recent study, Liu et al. reported a series of

aryl benzoyl hydrazide derivatives as RNA-dependent RNA

polymerase inhibitors of influenza A (Liu et al., 2022).

Furthermore, preliminary mechanistic studies conducted by

the same authors suggested that these compounds may exhibit

anti-influenza virus activity by binding to the PB1 subunit of

RdRp (Liu et al., 2022). Besides, recent works showed that RdRp

inhibitors are promising potent anti-RNA virus drugs that may

ultimately be used for the treatment of the coronavirus disease

2019 (COVID-19) (Pachetti et al., 2020; Picarazzi et al., 2020;

Dejmek et al., 2021; Tian et al., 2021).

Ligand- and structure-based in silico modelling strategies

have been successfully employed in the past to design and

develop novel therapeutic agents (Sabe et al., 2021). In the

present work, we report cheminformatic modeling approaches

such as 2D and 3D-quantitative structure-activity relationships

(2D-QSAR and 3D-QSAR) to characterize the structural

requirements of the aryl benzoyl hydrazide derivatives

reported by Liu et al. (Liu et al., 2022) for owning higher

potency against influenza A. In the later study, the

synthesized compounds were primarily assayed against avian

H5N1 flu strain with 50% effective concentration (EC50) values

ranging from 9.3 nM to 86 μM. Clearly, such a large range of

biology activity for any focused library developed with

structurally similar compounds demands detailed in silico

investigations to identify crucial structural attributes for

higher biological potency. That is especially important since

the work of Liu et al. provided only the molecular docking of

one of the most potent ligands of this dataset and lacked a

detailed structure-activity relationship to explain the large

variations in the biological activity obtained for the

compounds. Apart from these ligand-based approaches, this

work also includes the development of a structure-based

pharmacophore model and it investigates both the binding

potential and the dynamic behavior of these compounds

against RdRp enzyme through molecular dynamics (MD)

simulations.

Materials and methods

Dataset collection and structure
preparation

Thirty aryl benzoyl hydrazide derivatives were collected from

the recently published work by Liu et al. (Liu et al., 2022). The
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anti-influenza activity of these compounds was reported against

the H5N1 strain and the cellular assays were performed in

MDCK cells by phenotypic cell protection (CPE) using the

cell counting kit (CCK-8) method. The 50% effective

concentration (EC50 in µM) values of these compounds were

log-transformed (pEC50 = −log10 (EC50/10
6) for subsequently use

as the response variables in both the 2D- and 3D-QSAR

modeling. The structures and biological activity of these

compounds are provided in the Supplementary Table S1. Note

that we did not alter the numbering of the dataset compounds

provided by Liu et al. (Liu et al., 2022). It is also worth

mentioning here that, even though these compounds are

structurally similar, according to the similarity analysis

conducted using the SIMSEARCH tool (Halder and Cordeiro,

2021a; the results of this analysis can be found in the

supplementary materials, Supplementary Text S1), a long

range of biological activity (with around four log unit

differences) was noted further justifying their thorough

in silico investigation. The SMILES notation of these

structures provided by Liu et al. (Liu et al., 2022) was

converted to.sdf file using Discovery Studio Visualization tool

and then numbered accordingly. These structures were then

standardized using the Standardizer tool of Chemaxon using

the following options: 1) add explicit hydrogen atoms, 2)

aromatize, 3) clean 2D, 4) clean 3D, 5) neutralize and 6) strip

salts. The standardized structures were further processed for the

2D- and 3D-QSAR modeling studies (ChemAxon, 2010).

2D-QSAR modeling

Descriptor calculation
Descriptors for the thirty aryl benzoyl hydrazide derivatives

were calculated using alvaDescv.2.0.4 (https://www.alvascience.

com/alvadesc/) (Mauri, 2020) under the OCHEM webserver

(Sushko et al., 2011). For the calculation of 3D descriptors,

the structures of the compounds were geometrically optimized

in this web platform using the Corina tool (Sadowski et al., 2002).

The calculated descriptors of these compounds were thenmerged

with the respective pEC50 of the compounds to form the dataset

for 2D-QSAR model generation.

Dataset division and model development
The dataset was divided into a training and a test set by the

activity sorting method using the Python based open-access SFS-

QSAR tool (https://github.com/ncordeirfcup/SFS-QSAR-tool)

(Halder et al., 2022) with starting point 2. The models were

developed in three stages. In the first stage, some selected

descriptors having higher overall interpretability were

considered in search for interpretable 2D-QSAR models.

These descriptors belong to the categories of constitutional

descriptors, functional group counts, 2D-atom pairs, drug-like

indices, ring descriptors, atom-centered fragments,

pharmacophore descriptors and molecular properties. In the

second stage, only 2D descriptors were applied for model

generation and finally, in the last stage all types of descriptors

were employed for model generation. The purpose here was to

understand whether the inclusion of 2D descriptors improved

the quality of the model to a considerable extent or not. Similarly,

in the third stage, we try to access whether 3D descriptors, the

values of which are sensitive to the specific 3D conformation, are

absolutely essential for characterizing the structural requirement

of the compounds or not. 2D-QSAR models were developed

using two feature selection algorithms, i.e.: 1) sequential forward

selection (SFS) and 2) the genetic algorithm (GA). The SFS based

model was developed using the newly developed open-access

SFS-QSAR tool (https://github.com/ncordeirfcup/SFS-QSAR-

tool) which resorts to the “Feature Selector” module of the

library Mlxtend (http://rasbt.github.io/mlxtend/) (Halder et al.,

2022). Data treatment was performed by setting a variance cut-

off of 0.0001 to remove constant and near-constant descriptors,

and a correlation cut-off of 0.99 to eliminate highly inter-

correlated descriptors. Even though a high correlation cut-off

was chosen, the cross-correlation matrix of each model was

examined to check for the presence of highly intercorrelated

descriptors. In the case of finding highly correlated descriptors,

the correlation cut-off was thereafter reduced. During model

development, four scoring functions of the “Sequential Feature

Selector” module were employed for feature selection, namely:

the determination coefficient (R2), the negative mean absolute

error (NMAE), the negative mean Poisson deviance (NMPD),

and the negative mean gamma deviance (NMGD). No cross-

validation was carried out during feature selection. GA-based

models were set-up by resorting to the open access tool

GeneticAlgorithm v.4.1_2 (accessed from https://dtclab.webs.

