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Introduction: Renal interstitial fibrosis is a common pathophysiological change in

the chronic kidney disease (CKD). Nicotinamide adenine dinucleotide (NAD)-

dependent deacetylase sirtuin 6 (SIRT6) is demonstrated to protect against kidney

injury. Vitamin B3 is the mostly used form of NAD precursors. However, the role of

SIRT6 overexpression in renal interstitial fibrosis of CKD and the association between

dietary vitamin B3 intake and renal function remain to be elucidated.

Methods: Wild-type (WT) and SIRT6-transgene (SIRT6-Tg) mice were given with

high-adenine diets to establishCKDmodel. HK2 cells were exposed to transforming

growth factor β1 (TGF-β1) in vitro to explore related mechanism. Population data

from Multi-Ethnic Study of Atherosclerosis (MESA) was used to examine the

association between dietary vitamin B3 intake and renal function decline.

Results: Compared to WT mice, SIRT6-Tg mice exhibited alleviated renal

interstitial fibrosis as evidenced by reduced collagen deposit, collagen I and

α-smooth muscle actin expression. Renal function was also improved in SIRT6-

Tg mice. Homeodomain interacting protein kinase 2 (HIPK2) was induced

during the fibrogenesis in CKD, while HIPK2 was downregulated after

SIRT6 overexpression. Further assay in vitro confirmed that SIRT6 depletion

exacerbated epithelial-to-mesenchymal transition of HK2 cells, whichmight be

linked with HIPK2 upregulation. HIPK2 was inhibited by SIRT6 in the post-

transcriptional level. Population study indicated that higher dietary vitamin

B3 intake was independently correlated with a lower risk of estimate

glomerular filtration rate decline in those ≥65 years old during follow-up.

Conclusion: SIRT6/HIPK2 axis serves as a promising target of renal interstitial

fibrosis in CKD. Dietary vitamin B3 intake is beneficial for renal function in the old

people.
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Introduction

Chronic kidney disease (CKD) is highly prevalent in the

world, especially in those with diabetes, hypertension as well

as the old population (Carney, 2020; Collaboration, 2020).

Although the initial etiology varies in CKD patients, renal

interstitial fibrosis is the common and final pathological

change (Ruiz-Ortega et al., 2020). Renal interstitial fibrosis

is characterized by abnormal accumulation of extracellular

matrix, leading to progression to end-stage renal disease

(ESRD) (Livingston et al., 2016; Luo et al., 2018). Notably,

tubular epithelial cells are of large plasticity, which undergo

epithelial-to-mesenchymal transition (EMT) in response to

renal injury. Tubular epithelial cells increasingly express α-
smooth muscle actin (αSMA) and produce collagen to

potentiate fibrotic pathogenesis in CKD (Liu et al., 2019;

Bozic et al., 2020).

Sirtuin 6 (SIRT6) belongs to the conserved nicotinamide

adenine dinucleotide (NAD+)-dependent chromatin

deacetylases family, which is implicated in genomic

stability, inflammation and energy metabolism regulation

(Chang et al., 2020). Overexpressed SIRT6 is demonstrated

to protect against acute kidney injury (Li et al., 2018; Zhang

et al., 2019). SIRT6 also impedes diabetic nephropathy by

mitigating podocyte and proximal tubules injury (Huang

et al., 2017; Muraoka et al., 2019; Yang et al., 2020).

Hyperactivation of transforming growth factor β (TGF-β)
signaling is the master inducer of fibrosis pathogenesis

(Meng et al., 2016). SIRT6 deficiency significantly activates

TGF-β signaling and exacerbates aging-related organ fibrosis

(Maity et al., 2020). Meanwhile, knockdown of

SIRT6 aggravates unilateral ureteral obstruction-induced

renal fibrosis (Cai et al., 2020). As previous study shows

that SIRT6 is upregulated during renal injury (Cai et al.,

2020), whether further SIRT6 overexpression is capable of

blocking CKD-associated renal interstitial fibrosis remains to

be elucidated.

Homeodomain interacting protein kinase 2 (HIPK2) is a

nuclear serine/threonine kinase and initially discovered as a

corepressor of NK homeoproteins (Choi et al., 2013).

