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Rescuing endothelial cells from pyroptotic cell death emerges as a potential

therapeutic strategy to combat diabetic atherosclerosis. Salvianolic acid A (SAA)

is a major water-soluble phenolic acid in the Salvia miltiorrhiza Bunge, which

has been used in traditional Chinese medicine (TCM) and health food products

for a long time. This study investigated whether SAA-regulated pyruvate kinase

M2 (PKM2) functions to protect endothelial cells. In streptozotocin (STZ)-

induced diabetic ApoE−/− mice subjected to a Western diet, SAA attenuated

atherosclerotic plaque formation and inhibited pathological changes in the

aorta. In addition, SAA significantly prevented NLRP3 inflammasome activation

and pyroptosis of endothelial cells in the diabetic atherosclerotic aortic sinus or

those exposed to high glucose. Mechanistically, PKM2 was verified to be the

main target of SAA. We further revealed that SAA directly interacts with PKM2 at

its activator pocket, inhibits phosphorylation of Y105, and hinders the nuclear

translocation of PKM2. Also, SAA consistently decreased high glucose-induced

overproduction of lactate and partially lactate-dependent phosphorylation of

PKR (a regulator of the NLRP3 inflammasome). Further assay on Phenylalanine

(PKM2 activity inhibitor) proved that SAA exhibits the function in high glucose-

induced pyroptosis of endothelial cells dependently on PKM2 regulation.

Furthermore, an assay on c16 (inhibitor of PKR activity) with co-

phenylalanine demonstrated that the regulation of the phosphorylated PKR

partially drives PKM2-dependent SAA modulation of cell pyroptosis. Therefore,

this article reports on the novel function of SAA in the pyroptosis of endothelial

cells and diabetic atherosclerosis, which provides important insights into

immunometabolism reprogramming that is important for diabetic

cardiovascular disease complications therapy.
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Introduction

Diabetic cardiovascular disease complications, the major

cause of mortality among people with type 2 diabetes mellitus

(T2DM), affect approximately 32.2% of all persons with T2DM

(Einarson et al., 2018). Although various pathological factors

contribute to atherosclerotic coronary artery disease, diabetes

becomes the primary risk factor associated with the high

incidence of atherosclerotic coronary artery disease (Davidoff

et al., 2004; Balakumar et al., 2016). In individuals with diabetes

mellitus (DM), the risk of developing coronary heart disease is

two to six times greater than those without DM(Martín-Timón,

2014). Atherosclerosis is a chronic inflammatory disease (Ross,

1999), whereby unrelenting inflammatory response and cell

death are thought to be the main drivers of atherosclerosis

development (Engelen et al., 2022). Recently, it has been

found that T2DM provokes multiple inflammatory factors at

low concentrations promoting chronic low-grade inflammatory

responses. This inflammatory mechanism is currently considered

a leading mechanism for the development and progression of

diabetic atherosclerosis (Marfella et al., 2007). Located at the

interface between blood and interstitial tissue, the endothelium

forms a protective barrier against endogenous danger signals

(Roumenina et al., 2016). Endothelial cells are the first line of

defense against inflammatory damage in the vascular system

(Valbuena andWalker, 2006), and the death of these cells usually

signifies a critical and initial stage in the development of

atherosclerosis (Nawa et al., 2002). It is believed that

hyperglycemia-induced endothelial cell inflammation is a

recognized cause of vascular complications in T2DM (Knapp

et al., 2019).

It is believed that pyroptosis represents a pattern of

inflammatory programmed death and causes alterations to the

ultrastructure of the cardiovascular system, which leads to

further significant damage and a poor prognosis for

cardiovascular disease (Patel et al., 2017). Increasing evidence

has highlighted an essential role of pyroptosis in the modulation

of endothelial damage and compromised the stability of arterial

wall plaque, angiogenesis, inflammatory infiltration, and smooth

muscle cell hyperplasia, suggesting a critical role of pyroptosis in

atherosclerosis (Wang et al., 2020). Pyroptosis is the primary type

of atherosclerosis-associated endothelial cell death, which occurs

in endothelial cells and starts at the early stages of atherosclerosis

and is associated with endothelial activation, monocyte

recruitment, and atherosclerosis formation (He et al., 2021).

Both infectious and non-infectious stimuli can trigger

pyroptosis, and subsequent studies of chronic metabolic

diseases revealed that excess nutrients in the organism,

including glucose, cholesterol, lipids, etc., are also the

causative factors of pyroptosis (Xue et al., 2019). Some

evidence shows that a high glucose level causes endothelial

cell pyroptosis in the progression of various diseases (Song

et al., 2019; Kong et al., 2022). Therefore, inhibition of

endothelial cell pyroptosis may prevent cardiovascular diseases

in diabetic individuals.

Excessive activation of glycolysis has previously been

associated with endothelial cell inflammation, dysfunction,

and proliferation (Feng et al., 2017; Wu et al., 2017).

Maintaining the metabolic homeostasis of endothelial cells by

adjusting glycolysis to reduce dysfunction and inflammation

could represent a novel therapeutic strategy for AS (Li et al.,

2019a). Several key enzymes in glycolysis may provide insights

for understanding the association between endothelial cell injury

and AS (Yang et al., 2018; Perrotta et al., 2022). Several glycolysis-

related proteins highly expressed in atherosclerotic plaques and

positively correlated with AS development have been identified

(Sluimer et al., 2008; Tawakol et al., 2015; Lü et al., 2018;