com/software-tools) (Ambure et al., 2015). In contrast to SFS,

which is considered a non-stochastic feature selection method,

GA follows stochastic algorithms to generate randomized models

and it employs tools such as cross-over andmutations to improve

the fitting of the independent variables with the response

variable. Similar to the SFS-QSAR modeling, a descriptor pre-

treatment was carried out during development of the GA-based

models. A maximum of five descriptors were initially allowed in

the 2D-QSARmodels and after confirming the best model, it was

checked whether the model truly requires five descriptors. The

latter was assessed using the SFS-QSAR tool by setting the “% of

CV increment” to 5. In so doing, the models were regenerated

with the condition that a descriptor is included in the model only

if its inclusion increases the leave-one-out (LOO) cross-validated

regression coefficient (Q2
LOO) at least 5% with respect to the

existing model.

Statistical analysis of the models
The goodness of fit, robustness, and internal predictivity of

the final 2D-QSAR models were checked by a range of well-

known statistical metrics. Both the coefficient of determination,
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R2, the adjusted R2 (R2
Adj), the Fisher’s statistics (F-test), and the

mean absolute error (MAE) were used to measure the goodness

of fit of the models, whereas the internal cross-validation

coefficient Q2
LOO (leave-one-out) was used to check their

robustness and internal predictivity (Tetko et al., 2001;

Halder, 2018). The external validation metric R2
Pred was

employed to judge the external predictivity of the models

(Golbraikh and Tropsha, 2002). Apart from these, rm
2 metrics

such as rm
2
(LOO) and Δrm2

(LOO) were used as internal validation

parameters, while rm
2
(test) and Δrm2

(test) were used as external

validation parameters (Roy et al., 2009). The best QSAR model

was also checked for inter-collinearity among its descriptors.

Furthermore, the Y-randomization test was repeatedly run to

generate 1,000 models with randomized response variables to

check for chance correlations, and the parameter cRp
2 calculated.

A higher value for cRp
2 implies that the original model was not

developed by chance (Ojha and Roy, 2011).

Applicability domain of the models
In this work, the applicability domain of the models was

estimated by resorting to the so-called William’s plot, which is a

plot drawn between the leverage values and standardized

coefficients. If the leverage value of any data-point is larger

than the hat value h* (h* = 3p’/n, where p’ is number of

model’s descriptors + 1 and n is the number of data-points in

the training set), it is considered as a structural outlier. By

contrast, if the standardized residual of the data-point

is > ±2.5, it is considered as a response outlier (Roy et al., 2015).

3D-QSAR modeling

Alignment methods
The following two types of alignment methods were used in

the current work, namely: 1) atom-based alignment or

unsupervised rigid-body molecular alignment (Tosco et al.,

2011) and 2) supervised alignment based on the structure

based pharmacophore model. For the rigid body molecular

alignment, the 3D structures of the ligands were first minimized

using the “obminimize” function of OpenBabel tool and the

steepest descent method. The minimized structures were

subsequently submitted to generate 100 conformations

followed by alignment with the help of

rdMolAlign.GetCrippenO3A program of Rdkit. The Python

scripts used for atom-based alignment are provided in the

Github repository https://github.com/ncordeirfcup/

InsilicoModeling_RdRp (i.e., alignment.py). For the

structure-based pharmacophore modeling, the docked

structure of one of the most potent ligands with RdRp

protein was utilized and the StructureBasedPharmacophore

feature of the newly developed OpenPharmacophore (https://

github.com/uibcdf/OpenPharmacophore) was employed using

the options: “radius” as 1.0 and hydrophobic as “plip.” The

developed pharmacophore model was then used for screening

of all dataset molecules using both the EmbedLib.

MatchPharmacophore and EmbedLib.EmbedPharmacophore

functions of Rdkit. The Jupyter notebook files used for

setting up the structure-based pharmacophore model and for

screening of ligands with the later model can be found in the

Github repository https://github.com/ncordeirfcup/

InsilicoModeling_RdRp (i.e., files strbased_pharmacophore_

development.ipynb and strbased_pharmacophore_screen.

ipynb). The structure-based pharmacophore model was

developed without any modification of the code of

Openpharmacophore, as shown in the file strbased_

pharmacophore_development.ipynb.

Model development
3D-QSAR modeling was performed with the open-source

software named Open3DQSAR (Tosco and Balle, 2010). The

detailed methodologies of this tool have been discussed earlier

(Tosco and Balle, 2010). Briefly, this software uses a carbon and

volume-less positively (+1) charged probe for calculating steric and

electrostatic fields of the query chemicals, respectively. The pre-

treatment of the fields was carried out after setting a smart region

definition (SRD) cut-off level of 2.0 and also by removing N-level

variables. The Open3DQSAR uses SRD for variable grouping, based

on the closeness of variables in 3D space, as well as two different

variable selection algorithms, namely: Fractional Factorial Design-

based variable SELection (FFD-SEL), and the Uninformative

Variable Elimination-based Partial Least Square (UVE-PLS). The

predictive quality of the 3D-QSAR-based PLS models generated

from the compounds was examined using the coefficient R2 with its

standardized errors of calibration (SDEC), F-test results, Q2
LOO,

leave-two-out Q2 (Q2
LTO), leave-many-out Q2 (Q2

LMO, with five

groups, and 20 runs), and R2
Pred with its associated standardized

errors of prediction (SDEP) values. Additionally, to check if the

model was unique and not developed by chance, progressive

scrambling methods were run for the selected models by

applying the following criteria: critical value: 0.80, type: LMO

groups = 5, runs = 20, and scrambling = 20. The output of the

scrambling test appeared as “fitted q2 values” in Open3DQSAR and

is denoted asQ2
s in the current work. The low value of this parameter

as compared to Q2
LMO justifies the robustness of the generated 3D-

QSAR model. The contour maps were visualized with isocontour

values at PLS coefficients of +0.005 (green) and −0.005 (yellow) for

the steric filed and +0.003 (blue) and −0.003 (red) for the

electrostatic field. All plots for the 2D-QSAR and 3D-QSAR

models were generated using the matplotlib software.