Recently, HIPK2 is regarded as a central contributor to renal

fibrosis and accounts for multiple pro-fibrosis signaling pathways

including TGF-β, Wnt/β-catenin and Notch pathway (Jin et al.,

2012; Xiao et al., 2020). Inhibiting of HIPK2 also exhibits a

remarkable alleviation in renal fibrosis (Liu et al., 2017; Xu et al.,

2019). However, its potential regulation by SIRT6 is still

undetermined.

NAD is a critical co-enzyme involved in cellular physiological

function, which determines the activity of diverse enzymes

including sirtuins, PARPs, CD38 and so on (Chini et al.,

2021). Although activator of SIRT6 is unavailable in clinical,

intervention in NAD metabolism might be an alternative

strategy. In fact, emerging evidence suggests that NAD level

declines in kidney injury, while NAD supplements was

demonstrated to protect against kidney diseases (Katsyuba

et al., 2018; Manrique-Caballero et al., 2021; Bignon et al.,

2022). Supplements with different forms of vitamin B3, the

NAD precursors, are also demonstrated to improve

SIRT6 activity and expression (Diani-Moore et al., 2017; Hou

et al., 2018; Kim et al., 2022; Ru et al., 2022). Several NAD

precursors have been tested in clinical, and vitamin B3 as the

simple and mostly use form of NAD precursor shows a

promisingly positive result (Bagcchi, 2015; Dollerup et al.,

2018; Pirinen et al., 2020). Even though, the effect of dietary

vitamin B3 intake on renal function progression remains

unknown.

In this study, we generated SIRT6-transgenic (SIRT6-Tg)

mice to see the protective effect of SIRT6 overexpression in CKD-

associated renal interstitial fibrosis. Upregulation of HIPK2 in

fibrotic kidney and tubular epithelial cells undergoing EMT was

also blocked after SIRT6 overexpression. Using population data

from MESA, we found that higher dietary vitamin B3 intake is

related to lower risk of renal function decline in the old people.

Our finding suggested an involvement of SIRT6/HIPK2 axis in

renal interstitial fibrosis and provided a promising target in CKD

prevention.

Materials and methods

Study population

The population data was obtained from the Multi-Ethnic

Study of Atherosclerosis (MESA) dataset. The detailed design

and examination of MESA have been described previously

(Bild et al., 2002). Briefly, MESA is a prospective observational

cohort study, which recruited 6,814 participants between July

2000 and September 2002 from different races. In this study,

we included participants with baseline dietary vitamin

B3 intake and estimate glomerular filtration rate (eGFR)

measurements at Exam1 (2000–2002) and follow-up eGFR

at Exam3 (2004–2005). The study flowchart was presented in

Supplementary Figure S1. Of the 6,814 participants, those

with missing covariates (n = 220), missing dietary vitamin

B3 and total energy intake data (n = 546) and missing follow-

up eGFR data from Exam 3 (n = 789) were excluded. Adjusted

dietary vitamin B3 intake was calculated as vitamin B3 per

1,000 kcal total energy intake per day. Renal function decline

was defined as ≥10% drop in eGFR according to the baseline

(Huang et al., 2021).

Diet assessment

The usual diet of participants was characterized using a

self-administered 120-item food frequency questionnaire
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(FFQ), which included the type and frequency of foods

consumed over the past year. Participants were recorded

with the serving size (small, medium or large) and

frequency of consumption (average times per day, week or

month), with corresponding weight estimated according to

National Health and Nutrition Examination Survey data.

Approximate amounts of dietary vitamin B3 intake was

imputed with the DietSys Nutrient Analysis Program

(Nettleton et al., 2006; Gao et al., 2021).

Animal experiments

Eight-week-old C57BL/6J mice were obtained from the

Laboratory Animal Center of Sun Yat-sen University. SIRT6-

Tg mice with C57BL/6J background were generated and bred

as previously reported (Li et al., 2022). The mice were

randomly given a chow diet as the control group, or a high

adenine diet (0.25% adenine and 1.2% phosphorus) for

12 weeks as the CKD-related renal fibrosis group. All mice

were housed in a constant temperature and a 12 h light-dark

cycle with free access to water and food. The kidneys were

harvested for further research. The animal experiment was

conducted according to the animal ethical standards and

approved by the Ethics Committee of Zhongshan School of

Medicine, Sun Yat-sen University.