Doddapattar et al., 2022). Recent studies have found that the

high glucose level activates classical pathways that promote

endothelial pyroptotic cell death in vivo and vitro (Song et al.,

2019; Kong et al., 2022). The high glucose level drives precursors

of caspase-1 and pattern recognition receptors, e.g., NLRP3, to

form a macromolecular complex, i.e., inflammasome, via the

junctional protein, ASC. Activated caspase-1 (a form of caspase-1

cleaved by NLRP3-inflammasome) then cleaves GasderminD

(GSDMD), thus forming N and C termini of GSDMD. The

binding of GSDMD with the phospholipid proteins on the

cellular membrane at the N terminus results in the formation

of pores, allowing the contents to be released into the cells to

induce pyroptosis. Concurrently, the activated Caspase-1 cleaves

the precursors of IL-1β and IL-18, resulting in the formation of

active IL-1β and IL-18, which are released into the extracellular

space to induce a micro-environmental inflammatory response

(Shi et al., 2017). Evidence suggests that endothelial pyroptosis is

highly associated with increased glycolysis (Jin et al., 2021). One

of the glycolysis-related proteins that are positively correlated

with AS development is called pyruvate kinase type M2 (PKM2),

which activates the assembly of inflammasome element, PKR

(known as EIF2AK2), in a lactate-dependent phosphorylated-

form to facilitate the formation of the inflammasome by

NLRP3 and ASC(Shirai et al., 2016; Xie et al., 2016).

PKM2 has also been implicated as a key regulator in various

diabetes-related diseases (Qi et al., 2017; Srivastava et al., 2018).

Additionally, PKM2 has been associated with activating

NLRP3 inflammasome of blood macrophage in diabetic

patients and is positively correlated with atherosclerotic

plaque susceptibility (Li et al., 2020).

Danshen (Salvia miltiorrhiza root) is widely used as a health

food and as a Traditional Chinese Medicine, which has been

associated with multiple properties, particularly in the

prevention and treatment of cardiovascular and metabolic

diseases. Salvianolic acid A (SAA) is the main water-soluble

and biologically active ingredient of Danshen. Several recent

reports have demonstrated the anti-diabetic activity of SAA. It

has been discovered that SAA inhibits the activation and

aggregation of platelet in patients with type 2 diabetes
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mellitus (Zhou et al., 2020). Moreover, the reports have revealed

that SAA has a protective effect on diabetic complications in

multiple rodent models, such as inhibiting hepatic fibrosis in

HFD-fed and STZ-induced type 2 diabetic rats (Qiang et al.,

2014), attenuating kidney injury and inflammation in 5/

6 nephrectomized rats (Zhang et al., 2018), ameliorating early-

stage atherosclerosis development via NLRP3 inflammasome in

Zucker diabetic fatty rats (Zhang et al., 2018), and improving

diabetic peripheral neuropathy in KK-Ay mice (Xu et al., 2020a).

The role of SAA in alleviating endothelial dysfunction of diabetic

angiopathy and diabetic atherosclerosis in ApoE−/− mice has yet

to be verified. Thus, we sought to determine whether SAA could

improve diabetic atherosclerosis in the ApoE−/− mice with

diabetes mellitus by inhibiting endothelial pyroptosis of aortic

sinuses. Our results implied that SAA could ameliorate

atherosclerosis in Western diet-fed STZ-induced diabetic

ApoE−/− mice by regulating endothelial pyroptosis via the

PKM2/PKR/NLRP3 inflammasome signaling pathway,

demonstrating the potential use of SAA as a therapy to relieve

diabetes mellitus and its related macrovascular complications.

Materials and methods

Establishment of experimental animal
models

Male ApoE−/− mice (18–22 g, six weeks of age) were

purchased from GemPharmatech Co., Ltd. (Nanjing, China).

The mice were domesticated in a room with a 12 h light/dark

cycle at constant room temperature for a minimum of seven days.

The mice were allowed ad libitum access to standard rodent chow

and water. All animal experimentations performed in this study

were conducted according to the Guide of Chinese Regulation for

the Use and Care of Laboratory Animals. The experiments were

approved by theMedical Code and Ethics Committee of Zhejiang

Chinese Medical University (approval number: 20200720-06).

After one week of environmental adaptation, 50 mg/kg

streptozocin (STZ, in citrate buffer, Sigma-Aldrich, St Louis, MO,

United States) daily was administered intraperitoneally to mice for

5 consecutive days to induce diabetes (Yi and Maeda, 2006; Tikellis

et al., 2008). After hyperglycemia, i.e., blood glucose levels reached

16.7 mmol L−1 at 1 week post injection, both groups received a

Western diet with 0.5% cholesterol (Trophi Feed High-tech Co.,

Ltd., Nantong, China) for 12 weeks. After establishing the ASmodel,

ApoE−/− male mice were randomly divided into three weight-

matched groups: 1) the Western diet (WD) AS model group

consistently received a Western diet for four weeks and

intraperitoneal injections with normal saline daily; 2) the low

SAA group consistently receiving Western diet for four weeks

and orogastric gavage with 10 mg/kg SAA daily; 3) the high SAA

group consistently receiving Western diet for four weeks and

orogastric gavage with 20 mg/kg SAA daily. A group of 6 male

ApoE−/− mice were injected with an equal volume of citrate buffer

(vehicle) and then fed with a normal diet was used as a control. And

Salvianolic acid A was purchased from Herbpurify CO., LTD.

(Chengdu, China) and Figure 1 is the schematic diagram of SAA

treatments in diabetic AS mouse model.

Histological section

Serial 8 μm-thick cryosections were collected continuously

from the central ventricle to the aortic arch. The sections were

stained with Oil-Red-O, a technique used to demonstrate fatty

degeneration and abnormal lipid-like sedation. H&E andMasson

staining determine the plaque area and collagen fiber content.

Images were taken by a Digital pathological section scanning

system (NanoZoomer C13210-01, Hamamatsu, Japan) and

analyzed by the NDP.view2.