Molecular docking analysis

The semi-rigid molecular docking of the selected dataset

compounds was conducted with the crystal structure of RdRp

(PDB: 6QPF) (Fan et al., 2019) collected from the Protein Data
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Bank (https://www.rcsb.org/) (Berman et al., 2003). The B-chain

of this crystal structure that represents the PB1 domain of the

protein (Liu et al., 2022) was selected from the docking analysis

with AutoDock Vina (version 1.1.2., The Scripps Research

Institute, La Jolla, CA, United States) (Trott and Olson, 2010).

To begin with, a blind docking was performed using a grid box

center located at the center of the macromolecule and grid box

dimension as 126 × 126 × 126 Å3. After locating the possible

binding site from this blind docking, a grid box of 40 × 40 × 40 Å3

dimension was located at X = 61.1, Y = 1.9 and Z = 7.1. The

missing chains of the protein were included using the Modeller

program (Eswar et al., 2014) under the Chimera platform

(Pettersen et al., 2004). The protein pdbqt file was prepared by

removing the water molecules, and adding hydrogen atoms and

Gasteiger–Marsili partial atomic charges (Halder et al., 2019).

The energy minimized structures of the ligands as described in

the previous section were converted to pdbqt forms and these

were subsequently submitted for Audock Vina-based docking

with an exhaustiveness equal to 45.

Molecular dynamics simulations

MD simulations were carried out using the software

package AMBER 20 (D.A. Case et al., 2021). The

PDB2PQR server (http://server.poissonboltzmann.org/

pdb2pqr) (Dolinsky et al., 2007; Bas et al., 2008) was

utilized to fix the protonation states of the amino acid

residues of each protein (at pH = 7.0) using the AMBER

forcefield and output naming scheme. The ff99SB and general

AMBER forcefield (GAFF) were employed to describe the

protein and inhibitor interactions, respectively. The ligand

parameterizations for the protein complex were performed

with the Leap program using GAFF in the Antechamber

(Wang et al., 2004; Hornak et al., 2006). MD simulations

were performed with a TIP3P cubic box (Jorgensen et al.,

1983) set with 8 Å distance around the apoprotein or protein

complex. The positive charges of the apoprotein and protein

complex were neutralized by adding chloride ions. The Partial

Mesh Ewald (PME) method was considered for the long-range

electrostatic forces with a cut-off of 12 Å (Halder and

Honarparvar, 2019). The SHAKE algorithm was used to

constrain all bonds involving hydrogen atoms. The energy

minimization of the system was performed in two steps. First,

only ions and water molecules were minimized within a

2000 step minimization process (1,000 steps of steepest

decent minimization followed by 1,000 of conjugated

gradient) using a restrained force of 500 kcal/mol on the

solute. Second, the whole apoprotein or protein complex

was relaxed by employing a 5000 step minimization process

(2,500 steps of steepest decent minimization followed by

2,500 of conjugated gradient). The minimized system was

heated up stepwise from 0 to 300 K with a weak harmonic

restraint of 10 kcal/mol keeping the solute fixed for 200 ps.

Then, a constant pressure equilibration at 300 K followed for

2 ns. Finally, MD simulations without any restriction were run

for 30 ns keeping constant the temperature (300 K) and

pressure (1 atm) (Halder and Honarparvar, 2019).

After completion of simulation, post-dynamics analysis over

the MD trajectories was performed using the PTRAJ and

CPPTRAJ modules implemented in AMBER to analyze the

root mean square deviation (RMSD), root mean square

fluctuation (RMSF) and average structure of the complex (Roe

and Cheatham, 2013). Furthermore, the molecular mechanics

generalized born surface area (MM-GBSA) (Srinivasan et al.,

1998) binding free energies of the protein-ligand complexes were

calculated using the MM-PBSA.py tool of Amber and by

employing 100 snapshots taken from the last 10 ns of the MD

trajectory. A detailed and in-depth description and discussion of

the MM-GBSA analysis applied here can be found in our recent

work (Halder and Cordeiro, 2021b). However, the entropic

contribution (TΔS) is not calculated since it is

computationally expensive for large protein complexes and its

accuracy may not always be ascertained (Berishvili et al., 2020;

Halder and Cordeiro, 2021b).

The energy contributions of the binding site amino acid

residues into the total binding free energies were computed using

the MM-GBSA per residue free energy decomposition method

with Amber MM-GBSA module (Srinivasan et al., 1998;

Genheden and Ryde, 2015; Halder and Honarparvar, 2019).

All energy components (van der Waals, electrostatic, polar

solvation, and nonpolar solvation contributions) were

calculated using 200 snapshots extracted from the last 10 ns

MD trajectories.

Results and discussions

2D-QSAR modeling

Two different methods namely SFS-MLR and GA-MLR were

applied separately for setting up 2D-QSAR linear models from a

set of interpretable descriptors, as well as 0D-2D and 0D-3D

descriptors. A summary of the obtained statistical results is

presented in Table 1.