Cell culture

Human renal tubular epithelial cells line (HK2 cells) was

purchased from the American Type Culture Collection and

cultured in Dulbecco’s modified Eagle’s medium/F12

containing 10% fetal bovine serum (FBS) (Gibco). To induce

cellular fibrotic model, TGF-β1 (R&D Systems) was added into

the medium for 48 h. For SIRT6 depletion, HK2 cells were

transfected with control small interfering RNA (siRNA) and

SIRT6 siRNA (IGE Biotechnology, China) using Lipofectmaine

RNAiMAX (Invitrogen) according to the manufacturer’s

instructions. The sequence of SIRT6 siRNA was AGTTCG

ACACCACCTTTGA (5′-3′).

Western blot analysis

Cells or tissue homogenates were added with RIPA lysis

buffer on ice for 15 min. The lysates were collected and

centrifuged at 13000 rpm at 4°C for 20 min. Proteins were

separated on sodium dodecyl sulfate polyacrylamide gel

following with transferred to PVDF membranes (Millipore).

The membranes were blocked with 5% skim milk and

incubated with specified antibodies. Band intensity was

analyzed with the ImageJ software.

Antibodies against α-SMA (ab21027), SIRT6 (ab191385) and

HIPK2 (ab108543) were obtained fromAbcam. Antibody against

Tubulin (11224-1-AP) was obtained from Proteintech. Antibody

against HIPK2 (sc-100383) was obtained from Santa Cruz

Biotechnology. Antibodies against E-cadherin (3195S),

collagen I (72026S), GAPDH (5174S), secondary anti-rabbit

(4412S) and anti-mouse (4408S) were purchased from Cell

Signaling Technology.

Reverse transcription and real-time qPCR

Cellular mRNA was isolated from HK2 cells using RNAiso

Plus reagent (TaKaRa, Japan) and then reverse-transcribed to

cDNA according to the manufacturer’s instructions (TaKaRa,

Japan). Gene expression was quantified with the real-time PCR

system (Roche LightCycler 480) and detected by SYBR Green

Premix (TaKaRa, Japan). Relative expression of mRNA was

determined using 2−ΔΔCT method with GAPDH as a

reference gene.

Hematoxylin and eosin, masson trichrome
staining

Paraffin-embedded kidney sections were deparaffinized

and stained according to the manufacturer’s protocols by

using the Hematoxylin and eosin staining kit (Solarbio,

China), and Masson trichrome staining kit (Solarbio,

China). Images were captured with light microscopy

(Nikon NiU).

Immunohistochemical staining

Paraffin-embedded kidney sections were deparaffinized and

rehydrated following by heat-mediated antigen retrieval with

10% citrate buffer. Endogenous peroxidase activity was

eliminated with 3% H2O2. Then the sections were incubated

with primary antibodies overnight at 4°C, covered with

corresponding secondary antibodies in the room temperature

and visualized with diaminobenzidine. Images were captured

with light microscopy (Nikon NiU).

Immunofluorescence staining

HK2 cells were fixed with 4% paraformaldehyde for 15 min

and permeabilized with 0.1% Triton X-100 for 10 min. After

blocking, cells were incubated with primary antibiotics overnight

and then detected with fluorescent dye-conjugated secondary

antibody. Nuclei were stained with DAPI for 10 min. Images

were captured with fluorescence microscope (Olympus IX83).
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Statistical analysis

All data were analyzed with SPSS and GraphPad Prism

8.0 software. The results were presented as mean ± S.E.M. To

compare two group, Student’s t test or nonparametric Mann-

WhitneyU test were performed, while ordinary one-way ANOVA

was conducted to compare multiple groups. A logistic regression

model was established to compute risk ratios (RRs) and 95%

FIGURE 1
SIRT6 overexpression protected against renal interstitial fibrosis. (A) Western blot analysis of SIRT6 and αSMA expression in fibrotic kidneys of
CKDmice. n = 6. (B) Representative hematoxylin and eosin staining, Masson trichrome staining and immunohistochemical images of collagen I and
αSMA expression in kidneys. Scale bar, 100 μm. (C–E) Sera from WT and SIRT6-Tg of CKD mice were tested for serum creatinine, BUN and
proteinuria for 24 h n = 6. All values are presented as mean ± SEM. *p < 0.05.
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confidence intervals (CI) to assess the association between dietary

niacin intake and risk of renal function decline. p value < 0.05 was

considered statistically significant.