Immunofluorescence

Frozen sections were first processed for antigen retrieval before

staining. After blocking with 10% goat serum in PBS for 30 min at

37°C, the sections were incubated overnight with GSDMD (1:50,

Santa Cruz, United States), Phospho-PKM2 (1:100, Affinity

Biosciences, China), ASC (1:100, AdipoGen, United States),

NLRP3 (1:100, AdipoGen, United States), CD31 (1:100, Abcam,

United States) at 4°C. Next, the sections were incubated with

fluorochrome-conjugated secondary antibodies. DAPI was used

to counterstain the slides. For the Huvecs immunofluorescence,

Huvecs were fixed with 4% paraformaldehyde for 15 min and

permeabilized with 0.1% Triton X-100 for 10 min at room

temperature. After blocking for 60 min at 37°C with 10% goat

serum, Huvecs were incubated with the matching primary

antibodies at 4°C overnight. Then, the sample was incubated

with the corresponding secondary antibodies, and the signal was

detected via visualization using a fluorescence microscope.

Cell culture

HUVECs (Meisen Cell, CTCC-009-063, China) were cultured

in Endothelial Cell Medium (ECM, ScienCell, cat. #1001) supplied

with 5% fetal bovine in 5% CO2 at 37°C. Cells at 50% confluence

were exposed to high glucose (33 mM) for 48 h to establish a

pyroptosis model in vitro. Passage number of HUVECs in

experiment was between 3 and 10.

Bioinformatics analysis

The targets of SAA were predicted using

SwissTargetPrediction (http://www.swisstargetprediction.ch/),
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Comparative Toxicogenomics Database (http://ctdbase.org/),

and Traditional Chinese Medicine Systems Pharmacology

Database and Analysis Platform (https://tcmsp-e.com/tcmsp.

php). Potential targets related to ischemic stroke were

predicted using DisGeNet (https://www.disgenet.org/search), a

database for human genetic disease prediction (Piñero et al.,

2017). Overlapping targets in both groups were analyzed by the

jvenn tool (http://bioinfo.genotoul.fr/jvenn) and by String

software (https://string-db. org/) to investigate the interaction

network. Potential pathways were analyzed using the DAVID v6.

8 tool (https://david.ncifcrf.gov/) with pathway enrichment from

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG). And statistical analyses were performed using

the Sangerbox tools, an online platform for data analysis (http://

www.sangerbox.com/tool) (Yu et al., 2012).

Western blotting analysis

Total proteins were extracted from the HUVECs with

RIPA Lysis containing protease and phosphatase inhibitor

(Epizyme, China) for western blotting. The supernatant was

collected, and equal amounts of protein (20 μg) were subjected

to electrophoresis on 10% SDS-PAGE gels (Epizyme, China)

following protein quantification using a BCA protein assay kit

(Vazime, China). The protein was transferred to a

polyvinylidene fluoride (PVDF) membrane (Millipore,

United States) and blocked with 5% dry milk for 2 h at

room temperature. The PVDF membranes were incubated

with the specific primary antibodies to Phospho-PKM2 (1:

1,000, YP1444, immunoway, China), PKM2 (1:20000, 60268-

1-Ig, Proteintech, China), Phospho-PKR(1:1,000, RT1503,

HUABIO, China), PKR(1:1,000, 18244-1-AP, Proteintech,

China), NLRP3 (1:1,000, AG-20B-0014, AdipoGen,

United States), ASC(1:1,000, AG-25B-0006, AdipoGen,

United States), GSDMD (1:500, sc-393656, Santa Cruz,

United States), cleaved N-terminal GSDMD (1:1,000,

ab215203, Abcam, United Kingdom), Caspase-1 (1:1,000,

ab179515, Abcam, United Kingdom), and ß-Actin (1:2000,

20536-1-AP, Proteintech, China) overnight at 4°C, followed

by incubation with secondary antibodies (1:5,000, BOSTER

Biological Technology, China). The membrane was exposed to

an enhanced chemiluminescence kit (Vazime, China) and

observed using a Clinx ChemiScope 3,500 (Clinx Science

instrument Co. Ltd., China). Band density was calculated

with the ImageJ software.

Lactate production assays

Cellular lactate production was measured by lactate assay kit

(Solarbio, China) according to the manufacturer’s instructions.

All experiments were normalized by the cell number.

Molecule-docking assay

The molecular docking of SAA to PKM2 (PDB code: 1T5A,

http://www.rcsb.org/) was conducted in the Yinfo Cloud

Platform (http://cloud.yinfotek.com/). AutoDock Vina (Trott

and Olson, 2009) program was utilized to execute semi-

flexible docking, and output poses were evaluated.

Cellular thermal shift assay

HUVECs were lysed by liquid nitrogen, and the lysates were

clarified by centrifugation at × 16,000 g for 15 min at 4°C,

followed by the collection of the soluble fraction. The

resultant cell lysates were divided into two fractions: one

fraction was incubated with solvent and assigned as the

control group, and another fraction was incubated with SAA

(25 μmol/L) for 30 min at room temperature and assigned as the

SAA-treated group. After incubation, 100 μl of lysates were

aliquoted into PCR tubes. The lysates were then heated for

3 min in a gradient PCR machine at sequentially increased

temperature (39–66°C with a temperature interval of 3°C).

For CETSA experiments on living cells, HUVECs were pre-

treated with SAA (25 μmol/L) for 24 h and heated for 3 min at

indicated temperatures, followed by cooling at room

temperature. Next, the cells were collected, and 100 μl of

protein loading buffer was added to the cells before boiling

for 10 min. Then, lysates were assayed by immunoblotting

against PKM2.

Statistical analysis

GraphPad Prism 8.0 software was used for statistical analysis.

After confirming that all the variables were normally distributed.