It can be observed from Table 1 that, with increased number

as well as complexity of the descriptors, the overall predictivity

of the models also improves. GA-MLR clearly generated the

most predictive models based on interpretable and 0D-2D

descriptors. In case of the former, both the Q2
LOO and R2

Pred

values (= 0.843 and 0.842, respectively) show that this model is

not overfitted, at least. In contrast, the external predictivity

increased to a considerable extent when all 2D descriptors are

included to set up the model. However, a maximum predictivity

was obtained when all descriptors were deployed for model

development and in such a case, both feature selection methods
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yielded highly predictive models through the GA method

produced an MLR model that is slightly more predictive

than all the SFS-MLR models. Overall, the three developed

GA-MLR models were further processed and analyzed.

However, before finalizing these models, a test named “5%

of CV increment” using the SFS-QSAR tool was performed in

order to check whether all five descriptors are truly contributing

to their internal validation or not (Halder et al., 2022). To do so,

this tool checks if the inclusion of descriptor increases the Q2
LOO

to at least 5% of the existing model. For the current 2D-QSAR

modeling, it was more important because the training set

comprised 24 data-points and as such, the derived models can

contain a maximum of four or five descriptors (as per 1:5 ratio rule

that states that the number of descriptors and number of data-

points should not exceed 1:5). Interestingly, the model developed

with interpretable descriptors retained all five descriptors whereas

the model developed with 0D-2D descriptors ended up with three

descriptors, which significantly reduced the latter internal

predictivity judging from the obtained value for Q2
LOO (=

0.724). In contrast, the model developed with all (0D-3D)

descriptors retained four descriptors but its overall predictivity

did not change to a considerable extent as seen from the attained

values for Q2
LOO (= 0.858) and R2

Pred (= 0.923). Therefore, we

decided tomainly rely on the five-descriptormodel developedwith

interpretable descriptors (Model-1) and the four-descriptor model

developed with all (0D-3D) AlvaDesc descriptors (Mauri, 2020)

(Model-2). It is important to note that the four descriptors

appearing in Model-2 were also present in the model derived

with the scoring functions NMPD or NMGD. The equations

pertaining to Model-1 and Model-2 are given below in Table 2

and the observed vs. predicted plots of these models are shown in

Figure 1.

So far, we have demonstrated the satisfactory internal and

external predictivity of both models but is also important to

check the degree of multicollinearity among their variables in

addition to their uniqueness. By examining the cross-correlation

matrix, we found that Model-1 and Model-2 have a maximum

intercollinearity of 0.640 and 0.549, respectively. These values

TABLE 1 Summary of the results obtained from 2D-QSAR modeling performed with the selected interpretable descriptors, 0D-2D and all 0D-3D
descriptors a.

Method Interpretable descriptors (n =
3139)

0D-2D descriptors (n = 1904) 0D-3D descriptors (n = 417)

Scoring Q2
LOO R2

Pred Scoring Q2
LOO R2

Pred Scoring Q2
LOO R2

Pred

SFS-MLR R2 0.78 0.586 R2 0.834 0.733 R2 0.886 0.889

NMAE 0.742 0.726 NMAE 0.781 0.706 NMAE 0.830 0.c911

NMPD 0.560 0.314 NMPD 0.834 0.733 NMPD 0.886 0.889

NMGD 0.560 0.314 NMGD 0.807 0.693 NMGD 0.886 0.889

GA-MLR — 0.843 0.842 — 0.839 0.925 — 0.865 0.925

aThe number of descriptors used for model development are shown inside parenthesis. The best QSAR models found are highlighted in bold.

FIGURE 1
Plots of observed vs. predicted activity of 2D-QSAR (A) Model-1 and (B) Model-2.
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thus suggest that the descriptors of each regression-based model

are independent of each other. Next, the calculated cRp
2 values for

Models 1 and 2 were found to be 0.794 and 0.799, respectively,

indicating that both models are unique in nature (Ojha and Roy,

2011).

Finally, we assessed the applicability domain of these models

by examining the corresponding Williams plots, which are

shown in Figure 2. As can be seen, for Model-1, no structural

outlier was obtained but one response outlier was found. On the

other hand, Model-2 includes one structural outlier and one

response outlier. The structural outlier of Model-2 was retained

since this model satisfactorily predicted it.

The relative significance of the descriptors of Model 1 and

2 are shown in Figure 3 with respect to their standardized

coefficients.

Model 1 consisted of five molecular descriptors and among

these, B07[C-N] was found to have the maximum contribution.

This 2D atom pairs descriptor stands for the presence/absence of

C – N at a topological distance of 7. The positive correlation

associated with this descriptor suggests that a higher topological

distance between carbon and nitrogen atoms may improve the

biological activity of these compounds (Todeschini and

Consonni, 2000). Now from a mechanistic point of view, this

descriptor clearly pinpoints that the presence of carbon-

containing residues in the side chain of aromatic ring A

improves the activity against the influenza virus. For example,

the highly active compounds 11p and 11q possess this structural

characteristic that is lacking in low active compounds like 10n

and 10l. From the structures of these compounds, as shown in

Figure 4, one can see that steric or hydrophobic interactions with

FIGURE 2
Williams plot describing the applicability domain of (A) Model-1 and (B) Model-2.

TABLE 2 Equations and statistical results of the final 2D-QSAR models.