Results

SIRT6 overexpression impedes renal
interstitial fibrosis and renal function
deterioration in chronic kidney disease

To verify the effect of SIRT6 in renal interstitial fibrosis, high

adenine diet-induced CKD model was established in WT and

SIRT6-Tg mice. As expected, αSMA was produced in the kidney

of CKD, accompanied by elevated SIRT6 expression (Figure 1A).

In WT mice with CKD, hematoxylin and eosin staining

confirmed an abroad mononuclear cells infiltration and

kidney tubules damage, while Masson trichrome staining

showed the collagen deposition, all of which were alleviated in

SIRT6-Tg mice (Figure 1B). A significant upregulation of

collagen I and αSMA in CKD was evidenced by

immunohistochemistry staining. Such effect was also less

apparent in SIRT6-Tg mice (Figure 1B). Additionally, the

results of renal function assessments confirmed that serum

creatinine, blood urea nitrogen (BUN) and proteinuria for

24 h were improved in SIRT6-Tg mice (Figures 1C–E). Taken

together, these data reveal that SIRT6 overexpression protects

against renal interstitial fibrosis in CKD.

Upregulation of HIPK2 in chronic kidney
disease is blocked by
SIRT6 overexpression

Considering the key modulation of HIPK2 in pro-fibrosis

signaling, we next detect the expression of HIPK2 in CKD. As

expected, HIPK2 was largely induced in the fibrotic kidney of

CKD (Figure 2A). Since SIRT6 overexpression exhibited a

FIGURE 2
HIPK2 was downregulated in the kidneys of SIRT6-Tgmice. (A)Western blot analysis of HIPK2 expression in fibrotic kidneys of CKDmice. n = 6.
(B) Representative immunohistochemical images of HIPK2 in kidneys of SIRT6-Tg mice. Scale bar, 100 μm. (C) Western blot analysis of HIPK2 and
αSMA expression in fibrotic kidneys of WT and SIRT6-Tg mice. n = 6. All values are presented as mean ± SEM. *p < 0.05.
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prominent mitigation in renal interstitial fibrosis, we speculated

that such effect might be attributed to HIPK2 downregulation.

Notably, compared to WT mice, SIRT6-Tg mice presented a

reduced HIPK2 expression both in kidneys of control and CKD

mice, as evidenced by immunohistochemical and western blot

analysis (Figures 2B,C). These findings suggest that the beneficial

role of SIRT6 in renal interstitial fibrosis prevention might be

associated with HIPK2 signaling inhibition.

SIRT6 and HIPK2 are induced by TGF-β1 in
renal tubular epithelial cells

To further elucidate the modulation of SIRT6 and HIPK2 in

renal interstitial fibrosis, HK2 cells were treated with TGF-β1 to

establish fibrotic model in vitro. As shown in Figure 3A,

SIRT6 was upregulation in HK2 cells after TGF-β1 treatment

for 48 h in a dose-dependent manner, together with increased

collagen I expression. Consistently, HK2 cells switched from

epithelial to mesenchymal phenotype, with the evidence of

reduced epithelial marker E-cadherin and higher αSMA and

collagen I expression. HIPK2 was also significantly elevated after

TGF-β1 exposure (Figure 3B). Furthermore, quantitative real-

time PCR analysis confirmed the phenotypic transition of

HK2 cells, and both SIRT6 and HIPK2 were induced by TGF-

β1 in transcriptional level (Figure 3C). Collectively, SIRT6 and

HIPK2 are upregulated by TGF-β1 in renal tubular epithelial cells
undergoing EMT.

SIRT6 inhibits HIPK2 signaling by post-
transcriptional regulation

Accumulating study suggest that the protein level of

HIPK2 is determined by the post-transcriptional modification

(de la Vega et al., 2012; Wook Choi and Yong Choi, 2014).