Statistical significance was assessed using Student’s t test for two

sample datasets. Where more than two samples were compared,

statistical significance was assessed using one- or two-way

analysis of variance (ANOVA) followed by Dunnet’s or

Sidak’s multiple comparison tests, respectively. All tests were

two-tailed. p < 0.05 was considered statistically significant.

Results

Salvianolic acid A attenuated the
formation of atherosclerotic lesions in
western diet-fed diabetic ApoE−/− mice

To investigate the effect of SAA on diabetic atherosclerosis,

ApoE−/− mice were fed a Western diet for 12 weeks after STZ

injection, followed by treatment with SAA for four weeks. The

en-face aorta and cross-sectional view of the aortic sinus arch
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stained with Oil Red-O reflect the development of lipid plaques.

The oil red O stain in en face aorta and aortic sinus lesions

indicates the significant increase in the AS plaque of aorta in

Western diet-fed diabetic ApoE−/− mice compared with control

diet-fed non-diabetic ApoE−/− mice (Figures 2A,B). Compared

with diabetic ApoE−/− mice treated with saline, the diabetic

ApoE−/− mice treated with SAA exhibited a significant

decrease in AS plaque area in en face aorta and aortic sinus in

a dose-dependent (Figures 2A,B). These findings were further

verified by detecting histopathological changes in the cross-

sectional view of the aorta by HE staining. Diabetic ApoE−/−

mice fed with a Western diet appeared to have a greater area of

plaque within the aortic sinus, more disorganized vessel wall

structure with irregular local intimal rupture, higher levels of

FIGURE 1
Schematic diagram of SAA treatments in diabetic AS mouse model.

FIGURE 2
SAA attenuated the formation of atherosclerotic lesions in Western diet-fed diabetic ApoE−/− mice. (A) Representative H.E. staining, oil red
staining and Masson Trichrome staining of sectioned aortic roots (n = 4 ). (B) Representative oil red O staining of en face aorta (n = 4 ). (C) The
content of serum glucose in mice.
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lipid deposition, and greater numbers of infiltrating foam cells

than that of control diet-fed ApoE−/− mice (Figure 2A).

Additionally, the diabetic ApoE−/− mice treated with SAA

demonstrated alleviation of histopathological changes, with

fewer atherosclerotic plaques in the vessel walls than that of

diabetic ApoE−/− mice treated with saline. Masson staining of

aortic cross-sectional views revealed that the Western diet-fed

diabetic ApoE−/− mice had less collagen fibril content, more

cholesterol crystals, and larger necrotic cores than that control

diet-fed ApoE−/− mice (Figure 2A). Notably, the treatment with

SAA has alleviated these pathological changes in the aorta of the

mice (Figure 2). These findings demonstrate that SAA treatment

decreased the atherosclerotic plaque formation and inhibited the

pathological changes in the aorta of diabetic apoE−/− mice.

Network pharmacology analysis of
Salvianolic acid A in diabetic
atherosclerosis

The predicted targets were studied to explore the

pharmacological mechanism of SAA in diabetic

atherosclerosis. The chemical structure of SAA is presented in

Figure 3A. The potential targets of SAA were predicted using

databases (a total of 145 targets), and the genes related to diabetes

and atherosclerosis were predicted using DisGeNet (a total of

1,073 targets). A total of 67 targets were overlapped by matching

the two groups of targets (Figure 3B). The interaction networks of

the 67 targets are illustrated in Figure 3C. These results suggest

that SAA might regulate diabetic atherosclerosis through the

action of the 67 overlapping targets. To explore the potential

mechanism of SAA in diabetic atherosclerosis, the

67 overlapping targets were analyzed by GO annotations and

KEGG enrichment analyses. Figures 3D–G shows that these

targets are involved in immune and inflammatory responses,

i.e., NOD-like receptor signaling pathway, TNF signaling

pathway, etc. Thus, we deduce that SAA may influence the

progression of diabetic atherosclerosis by regulating the

inflammatory response pathway.

Salvianolic acid Areduced endothelial cells
of the aortic sinus pyroptosis in the
western diet-fed diabetic ApoE−/− mice

Pyroptosis is a form of pro-inflammatory programmed cell

death induced by the NOD-like receptor signaling pathway. It

has been found that endothelial cell pyrotposis contributes to

atherosclerosis (He et al., 2021). To explore the protective roles of

SAA on pyroptosis, we compared the expression of NLRP3, ASC,

and GSDMD in the aortic sinus of all groups (Figure 4).

Immunohistochemical fluorescence assay revealed that the

levels of NLRP3, ASC, and GSDMD were significantly

increased in the ApoE−/− mice following induction of diabetes

and consistent feeding with a Western diet compared with the

ApoE−/− mice fed with a control diet. However, this increasing

trend was reversed considerably by SAA. Multiplex

immunofluorescence staining was conducted to detect the

expression and location of the critical molecules of pyroptosis,

namely NLRP3 and ASC in vascular endothelium

(CD31 marker) (Figure 4). The results revealed that

NLRP3 and ASC are more co-localized with endothelial

marker CD31 in the aortic sinus of the diabetic ApoE−/− mice

fed with a Western diet than that of ApoE−/− mice from other

groups. Furthermore, SAA decreased the expression of NLRP3

(displayed in AF594 and marked in red), ASC (demonstrated in

AF488 and marked in green) in endothelial cells (CD31+,

displayed in AF647 and marked in purple) in the diabetic AS

mice in a dose-dependent manner.

Salvianolic acid A Inhibited High Glucose-
induced pyroptosis in HUVECs

We investigated whether a high glucose concentration could

induce the expression of pyroptosis-related proteins in HUVECs.

Western blotting results demonstrate that glucose, at the

concentration of 33 mM, could promote the activation of the

NLRP3 and cleavage of caspase-1 and GSDMD-N. At the same

time, the treatment with SAA in a dose-dependent manner

decreased the expression levels of these pyroptosis-related

proteins (Figure 5A). And these concentrations of SAA can

produce no damage to HUVECs (Supplementary Figure S1).