Model Equation Statistical results a

1 pEC50 = −9.310 (±1.686) Ntraining = 24; R2 = 0.898; R2
Adj = 0.870

+1.966 (±0.455) B07[C-N] F(18;5) = 31.727; Q2
LOO = 0.843

+0.158 (±0.036)Se MAE = 0.262; rm
2
(LOO) = 0.783; Δrm2

(LOO) = 0.080; Ntest = 8; R2
Pred = 0.842; rm

2
(test) = 0.809

−0.306 (±0.076) F08[C-C] Δrm2
(test) = 0.095

+1.278(±0.172) CATS2D_04_DL

−0.217(±0.192) CATS2D_02_DL

2 pEC50 = +15.092 (±1.306) Ntraining = 24; R2 = 0.889; R2
Adj = 0.866

−14.376 (±1.818) GATS6m F(19;4) = 38.14; Q2
LOO = 0.859

+0.869(±0.319) B08[C-N] MAE = 0.272; rm
2
(LOO) = 0.804; Δrm2

(LOO) = 0.068; Ntest = 6; R2
Pred = 0.923; rm

2
(test) = 0.790

–0.173 (±0.076) RDF120p Δrm2
(test) = 0.068

+0.571 (±0.115) Mor32s

aNtraining, Number of data-points present in the training set; Ntest, Number of data-points present in the test set.
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these residues may play important roles in binding of the

compounds with the receptors.

The second most influential descriptor of the model is

CATS2D_04_DL, which represent the CATS2D donor-

lipophilic at lag (i.e., topological distance) 4. CATS2D

descriptors are highly useful descriptors that pertain to the

topological distance between different pharmacophoric

features (Reutlinger et al., 2013). In this case, the hydrogen

bond donor and lipophilic features separated at topological

distance four are likely to favor higher anti-influenza activity.

The value of this descriptor remains consistently high in

compounds with high potency whereas its lowest value was

observed for 11c, a compound found to display a low activity

against influenza virus. In Figure 5, we compare this structure

with one of its closest analogues − i.e., compound 10c, to find if it

is actually the substitution of ring B (cf. Figure 5) that brings

about substantial changes in their biological activities. When the

bromine atoms of 10c are replaced with fluorine, the biological

activity drops indicating that the hydrophobicity of ring B plays a

crucial role in the interaction of these compounds with the

receptor. However, another CATS2D descriptor (i.e.,

CATS2D_02_DL) was found to have a negative correlation

with the biological activity. This indicates that the hydrogen

bond donor ability and lipophilicity play important roles in

determining the biological activity but their positions in the

molecules are also significant as low distances between these

pharmacophoric features are detrimental to the biological

activity. Some compounds for which high values of the

CATS2D_02_DL are found are 11f and 11s (Figure 5).

As it is observed from Figure 3, the third contributing feature

of the Model-1 is another 2D atom-pair fragment descriptor F08

[C-C], which stands for the frequency of C – C at a topological

FIGURE 3
The relative significances of the molecular descriptors appearing in the 2D-QSAR models. The description of each descriptor can be found in
the text.

FIGURE 4
Importance of the B07[C-N] descriptor with respect to the dataset compounds.
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distance of 8. With a negative correlation with pEC50, this

descriptor indicates that apart from the distance between

carbon and nitrogen atom, the distance between two carbon

atoms also rules out the biological activity. Electronegativity

appears as another important factor since the descriptor

named Se (sum of the atomic Sanderson electronegativities

scaled on the Carbon atom) displayed positive influence on

the higher anti-influenza property of these compounds. Even

though significance-wise this descriptor comes last in the model,

clearly highlighting the importance of electronegativity, which

was found to be a major contributor in drug receptor interactions

as observed from the 3D-QSAR modeling (described below)

(Todeschini and Consonni, 2000).

Model 2 contains four descriptors, two of which belong to the

class of 2D descriptors and the remaining two fall under the

category of 3D molecular descriptors. Clearly, GATS6m is the

most significant descriptor and this 2D autocorrelation

descriptor represents the Geary autocorrelation of lag

6 weighted by mass (Todeschini and Consonni, 2000). In

autocorrelation descriptors, the molecular structures of the

chemical compounds are represented by graphs and the

physicochemical properties of their atoms (e.g., mass, volume,

electronegativity) are assigned to the vertices of the graph

(Hollas, B., 2003). Such descriptors thus depict the

distribution of a certain physicochemical property in the

topological structure and GATS6m thus represents the

distribution of atomic mass at a distance of six bonds in the

topological structure of molecule. GATS6m is originated from

the Geary coefficient (Geary, R.C., 1954), which is basically a

distance-type function, the values of which vary from zero to

infinity. Strong autocorrelation produces low values of this index;

moreover, positive autocorrelation produces values between

0 and 1, whereas negative autocorrelation generates values

larger than 1. A negative correlation between GATS6m and

pEC50 indicates that the high value of this descriptor is

detrimental to biological activity. Interestingly, the 2D-atom

pair descriptor B08[C-N] also appears in this model and this

descriptor is highly similar to the B07[C-N] descriptor (shown in

Figure 4), which was found to be the most significant descriptor

of Model-2. Note that both B08[C-N] and B07[C-N] descriptors

have positive correlations with the biological activity signifying

that the distance between carbon and nitrogen atoms separated

with topological distance 7 or 8 plays a crucial role in governing

the biological activity of these compounds. The remaining two

descriptors of Model-2 suggest that the intrinsic state and

polarizability of the compounds are also important

contributors to their biological properties. Mor32s, which is

the third most significant descriptor of the Model-2, is a 3D-

Morse descriptor that stands for signal 32/weighted by the

intrinsic-state (Devinyak et al., 2014). The values of 3D-Morse

descriptors are extremely sensitive to the starting geometries of

the chemical structures as these descriptors originated from the

equations used in electron diffraction studies. Apart from

Mor32s, RDF120p is another 3D-descriptor that was used to

set-up Model-2 and this descriptor stands for the Radial

Distribution Function – 120 weighted by polarizability. The

values of RDF descriptors largely depend on the interatomic

distances (González et al., 2008). Similar to Mor32s, this RDF

descriptor depicted a positive correlation with the biological

activity. Details of Model-1 and Model-2 including the

descriptors of these models and dataset division information

can be found in Supplementary Table S1.