Deacetylation of HIPK2 by deacetylases subsequently leads to its

proteasomal degradation (Hwang et al., 2013). To explore the

potential regulation of SIRT6 in HIPK2, small intervening RNA

was utilized to inhibit SIRT6 expression in HK2 cells. As

FIGURE 3
SIRT6 andHIPK2 are induced by TGF-β1 in HK2 cells. (A)Western blot analysis of SIRT6 and collagen I expression in HK2 cells exposed to TGF-β1
for 48 h with indicated dose. n = 3. (B) Western blot analysis of HIPK2 expression in HK2 cells exposed to 2.5 ng/ml TGF-β1 for 48 h n = 3. (C)
Quantitative real-time PCR analysis of genes expression in HK2 cells treated with TGF-β1. n = 3. All values are presented as mean ± SEM. *p < 0.05.
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expected, the expression of SIRT6 was largely blocked after

intervention, while HIPK2 was upregulated oppositely in the

same time (Figure 4A). However, SIRT6 deficiency showed no

impact on the mRNA level of HIPK2 (Figure 4B), indicating that

HIPK2 was regulated by SIRT6 in post-transcriptional manner.

Immunofluorescence also confirmed that the induction of

HIPK2 by TGF-β1 exposure was exacerbated after

SIRT6 depletion (Figure 4C). SIRT6 depletion promoted the

phenotypic transition of HK2 cells, accompanied by

HIPK2 upregulation (Figure 4D). Together, these data suggest

a post-transcriptional downregulation of HIPK2 by SIRT6.

Association between dietary vitamin
B3 intake and renal function decline

Although the protective role of SIRT6 in CKD is

prospective, drug target at SIRT6 is still unavailable in

FIGURE 4
HIPK2 was downregulated by SIRT6 in the post-transcriptional level. (A) Western blot analysis of SIRT6 and HIPK2 expression after indicated
transfection. n = 3. (B)Quantitative real-time PCR analysis of HIPK2 expression after SIRT6 depletion. n = 3. (C) Representative immunofluorescence
images of HIPK2 in TGF-β1-induced HK2 cells after SIRT6 depletion. Scale bar, 200 μm. (D) Western blot analysis of SIRT6 and HIPK2 expression in
TGF-β1-induced HK2 cells after SIRT6 depletion. n = 3. All values are presented as mean ± SEM. *p < 0.05.
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clinical. Indeed, the activity of SIRT6 is determined by the

level of NAD. Since vitamin B3 is the mostly used form of

NAD precursors, it propelled us to examine the association

between dietary vitamin B3 intake and renal function

progression. A total of 5,259 participants with a mean age

of 61.8 ± 9.8 years old and 47.3% men from MESA was

included in our study. As presented in Table 1, those with

higher dietary vitamin B3 intake are prone to be Chinese

American, diabetes, having higher fasting plasma glucose,

less smoker and drinker, lower body mass index, total

cholesterol, low-density lipoprotein cholesterol and

homocysteine (p < 0.05). There was no significant

difference in age, baseline eGFR, serum creatinine,

hypertension prevalence, blood pressure, triglycerides,

high-density lipoprotein cholesterol, use of angiotensin

receptor blockers and angiotensin-converting enzyme

inhibitors among the four groups.

After an average follow-up of 3.2 years, 1,261 participants

exhibited renal function decline, 634 (20.9%) for those <65 years
old and 627 (28.1%) for those ≥65 years old. As for

TABLE 1 Baseline characteristics by the quartiles of energy-adjusted dietary vitamin B3 intake.

Characteristics Total
(n = 5,259)

Quartile 1
(n = 1,315)

Quartile 2
(n = 1,315)

Quartile 3
(n = 1,315)

Quartile 4
(n = 1,314)

p value

Adjusted dietary vitamin B3 intake (mg/day) 11.0 ± 2.8 7.9 ± 1.0 10.0 ± 0.4 11.5 ± 0.5 14.7 ± 2.6 <0.001
Baseline eGFR (mL/min/1.73m2) 78.1 ± 15.8 77.7 ± 16.0 77.9 ± 15.6 78.5 ± 15.4 78.3 ± 16.1 0.540