We then detected the level of NLRP3-ASC oligomers by a

fluorescence colocalization method. The results obtained from

the fluorescence colocalization experiment are consistent with

the results of Western blot, which indicate that at the

concentration of 33 mM, glucose caused numerous foci of

NLRP3 and ASC to form in HUVEC; a treatment with SAA

was proven to alleviate this condition (Figure 5B). However,

mannitol used as a control treatment to control for osmolarity

had no effect on the expression of pyroptosis related proteins

including NLRP3, cleaved caspase-1 and N-terminal of GSDMD

(Supplementary Figure S1). These results demonstrate that SAA

could alleviate high glucose-induced pyroptosis by inhibiting the

activation of NLRP3 inflammasome in HUVECs.

Salvianolic acid A down-regulated PKM2/
PKR pathway in high glucose-stimulated
HUVECs

Since PKR is a regulator of the NLRP3 inflammasome

through autophosphorylation (Lu et al., 2012), we investigated

whether the SAA influences pyroptosis via the regulation of PKR

phosphorylation. The investigation revealed that the
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FIGURE 3
Network pharmacology analysis of SAA in diabetic atherosclerosis. (A) The chemical structure of SAA. (B) The overlapping targets of diabetic AS
and SAA. (C) The interaction network of the overlapping targets. (D) KEGG enrichment analysis for the overlapping targets. (E–G)GO analysis for the
overlapping targets.
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phosphorylation rate of PKR was increased in HUVECs

exposed to 33 mM glucose, which was inhibited by SAA

treatment in a dose-dependent manner (Figure 6A).

Emerging evidence indicates that glycolysis activates the

NLRP3 inflammasome in pyroptosis (Hughes and O’Neill,

2018). Additionally, it was reported that lactate treatment

could induce phosphorylation of PKR and regulate activation

of the NLRP3 inflammasome via lactate-dependent PKR

phosphorylation (Lin et al., 2021). High glucose level was

also found to induce overproduction of lactate (Figure 6E) and

activate some key enzymes in glycolysis, including PFKFB3,

LDH, and HK2 (Figure 6A). The results also demonstrate that

SAA could inhibit the overproduction of lactate and

overexpression of glycolysis-related proteins caused by high

glucose levels than the DMSO used as a control. Furthermore,

the results indicate that the phosphorylation level of PKM2,

one of the important glycolysis-related proteins, at the

Y105 site was enhanced by high glucose level in HUVECs

despite no significant changes recorded in the level of its total

protein expression (Figure 6A). Further treatment with SAA

revealed that the rate of Y105 phosphorylation of PKM2 was

decreased. Similar results were obtained from experiments on

the endothelial cells of the aortic sinus (Figure 6B). Multiple

findings suggest that Y105 phosphorylation of PKM2 is the

major feature in the transition of PKM2 from a tetramer with

high pyruvate kinase activity to a dimer with a low enzymatic

activity which leads to subsequent nuclear translocation

(Alquraishi et al., 2019). Nuclear translocation of PKM2 in

the inflammatory response is considered the beginning of a

positive feedback loop, whereby PKM2 localized in the

nucleus acts as a transcription factor to drive the

transcription of glycolysis-related and inflammatory genes

(Alves-Filho and Pålsson-McDermott, 2016; Pan et al.,

2022). Therefore, we examined if SAA protects HUVECs

from pyroptosis by regulating the PKM2 shuttle between

the cytosol and the nucleus. Induction of PKM2 nuclear

translocation by 33 mM glucose, the images obtained from

confocal microscopy, and the western blot analysis confirmed

that SAA decreases the level of nuclear translocation

(Figures 6C,D).

FIGURE 4
SAA reduced endothelial cells of the aortic sinus pyroptosis in the Western diet-fed diabetic ApoE−/− mice. (A) NLRP3, ASC and CD31 levels in
aortic roots were detected by immunofluorescence (n = 3). (B) GSDMD levels in aortic roots were detected by immunofluorescence (n = 3).
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Salvianolic acid A binds to PKM2 in
HUVECs

Previous literature has reported that PKM2 plays a critical

role in balancing glycolysis and inflammation through structural

transformation. Thus, the interaction of SAA and PKM2 (Alves-

Filho and Pålsson-McDermott, 2016) was investigated in this

study. CETSA analyzes ligand-target binding by immunoblotting

to determine the level of stability of target proteins against heat-

induced precipitation (Molina et al., 2013). CETSA demonstrated

that SAA significantly altered the thermal stability of

PKM2 compared to the control group (DMSO treatment),

further supporting the direct binding of SAA to PKM2 in the

HUVECs lysates and intact HUVECs (Figures 7A,B). Next, a

molecular docking analysis demonstrated that SAA probably

binds to the activator pocket of PKM2 (PDB ID:1T5A) at PHE26,

HIS29, LYS311, ASP354, LEU353, TYR390, GLN393, LEU394,

and GLU397 (Figure 7C). To further verify the binding of SAA to

PKM2, MDS was conducted to assess the stability of PKM2-

LBDs binding with ligands (Figure 7D). After 20 ns of MDS, the

SAA-to-PKM2-LBDs systems reached relatively stable states

(Figure 7D). The results suggest that SAA might interact with

PKM2, the key regulator of immunometabolic reprogramming.

Salvianolic acid A protected the
endothelial cells against high glucose-
induced pyroptosis in a PKM2/PKR-
dependent manner

Based on our findings on the down-regulation of

Y105 phosphorylation of PKM2 by SAA through direct

binding with PKM2, we further investigated the potential

relationship between the inhibitory effect of SAA on

pyroptosis and PKM2. Phenylalanine (PHE) is a small

molecule that binds to PKM2, resulting in structural alteration

and inhibition of enzymatic activity (Morgan et al., 2013).