The 2D-QSAR models (Model-1 and Model-2) may be

generated using the.csv files provided in the Github repository

FIGURE 5
Significance of the CATS2D descriptors with respect to the dataset compounds.
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https://github.com/ncordeirfcup/InsilicoModeling_RdRp using

web-application https://amit-mlr.herokuapp.com/to check

details of the models such as the predicted activities,

correlation matrix, plots, etc.

Structure based pharmacophore mapping

In order to further understand how these compounds may

actually interact with the receptor (i.e., the RdRp enzyme), one of

the most potent compounds (e.g., 11q) was docked with the

B-chain of the RdRp protein of H5N1 (PDB: 6QPF). It is

important to note here that Liu et al. previously performed a

semi-rigid molecular docking with the same compound against

this protein and the blind docking analysis performed by the

authors identified the most promising ligand binding site for the

ligand (Liu et al., 2022). In the current work, we repeated the

blind docking experiment using Autodock Vina and find the

same result obtained by Liu et al. (Liu et al., 2022). Therefore, the

same binding site was chosen for the present semi-rigid

molecular docking with Autodock Vina. The best docked pose

(depicted in Figure 6) with a binding score of −7.5 kcal/mol was

then selected for constructing the structure-based

pharmacophore mapping using the newly developed tool

Openpharmacophore. After deriving the pharmacophore, the

redundant feature was removed and the final pharmacophore

contained four features that are also depicted in Figure 6.

The docked pose of compound 11q depicted hydrogen bond

interactions with Val660 and Thr662. The carbonyl group of the

compounds formed hydrogen bind interactions with both Val

660 and Thr662, whereas the secondary amine of hydrazine

formed a hydrogen bond interaction with the Thr660 residue of

the RdRp protein of H5N1. Major hydrophobic interactions are

obtained with the residues Ile637, Ala659, Ala521, Val632 and

Pro627. These interactions were found to generate four

pharmacophore features in the structure-based

pharmacophore mapping and these are two hydrophobic

interactions, one hydrogen bond acceptor and one hydrogen

bond donor features. Interestingly, even though hydrophobic

interactions were reported with the morpholine side chain of

11q, no feature was generated during structure-based

pharmacophore mapping. However, significance of both these

docking and pharmacophore model should be established

through proper validation. Therefore, the generated structure-

based pharmacophore was first used to screen as well as align all

dataset compounds (including 11q). Save for compound 11c that

appeared as a structural outlier in the 2D-QSAR Model-2, all

compounds were embedded into the pharmacophore. The failure

of this compound against the pharmacophore model may be

justified from the fact that the hydrophobicity of ring B (ring B is

shown in Figure 5) was too low as revealed from the 2D-QSAR

analysis. Since 11c was one of the least active compounds in the

current dataset, the pharmacophore aligned conformations of the

rest of the compounds were used for deriving the 3D-QSAR

model that is discussed in the next section.

3D-QSAR modeling

In order to further understand how these compounds may

interact with the receptor, a 3D-QSAR analysis was performed

with the 29 compounds that were properly embedded within the

structure-based pharmacophore. It is well known that unlike 2D-

QSAR, the 3D-QSAR methodology largely depends on the

bioactive conformers of the ligands and their alignment

(Verma et al., 2010). The development of the structure-based

FIGURE 6
(A) Interactions obtained from molecular docking of compound 11q with the RdRp receptor (PDB: 6QPF) and (B) structure-based
pharmacophore mapping aligned with 11q.
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pharmacophore and alignment of the dataset compounds with

this pharmacophore was discussed in the previous section. The

aligned conformations were randomly divided into 23 training

and six test set compounds (i.e., compounds 10a, 10b, 10m, 10q,

10y and 11j, check the Supplementary Table S1). The 3D-QSAR

models were generated by employing two techniques – i.e., FFD-

SEL and UVE-PLS, as implemented in Open3DQSAR. The

statistical quality of the models is depicted in Table 3, from

which it may be inferred that the pharmacophore aligned

conformations adequately characterize the experimental

activity exhibited by the compounds present in the current

dataset. Evidently, the UVE-PLS technique is found to be

more successful in deducing a more predictive 3D-QSAR

model when compared to the FFD-SEL technique. This model

was produced with a Q2
LOO of 0.718 and a R2

Pred of 0.672.

Randomization or scrambling test suggested that the model

was indeed unique in nature as the Qs
2 value was found to be

0.432 that is considerably lower than all international validation

parameters including Q2
LMO

. Significantly, these results of 3D-

QSAR validate the developed structure-based pharmacophore

which in turn justifies the interactions obtained from molecular

docking. Therefore, it may be inferred that these aryl benzoyl

hydrazide derivatives may actually bind to the binding site

proposed earlier by Liu et al. (Liu et al., 2022) and the derived

structure-based pharmacophore model may indeed be used to

screen and predict the anti-viral activity of these compounds.

Even though structure-based pharmacophore successfully

aligned the conformations of the ligands to generate predictive

3D-QSAR models, we also resorted to an atom-based alignment

(or rigid body molecular alignment) of the structures to check if

any better 3D-QSAR model may exist or not. The results of 3D-

QSAR models developed with atom-based alignment are

presented in Table 3, which in turn clearly demonstrate that

the statistical results of these models are considerably improved

as compared to the models generated from a structure-based

alignment. It is however not surprising because structure-based

alignment may sometime be less equipped to properly align the

structures as compared to unsupervised rigid body alignment

(Tosco et al., 2011). The UVE-PLS based 3D-QSAR model

produced with structure-based alignment definitely points out

the significance of the pharmacophoric features. Nevertheless, on

the basis of statistical significance, we decided to rely on the

UVE-PLS based 3D-QSAR models developed with atom-based

alignment as far as the mechanistic interpretation is concerned.