Serum creatinine (mg/dl) 0.9 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 0.9 ± 0.2 0.9 ± 0.2 0.322

Age 61.8 ± 9.8 62.1 ± 10.4 61.7 ± 10.2 61.6 ± 10.0 61.8 ± 9.8 0.572

Male [n (%)] 2,488 (47.3%) 614 (46.7%) 644 (49.4%) 649 (49.4%) 581 (44.2%) 0.031

Race [n (%)] <0.001
White 2,168 (41.2%) 545 (41.4%) 573 (43.6%) 499 (37.9%) 551 (41.9%)

Black 1,324 (25.2%) 336 (25.6%) 332 (25.2%) 326 (24.8%) 330 (25.1%)

Hispanic 1,105 (21.0%) 370 (28.1%) 319 (24.3%) 253 (19.2%) 163 (12.4%)

Chinese American 662 (12.6%) 64 (4.9%) 91 (6.9%) 237 (18.0%) 270 (20.5%)

Hypertension [n (%)] 2,268 (43.1%) 575 (43.7%) 553 (42.1%) 571 (43.4%) 569 (43.3%) 0.832

Diabetes [n (%)] 588 (11.2%) 117 (8.9%) 129 (9.8%) 162 (12.3%) 180 (13.7%) <0.001
Smoking status [n (%)] <0.001
Never 2,697 (51.3%) 635 (48.3%) 654 (49.7%0 704 (53.5%) 704 (53.6%0

Former 1951 (37.1%) 484 (36.8%) 506 (38.5%) 473 (36.0%) 488 (37.1%)

Current 611 (11.6%) 196 (14.9%) 155 (11.8%) 138 (10.5%) 122 (9.3%)

Drinking status [n (%)] <0.001
Never 1,064 (20.2%) 250 (19.0%) 234 (17.8%) 261 (19.8%) 319 (24.3%)

Former 1,177 (22.4%) 335 (25.5%) 272 (20.7%) 293 (22.3%) 277 (21.1%)

Current 3,018 (57.4%) 730 (55.5%) 809 (61.5%) 761 (57.9%) 718 (54.6%)

BMI (kg/m2) 28.1 ± 5.3 28.6 ± 5.4 28.5 ± 5.4 27.8 ± 5.0 27.7 ± 5.2 <0.001
SBP (mmHg) 125.6 ± 20.9 125.8 ± 21.2 124.9 ± 20.2 126.1 ± 20.5 125.5 ± 21.8 0.497

DBP (mmHg) 71.7 ± 10.2 71.8 ± 10.4 71.7 ± 10.0 72.0 ± 9.7 71.1 ± 10.5 0.135

FPG (mg/dl) 95.8 ± 27.4 93.8 ± 24.7 95.5 ± 27.9 97.0 ± 28.1 97.0 ± 28.6 0.009

TG (mg/dl) 110 (77–158) 113 (79–162) 112 (78–158) 107 (77–158) 107 (75–156) 0.183

TC (mg/dl) 193.5 ± 34.1 195.2 ± 34.4 194.2 ± 36.5 193.7 ± 33.1 191.0 ± 32.1 0.013

LDL-C (mg/dl) 117.1 ± 30.9 118.4 ± 31.2 118.2 ± 31.6 117.1 ± 30.7 114.7 ± 29.9 0.007

HDL-C (mg/dl) 51.3 ± 14.9 51.3 ± 15.2 50.8 ± 14.6 51.4 ± 14.8 51.8 ± 14.9 0.280

Homocysteine (μmol/L) 9.2 ± 3.7 9.5 ± 3.4 9.3 ± 4.3 9.1 ± 3.9 8.9 ± 2.9 <0.001
ARBs [n (%)] 278 (5.3%) 70 (5.3%) 62 (4.7%) 64 (4.9%) 82 (6.2%) 0.294

ACEIs [n (%)] 620 (11.8%) 157 (11.9%) 154 (11.7%) 160 (12.2%) 149 (11.3%) 0.925

Statins [n (%)] 778 (14.8%) 161 (12.2%) 186 (14.1%) 204 (15.5%) 227 (17.3%) 0.003