Notably, pretreatment with PHE disrupted the inhibition of

pyroptosis-related marker proteins such as the cleaved

caspase-1 and GSDMD-N by SAA in the HUVECs exposed to

33 mM glucose (Figure 8A). The recovery of the SAA-suppressed

IL-18 by PHE treatment has further corroborated the finding

(Figure 8A). Pretreatment with PHE was also found to increase

lactate production (Figure 8C) in HUVECs following SAA

treatment, as previously reported (Yuan et al., 2018). The

results demonstrate that PHE spiked the levels of SAA

suppressed-PKR phosphorylation (Figure 8A). Additionally, a

potent inhibitor of PKR kinase activity called C16 (Tronel et al.,

FIGURE 5
SAA inhibited high glucose-induced pyroptosis in HUVECs. (A) Expression levels of NLRP3, ASC, caspase-1, GSDMD and ß-Actin in HUVECs
were determined bywestern blot. (B)Cellular localization of NLRP3 and ASCwas analyzed by immunofluorescence staining. Data of western blot are
the representatives of four independent experiments. Date of histograms are represented as mean ± SD of three independent experiments. *p <
0.05, **p < 0.01 vs. control group. †p < 0.05, ††p < 0.01 vs. high glucose group.
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2014) inhibited PHE-recovered pyroptosis-related marker

proteins and production of IL-18 in high glucose-exposed

SAA-treated HUVECs (Figure 8A), suggesting that SAA

protects the endothelial cells against high glucose-induced

pyroptosis in a PKR-dependent manner. These results

demonstrate that the modulatory effect of SAA on high

glucose-induced pyroptosis is partly mediated by PKM2-

dependent PKR phosphorylation during inflammasome

activation in HUVECs.

Discussion

Due to the essential role of the endothelium in diabetic

cardiovascular disease complications such as atherosclerosis,

targeting the core events in their function might be a good

strategy for therapeutic intervention. Despite the established

protective effects of SAA on cardiovascular disease, the

molecular mechanisms underlying the effect remains to be

elucidated. This study is the first to report the role of SAA in

inhibiting inflammasome activation in the aortic sinus and

mitigating endothelial pyroptosis, which could potentially

balance the stability of plaques and improve the health

conditions related to diabetic atherosclerosis. These results

suggest that SAA exerts some anti-atherosclerotic effects in

the context of diabetes.

Atherosclerosis has been considered an inflammation-

related disease (Engelen et al., 2022). In contrast,

pyroptosis is a unique form of inflammatory cell death

mediated by the inflammasome, which is dependent on

caspase-1 activation. Pyroptosis has been associated with

the release of inflammatory factors such as IL-1β and IL-18

when the N-terminus of GSDMD disrupt cell membranes.

Recent studies have reported that the malfunction of various

cells associated with pyroptosis involves the accretion of

atherosclerotic plaque, suggesting a critical role of

pyroptosis in atherosclerosis (He et al., 2021a; He et al.,

2021b). Furthermore, the vascular endothelium at the site

of inflammation is both an active participant and a regulator

of the inflammatory process (Rowlands et al., 2011). This

study verifies the involvement of inflammation pathways in

the SAA treatment of diabetic atherosclerosis. Notably,

emerging literature indicated that at early and advanced

atherosclerosis stages, vascular endothelial pyroptosis is

FIGURE 6
SAA Down-regulated PKM2/PKR pathway in high glucose-stimulated HUVECs. (A) Expression levels of pPKM2, pPKR, PKM2, PKR, HK2,
PFKFB3 and ß-Actin in HUVECs were determined by western blot. (B) pPKM2 and CD31 levels in aortic roots were detected by immunofluorescence
(C)Cellular localization of PKM2was analyzed by immunofluorescence staining. (D)Nuclear fractions were isolated and PKM2 levels in HUVECswere
detected by Western blotting. (E) Lactate levels in HUVECs. Data of western blot are the representatives of four independent experiments. Date
of histograms are represented as mean ± SD of three independent experiments. *p < 0.05, **p < 0.01 vs. control group. †p < 0.05, ††p < 0.01 vs. high
glucose group.
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critically involved in the formation and destabilization of

atherosclerotic plaques (Zhang et al., 2015; Kurdi et al.,

2018; An et al., 2019).

Similarly, our investigation of diabetic atherosclerosis of

ApoE−/− mice revealed the enhanced expression level of

NLRP3-ASC and GSDMD in the atherosclerotic plaques of

endothelial cells with aortic sinus. However, data from the

current study support the hypothesis that the modulation of

endothelial pyroptosis involves the inhibition of atherosclerosis

by SAA in ApoE−/−mice with STZ-induced diabetes. Considering

the relationship between SAA and the modulation of the

NLRP3 inflammasome pathway, we evaluated whether the

latter is involved in inhibiting HUVECs pyroptosis by SAA

in vitro. The evaluation revealed that the expression of

NLRP3, ASC, Caspase-1 p20, and GSDMD-NT was

upregulated in high glucose-exposed HUVECs. In contrast,

when treated with SAA, the endothelial cells became less

responsive to high glucose-induced activation of pyroptotic

death-related cascade procedures, suggesting that

NLRP3 inflammasome and pyroptotic death are suppressed in

the SAA treatment of HUVEC exposed to high glucose level.

This study reports the diverse mechanisms of endothelial

pyroptosis and the involvement of classic NLRP3-ASC-

Caspase1 inflammasome, GSDMD, and IL-18 signals.