The observed vs. predicted plots of these two UVE-PLS models

are shown in Supplementary Figure S1. From Table 3, it is

observed that both FFD-SEL and UVE-PLS techniques

generated highly predictive models though the later model

was finally selected since it was found to be slightly more

predictive (on the basis of average Q2
LOO and R2

Pred) and at the

same time, it was generated with a smaller number of

components. The electrostatic and steric contour maps of thus

the UVE-PLS model with Q2
LOO of 0.892 and R2

Pred of 0.749 are

presented in Figure 7. Randomization test performed with

Open3DQSAR generated a Qs
2 value of 0.651 that was far less

than the original Q2
LMO value depicting that the model was not

developed by chance.

The contributions of steric and electrostatic fields found in

the best 3D-QSAR models were 0.69 and 0.31, respectively.

Therefore, steric effects mainly contributed to the model

development. First, the steric positive fields were found near

the substituents of aromatic chain A (cf. Figure 4) depicting bulky

substituents and leading to higher biological activity. This

information was also extracted from our 2D-QSAR analysis

(Figure 4). As it is observed from Figure 7, the most potent

derivative 11p contains a side chain that is properly inserted into

the steric favorable fields, whereas 10l, being the least biologically

active compound, does not contain any side chain to insert into

TABLE 3 Statistical results of 3D-QSAR analysis.

Parameter a Structure-based alignment Atom-based alignment

FFD-SEL UVE-PLS FFD-SEL UVE-PLS

PC 2 2 3 2

Ntraining 23 23 23 23

F-test 224.81 363.96 245.31 256.59

R2/SDEC 0.957/0.234 0.973/0.186 0.970/0.180 0.962/0.220

Q2
LOO/SDEP 0.662/0.660 0.718/0.603 0.877/0.397 0.892/0.374

Q2
LTO/SDEP 0.620/0.700 0.685/0.637 0.871/0.407 0.880/0.380

Q2
LMO/SDEP 0.570/0.742 0.637/0.682 0.842/0.448 0.871/0.405

NTest 6 6 6 6

R2
Pred/SDEP 0.672/0.570 0.672/0.587 0.760/0.502 0.749/0.513

Qs
2 ND 0.432 ND 0.651

aPC, Number of principal components.
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this steric field. However, more importantly, an electropositive

unfavorable field exists close to this steric field indicating that

substituents in ring A with a negative partial charge or electron

rich elements favor higher biological activity. Even though this

information is however not reflected conspicuously in the 2D-

QSAR analysis, pharmacophore mapping or docking analyses

pinpoint some highly active compounds that indeed hold side

chains with electronegative atoms, such as oxygen. The aromatic

ring B on the other hand, is found to be close to electropositive

unfavorable field indicating that positive partial charge or

electron deficient elements favor higher potency. This

information is however consistent with the docking analysis

where this ring engages in π-alkyl or related interactions (such

as π- π) that are favored by the reduced electron density of

aromatic ring B. This field should also be produced on the basis of

the fact that the substitution of higher electronegative fluorine

atom with less electronegative atoms (such as bromine)

improved the potency of the compounds, as shown in Figure 5.

It is worth mentioning here that we also attempted to develop

3D-QSAR models with docking-based alignment in which each

compound was docked at the proposed binding site and the best

pose obtained at that binding cavity was selected for 3D-QSAR

FIGURE 7
Contour maps obtained from the best 3D-QSAR model (Green: Steric favorable, Blue: Electropositive favorable; Red: Electronegative
favorable). (A) Aligned conformations of all compounds, (B) the best active compound 11p and (C) the least active compound 10l.

FIGURE 8
Trajectory analysis results obtained for 30 ns MD simulations: (A) The RMSD plots of the apoprotein (6QPF), protein complex (6QPF + 11q) and
docked ligand (11q); (B) RMSF plots of the apoprotein (6QPF) and protein complex (6QPF + 11q).
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modeling. However, the docking-based alignment failed to

produce predictive models (see Supplementary Table S2) as

the models constructed with the other two alignment

techniques as shown in Table 3.

Molecular dynamics simulations

Finally, MD simulations were performed with the docked

structure of compound 11q with the B-chain of RdRp protein to

assess the dynamic behavior of the ligand and the complex. At the

same time, we wanted to verify if the ligand is stabilized at the

proposed binding site and if the proposed structural

requirements comply with the MD simulation results or not.

It is noteworthy that since the full structure of RdRp is relatively

large, only the B-chain of (PB1 domain of the protein) of this

protein was investigated by MD. Both the apoenzyme and the

complex for MD simulation analysis were used for the

comparative analyses. After 30 ns run, the trajectory analysis

was done to derive the plots of RMSD and RMSF that are

presented in Figure 8. Both apoprotein and complex showed

slightly higher RMSD values (most possibly due to the fact that

isolated B-chain and not the entire protein was used in the MD

simulations as the main objective was to focus on ligand stability

and its interactions at the proposed binding cavity) but the

RMSD of the complex was found to be reduced than that of

the apoenzyme, indicating that binding of the ligand slightly

changed the overall fluctuations of the protein. However, the

bound ligand became stabilized after 5 ns run indicating that the

conformation therein achieved is highly stabilized. From the

RMSF plot, it is also visible that as compared to the apoprotein,

the complex achieved considerably less fluctuations in the

proposed binding region that consists of amino acid residues

between 550 and 710, suggesting that the binding of the ligand

should have provided stability in this region.

To further understand whether the interactions of compound

11q remained similar to that of its proposed docked pose during

the 30 ns run, the average structure of the ligand-bound complex

gathered from the MD trajectory was analyzed. The interactions

obtained from the average pose are depicted in Figure 9 whereas

the average distance and types of interactions are shown in

supplementary materials (Supplementary Table S3). The 3D

overview of the structures depicting the docked pose and the

average structure of the protein-ligand complex is shown in

supplementary materials (Supplementary Figure S2).