Unadjusted dietary vitamin B3 intake (mg/day) 16.2 ± 8.0 14.4 ± 7.1 16.0 ± 7.4 16.7 ± 8.3 17.7 ± 8.8 <0.001
Total energy intake (kcal/day) 1,527 ± 783.0 1823 ± 891.4 1,606 ± 752.7 1,450.5 ± 727.5 1,228.1 ± 611.7 <0.001

Values are presented as mean ± standard deviation or median (25th–75th quartiles) for continuous variables and n (%) for categorical variables. eGFR, estimate glomerular filtration rate;

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; FPG, fasting plasma glucose; TG, triglycerides; TC, total cholesterol; LDL-C, low-density lipoprotein

cholesterol; HDL-C, high-density lipoprotein cholesterol; ARBs, angiotensin receptor blockers; ACEIs, angiotensin-converting enzyme inhibitors.
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participants ≥65 years old, highest dietary vitamin B3 intake

group showed a reduced risk of renal function decline

compared to the lowest group (Model 1: RR 0.744, 95%CI

0.574-0.964). The results did not appreciably change after

adjustment of covariates (Model 2: RR 0.744, 95%CI 0.567-

0.975; Model 3: RR 0.728, 95%CI 0.548–0.966). But this

correlation could not be seen in the younger group with

age <65 years old (Table 2). These finding suggests that high

dietary vitamin B3 intake is associated with lower risk of renal

function decline in the old population ≥65 years old.

Discussion

In this study, we demonstrated that SIRT6 overexpression

mitigated the renal interstitial fibrosis and renal function

deterioration in CKD. HIPK2 was induced during the

fibrogenesis, which was blocked after SIRT6 overexpression.

SIRT6 depletion exacerbated the EMT of renal tubular

epithelial cells, together with HIPK2 upregulation. HIPK2 was

downregulated by SIRT6 in the post-transcriptional level.

Population study indicated that old people with high dietary

vitamin B3 intake tended to have lower risk of renal function

decline. Taken together, our findings suggest that SIRT6/

HIPK2 axis is a potential target to intervene renal fibrosis and

delay CKD progression.

Renal fibrosis, mainly referred to renal interstitial fibrosis, is the

inevitably common outcome of CKD progression. However,

effective intervention to retard fibrotic process is still unavailable

(Humphreys, 2018). As a longevity gene, SIRT6 presents a favorable

prospect in fibrosis prevention (Yang et al., 2021). Indeed, SIRT6 is

demonstrated to protect against liver fibrosis by inactivating hepatic

stellate cells (Zhong et al., 2020; Zhang et al., 2021). Diabetic

myocardial fibrosis is alleviated through SIRT6/AMPK signaling

pathway (Li et al., 2020). SIRT6 deficiency also accounts for the

aging-related cardiac fibrosis (Pillai et al., 2021). Previous study

suggests that loss of SIRT6 aggravates unilateral ureteral obstruction-

induced tubulointerstitial inflammation and fibrosis (Cai et al., 2020;

Jin et al., 2022).While our study verified that renal interstitial fibrosis

in adenine-induced CKD was alleviated by SIRT6 overexpression.

And renal function was improved a lot after SIRT6 overexpression

in CKD. Interestingly, SIRT6 was upregulated during renal

fibrogenesis. Since improvement in renal fibrosis can also be seen

through further SIRT6 overexpression, we thought it might be a

compensatory mechanism. Besides, the level of NAD was declined

in the development of CKD, which might also contributed to the

defective function of SIRT6 (Liu et al., 2021).

Tubular epithelial cell undergoing epithelial-to-

mesenchymal transition is recognized as a key contributor to

renal fibrosis (Lovisa et al., 2016). While blunting this transition

is considered as a promising strategy to reduce fibrogenesis

(Xavier et al., 2015). Here, we found SIRT6 deficiency

exacerbated epithelial-to-mesenchymal transition of tubular

epithelial cells induced by TGF-β1. Likewise, SIRT6 mitigates

kidney ischemia/reperfusion injury through retarding hypoxia-

induced phenotypic transition of tubular epithelial cells (Gao

et al., 2020). Other study also supports the powerful effect of

SIRT6 on suppression of phenotypic transition. SIRT6 prevents

pulmonary fibrosis by inhibiting pulmonary epithelial to

mesenchymal transition (Tian et al., 2017; Chen et al., 2019).