FIGURE 7
SAA binds to PKM2 in HUVECs. (A–B) Cells were incubated with DMSO or SAA for 6 h, and CETSA analyzed the thermal stabilization of
PKM2 protein at different temperatures and concentrations (n = 3). (C) Binding pose of SAA and PKM2 as shown by molecular docking using
AutoDock Vina. (D) Molecular dynamics simulation of PKM2-LBDs with SAA. Root-mean-square deviation (RMSD) and ligands for PKM2-LBDs in
20 ns molecular dynamics simulation.
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Despite the suggested regulatory role of SAA in the primary

pathways, the findings are insufficient to elucidate the

mechanism of SAA in relieving endothelial pyroptosis

under diabetic conditions. A few recent studies have

suggested the role of different metabolic conditions in

influencing the functions and survival of endothelial cells

(Li et al., 2019a). Several recent studies demonstrate the

association between glycolysis and the activation of

NLRP3 inflammasome and the execution of pyroptosis

programming (Wen et al., 2012). Glycolysis and OXPHOS

levels regulate NLRP3 inflammasome activation in

macrophages (Lin et al., 2020). The production of mtROS

regulated by hexokinase (HK) is believed to be important for

glycolysis-dependent NLRP3 inflammasome activation

(Moon et al., 2015).

Additionally, phosphorylation of PKR is required for

NLRP3 inflammasome activation (Lu et al., 2012), whereby

PKR physically interacts with NLRP3, NLRP1, NLRC4, or

AIM2, which are each involved in inflammasome assembly

and activation. Some studies have depicted that glycolytic

metabolites, including lactate, may promote PKR

phosphorylation and subsequent activation of

NLRP3 inflammasome (Lu et al., 2012; Xie et al., 2016) in

macrophages. Furthermore, activation of the

NLRP3 inflammasome requires lactate-dependent PKR

phosphorylation regulated by pyruvate kinase muscle

FIGURE 8
SAA protected the endothelial cells against high glucose-induced pyroptosis in a PKM2/PKR-dependent manner. (A) Expression levels of
caspase-1, GSDMD, IL-18, and ß-Actin in HUVECs were determined by western blot. (B) Expression levels of pPKR, PKR and ß-Actin in HUVECs were
determined by western blot. (C) Lactate levels in HUVECs. Data of western blot are the representatives of four independent experiments. Date of
histograms are represented asmean ± SD of three independent experiments. *p < 0.05, **p < 0.01 vs. control group. †p < 0.05, ††p < 0.01 vs. high
glucose group. §p < 0.05, §§p < 0.01 vs. high glucose + SAA group. #p < 0.05, ##p < 0.01 vs. high glucose + SAA + PHE group.
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isoenzyme 2 (PKM2) (Xie et al., 2016). Endothelial cells are

“glycolysis-addicted” cells, and glucose metabolism in

endothelial cells remains largely dependent on glycolysis

even under adequate oxygen conditions (Leung and Shi,

2022). Such a phenomenon is associated with the need for

endothelial cells as the first layer of cells in vascular tissue to

transport oxygen to other cells and to carry out functions such

as vascular regeneration in case of ischemia (Eelen et al.,

2018). Despite the dependence of endothelial cells on

glycolysis, maintaining mitochondria and the respiratory

chain remains important, which is essential to maintain

endothelial cells’ redox level and functional state.

Therefore, it is vital to maintain a moderate and normal

level of glycolysis for the function of endothelial cells

(Rohlenova et al., 2018). Furthermore, excessive levels of

glycolytic markers, including PFKFB3, HK2, and other key

glycolytic proteins, as well as overproduction of lactate, have

been reported in vascular endothelial cells inflicted by

atherosclerosis, diabetes mellitus, and other vascular lesion-

related diseases (Yang et al., 2018; Li et al., 2019b; Cao et al.,

2019). We found that high glucose level has caused

overexpression of several glycolysis-related proteins in

HUVECs, accompanied by excessive lactate production, as

reported in previous studies. Interestingly, several members of

the salvianolic acid family also exhibit modulatory effects on

glycolytic dysfunction. It has been elegantly demonstrated

that salvianolic acid C and suppression of PFKFB3-driven

glycolysis restrains endothelial-to-mesenchymal (EndMT)

transition in endothelial cells (Zeng et al., 2022). And

salvianolic acid B regulates macrophage polarization in

ischemic/reperfused hearts by inhibiting mTORC1-induced

glycolysis (Zhao et al., 2020). In the current study, SAA also

showed a modulatory effect on the abnormal glycolysis-

related indicators induced by high glucose. Additionally, a

key enzymes in glycolysis called PKM2, was increased in the

vascular endothelial cells with aortic sinus of Western diet-fed

diabetic ApoE−/− mice and in HUVECs exposed to high

glucose levels. However, treatment with SAA was found to

alleviate the level of PKM2 in both samples. PKM2 is

increasingly recognized as the key component that connects

the metabolic and inflammatory responses in different

diseases, particularly atherosclerosis (Shirai et al., 2016; Pan

et al., 2022). Several studies have reported a high expression

level of PKM2 in atherosclerotic plaques (Shirai et al., 2016; Lü

et al., 2018).

PKM2 is a specific protein in tetrameric and dimeric/

monomeric forms (Chaneton et al., 2012). The tetrameric

PKM2 has a high pyruvate kinase activity similar to PKM1,

which catalyzes the production of pyruvate involved in the

TCA cycle and maintains the flow of the glycolytic process.