Noticeably, the interactions obtained after the MD

simulation were partially similar to those obtained from the

docked pose. For example, the hydrophobic interaction of

morpholine residue with Pro627 as well as the hydrophobic

interaction of aromatic ring A with Ala659 remained intact.

These suggest that the ligand remained in the proposed binding

site during the MD simulation. However, the polar interactions

with hydrazide moiety as well as the interacting amino acid

residues with aromatic chain B (cf. Figure 4) altered during the

simulations. It is mainly due to the fact that the proposed binding

site is adjacent to flexible loops and the rotatable hydrazide

moiety of the ligands also imparts flexibility to the aromatic

chain B. The change in the conformation of the ligand during

1–7 ns MD simulation is noticeable in the ligand RMSD plot

(shown in Figure 8A). Interestingly, these new interactions

comply with the mechanistic interpretations obtained from

the various in silico analyses reported in the current work. For

example, the significance of steric residue containing carbon

atom attached to an aromatic ring A (cf. Figure 4, observed in 2D-

QSAR and 3D-QSAR analyses) is established from this pose since

this moiety is associated with multiple hydrophobic interactions.

FIGURE 9
Major ligand-receptor interactions were obtained in (A) molecular docking and (B) average structure of the protein ligand complex.
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Consequently, the importance of pharmacophoric features

obtained in the structure-based pharmacophore mapping is

also confirmed except for the hydrogen bond donor feature

that is shifted from one nitrogen of hydrazide to another.

After careful observation, we found that the Tyr657 moiety,

which forms hydrogen bond interaction with the ligand may also

be accessible to both -NH residues of the hydrazide moiety.

Moreover, Tyr705 residue forms π-π interactions with the

aromatic ring B, indicating that electron distribution of this

ring may be crucial for binding with the receptor and this

information complies with the 3D-QSAR model since

the negative electrostatic contour map (red colored) was

found to be present near the aromatic chain B. The bromine

atoms of aromatic ring B also establish hydrophobic interactions

justifying the appearance of hydrophobic pharmacophoric

feature with this ring. The same justification holds true for

the aromatic chain A.

In addition, both MM-GBSA and per-residue decomposition

analyses were performed in order to further understand the

binding stability and interaction profiles of compound 11q.

The MM-GBSA analysis yielded an enthalpic contribution

(ΔH) of binding free energy as high as −46.23 kcal/mol (see

Supplementary Table S4 in supplementary materials). By

analyzing its components separately, the van der Waal

interaction energy (ΔEvdW) was found to be −53.05 kcal/mol

whereas the electrostatic energy (ΔEelec) −9.70 kcal/mol. As can

be seen in Figure 9, the hydrophobic interactions clearly make the

major contributions in the ligand-receptor binding. The total

solvation free energy (ΔGsolv) was estimated as +16.52 kcal/mol.

The results of the per-residue decomposition analysis are

depicted in Figure 10. The electrostatic interactions were

found to be significant with amino acid residues such as

Asn518, Glu656, Tyr657 and Asp658. The van der Waals or

hydrophobic interactions were prominent with His634, Ala659,

Val660, Pro701, Ser702 and Tyr705. Noticeably, most of these

interactions were already revealed by the molecular docking (see

Figure 9) and the amino acid residues that had high polar

solvation energy include Asn518, Glu656, Tyr657 and Asp658.

It is worthmentioning here that molecular docking performed by

Liu et al. reported halogen bong interactions with one of the

bromine atoms of 11q as one of the most important interactions

(Liu et al., 2022). In our MD simulation analyses however, such

halogen bond interactions were not found since the per residue

decomposition analysis depicted the interactions with bromine

atoms as hydrophobic in nature.

Conclusion

In the present study, various in silico analyses have been

performed one by one in a systematic manner to understand

the structural requirement of aryl benzoyl hydrazide

derivatives as anti-viral agents against influenza virus.

Within the scope of this work, we attempted to understand

possible binding mechanism of these compounds against the

RdRp protein of H5N1 of influenza virus. Being one of the

most versatile and indispensable enzymes of RNA viruses, this

enzyme requires a detailed investigation for the discovery of

new antiviral agents. Even though the compounds of the

dataset had high structural similarities, these were found to

have high variations in their antiviral activity. For that reason,

in this work, we tried to systematically explain the variations

obtained in the antiviral activity of these compounds with

respect to their structural attributes. Liu et al., who reported

these novel aryl benzoyl hydrazide derivatives, experimentally

discovered the PB1-domain of RdRb protein and identified its

possible binding mode using molecular docking. In this work,

molecular docking was utilized to construct the structure-

based pharmacophore mapping and it was followed by MD

simulations to ensure the dynamic stability of the docked

ligand at the proposed binding site of the receptor. Moreover,

the binding interactions obtained from the MD simulation

complied well with other in silico approaches such as 2D-

QSAR, 3D-QSAR as well as pharmacophore modeling. With

high predictive accuracies, these cheminformatic models may

be utilized for the design of novel derivatives as anti-influenza

virus agents. On the other hand, the proposed binding site of

the RdRp protein may be utilized to develop novel compounds

with inhibitory potency against this enzyme. Overall, this

work provides a wide range of important guidelines to plan

the design of new antiviral agents through the inhibition of

RdRp enzyme. As per the requirement of a recent health

emergency, new antiviral drugs are required to combat

against novel corona virus. In this scenario, this study

encourages researchers for the development of more

promising anti-RNA virus drugs which may be eventually

useful for the COVID-19 treatment. More importantly,

various in silico investigations performed in the current

work utilized non-commercial open-access tools and

therefore encourages open science.

FIGURE 10
Results of the per-residue decomposition analysis obtained
from the MD simulation of the 11q-RdRp complex.
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