Another important finding in our research was the suppression

of SIRT6 onHIPK2. HIPK2 is a common upstream of multiple pro-

fibrosis signaling pathway during renal fibrogenesis (Fan et al.,

2014). Following study also finds that knockdown of HIPK2 is

capable of alleviating Angiotensin II-induced cardiac fibrosis (Xu

et al., 2022). Liver fibrosis is also mediated by HIPK2 activation in

hepatic stellate cells (He et al., 2017). In our study, upregulation of

HIPK2 in CKD-related renal interstitial fibrosis was blocked by

SIRT6 overexpression. SIRT6 depletion accelerated the epithelial-to-

mesenchymal transition of tubular epithelial cells, which was also

associated with elevated HIPK2. Further study suggested that

HIPK2 was inhibited by SIRT6 in post-transcriptional way.

TABLE 2 Risk of renal function decline for adjusted dietary vitamin B3 intake quartile groups.

Decline/Total Model 1, RR
(95%CI)

p-Value Model 2, RR
(95%CI)

p-Value Model 3, RR
(95%CI)

p-Value

Age<65 group

1 147/752 References 1.0 References 1.0 References 1.0

2 163/769 1.107 (0.862–1.421) 0.425 1.156 (0.896–1.493) 0.265 1.105 (0.851–1.436) 0.452

3 149/751 1.019 (0.790–1.314) 0.887 1.033 (0.794–1.344) 0.812 0.988 (0.752–1.298) 0.931

4 175/758 1.235 (0.965–1.582) 0.093 1.183 (0.911–1.536) 0.207 1.082 (0.822–1.424) 0.574

Age≥65 group

1 180/563 References 1.0 References 1.0 References 1.0

2 146/546 0.777 (0.599–1.007) 0.056 0.783 (0.601–1.021) 0.071 0.771 (0.589–1.010) 0.059

3 157/564 0.821 (0.636–1.060) 0.130 0.800 (0.613–1.043) 0.099 0.783 (0.597–1.028) 0.078

4 144/556 0.744 (0.574–0.964) 0.025 0.744 (0.567–0.975) 0.032 0.728 (0.548–0.966) 0.028
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Indeed, deacetylation of HIPK2 is linked with its protein instability

and subsequent proteasomal degradation (Hwang et al., 2013; Choi

et al., 2017). Even though, whether HIPK2 is directly deacetylated by

SIRT6 remains to be elucidated.

The activity of SIRT6 was dependent on the level of NAD. NAD

biosynthesis is interrupted in response to kidney injury, while NAD-

replacement therapy is considered to protect against human diseases

(Bignon et al., 2022). Indeed, the precursors of NAD such as vitamin

B3 or the simpler forms of vitamin B3 like nicotinamide or nicotinic

are demonstrated to impede renal diseases (Streja et al., 2015;

Hyndman and Griffin, 2021). Nicotinamide reduces renal

interstitial fibrosis in mice (Zheng et al., 2019). Long-time

treatment with vitamin B3 in CKD patients is capable of lowing

serum phosphorous concentrations (Müller et al., 2007; Maccubbin

et al., 2010;Malhotra et al., 2018). Here, we found that higher dietary

vitamin B3 intake was related to slower renal function decline in the

old population, but not the younger group. This might be attributed

to that theNAD levels decline with aging, especially in the old people

(Katsyuba et al., 2020). Vitamin B3 is known to increase NAD level

in tissue, inhibit inflammation and oxidative stress, as well as

improve lipid metabolism, which may account for its benefits in

renal function (Wu et al., 2012; Ganji et al., 2015; Montserrat-de la

Paz et al., 2019; Horimatsu et al., 2020). Even though, the limitation

should be noticed that other nutriment intake was not considered in

this study, which might also contribute to confounding.

Conclusion

In summary, we uncovered the beneficial effect of

SIRT6 overexpression on renal interstitial fibrosis of CKD,

which might be associated with HIPK2 downregulation. We

also highlighted the benefit of dietary vitamin B3 intake in the

renal function of old population. SIRT6/HIPK2 axis may be a

therapeutic target in the CKD treatment.
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