The dimeric/monomeric PKM2 has a lower enzymatic activity

and is primarily involved in the translocation to the nucleus

(Dombrauckas et al., 2005). Thus, PKM2 is not only a key

enzyme in glycolysis but also carries out moonlighting

functions that allow it to enter the nucleus, as

demonstrated by growing evidence gathered from different

biological contexts (Alquraishi et al., 2019). In addition, the

role of PKM2 in immunometabolic reprogramming in the

inflammatory response has been increasingly recognized

(Alves-Filho and Pålsson-McDermott, 2016; Liu et al.,

2021). PKM2 has exhibited superiority as a potential

intervention target in several inflammatory physiological

processes and diseases (Alves-Filho and Pålsson-

McDermott, 2016). Furthermore, PKM2 has been reported

to be the subject of multiple posttranslational modifications,

such as phosphorylation, acetylation, cysteine redox

modifications, and S-nitrosylation, which typically result in

conformational changes and subsequent functional

alterations (Zheng et al., 2021).

Phosphorylation of PKM2 at the Y105 site has been

frequently associated with the activation of inflammatory

responses, which inhibits the formation of tetrameric

PKM2, leading to the accumulation of monomeric/dimeric

PKM2. PKM2 in monomeric/dimeric forms further gains

entry into the nucleus and initiates the Warburg effect

(Hitosugi et al., 2009; Palsson-McDermott et al., 2015; Xu

et al., 2020b). The loss of pyruvate kinase activity and the

nucleation of PKM2 has been identified as the initiators of the

positive feedback loop that drives the glycolytic-inflammatory

response—in the absence of PKM2 pyruvate kinase activity,

overproduction of lactate occurs, and the nucleation of

PKM2 acting as a transcription factor not only drives the

transcription of inflammation-related genes but also triggers

the transcription of glycolysis-related genes such as LDHA,

further increases the production of lactate (Palsson-

McDermott et al., 2015; Alves-Filho and Pålsson-

McDermott, 2016). Furthermore, the loop continues to

involve PKM2 since several metabolites influence the level

of PKM2 expression and the upregulation of the associated

regulatory genes (Pan et al., 2022). We have also found that

nuclear localization of PKM2 was increased in HUVECs

exposed to high glucose levels, while SAA treatment has

reduced the localized content of PKM2 in the nucleus. This

alteration is consistent with the reduced phosphorylation

PKM2 at the Y105 site, the decrease in the expression level

of glycolysis-related proteins, and reduced lactate production

by SAA. Notably, PKM2 has been identified as the major

isoform of pyruvate kinase in endothelial cells, which is

important for regulating energy metabolism, proliferation

migration, and inflammatory response. Therefore,

inhibition of PKM2 expression by pharmacological or

molecular biological risks the potential alteration in

endothelial cells’ normal physiological function and

survival (Kim et al., 2018; Stone et al., 2018). The structure

of PKM2 is complex, and a series of small molecules have been

developed to improve its structural stability and enzymatic
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activity (Anastasiou et al., 2012; Lu et al., 2021). Through

molecular docking, we have identified several active sites of

PKM2 that SAA may bind to PHE26, HIS29, LYS311, ASP354,

LEU353, TYR390, GLN393, LEU394, and GLU397 through

salt bridge interactions, hydrogen bond interactions, π-π
stacking interactions, and hydrophobic interactions. These

binding sites are in the activator pocket of PKM2 (Li et al.,

2021b), which shares a very similar binding mode with

quinoline sulfonamides (a compound that has been

reported to promote tetramer formation of PKM2) (Kung

et al., 2012). Additionally, MDS demonstrated that the SAA-

to-PKM2-LBDs systems are relatively stable. Also, the results

obtained from CETSA support the potential direct binding of

SAA to PKM2 in the cells. It was also found that the binding to

the active site of PKM2 could increase its pyruvate kinase

activity.

Recently, there has been an increasing interest in the research

to elucidate the link between PKM2 and activation of

inflammasomes/pyroptosis and to investigate the role of

PKM2 as a potential therapeutic target in treating diseases

caused by inflammasomes/pyroptosis. Several studies have

demonstrated the partial link between PKM2 and pyroptosis

in metabolisms of diseases (Li et al., 2020, Li et al., 2021a). We

have conducted a preliminary investigation to identify the

potential association between PKM2 and pyroptosis of

endothelial cells exposed to high glucose levels. PHE, a

modifier that inhibits PKM2 activity (Morgan et al., 2013;

Yuan et al., 2018; Macpherson et al., 2019), was found to

inhibit the inhibition activity of SAA on high glucose-induced

pyroptosis, matured inflammatory factors, and phosphorylated

PKR in HUVECs, as previously reported (Yuan et al., 2018),

which restored glycolysis-related protein expression and

overproduction of lactate. PKM2 remains an attractive target

in regulating endothelial cell injury in metabolic and

inflammatory diseases. In addition, the strategy for drug

development needs to be revised, and consideration should

also be given to the use of glycolytic or PKM2-inhibiting class

interventions, taking into account the dependence of endothelial

cells on PKM2. As expected, C16, a potent inhibitor of PKR

kinase activity (Tronel et al., 2014), inhibited PHE-recovered

pyroptosis-related marker proteins and IL-18 production in

SAA-treated HUVECs exposed to high glucose levels.

Therefore, it may be deduced that improvement of diabetic

atherosclerotic lesions in vivo by SAA is mainly due to the

regulation of aorta pyroptosis of endothelial cells via targeting

PKM2 and consequent PKR phosphorylation and activation of

NLRP3 inflammasome.

In conclusion, we have revealed a novel function of SAA

in inhibiting pyroptosis in endothelial cells and Western

diet-fed STZ-induced mice with diabetic atherosclerosis. The

findings provide new insights into the NLRP3 inflammasome

activation and pyroptosis in vascular endothelium, which is

important for studying diabetes-related atherosclerotic

coronary artery disease progression and therapy. The

action of SAA on PKM2 results in the inhibition of

lactate-dependent PKR phosphorylation and

NLRP3 inflammasome activation, alleviating endothelial

pyroptosis and offering a novel therapeutic approach for

treating diabetic atherosclerosis.
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