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Accurate identification of Drug Target Interactions (DTIs) is of great significance

for understanding themechanism of drug treatment and discovering new drugs

for disease treatment. Currently, computational methods of DTIs prediction

that combine drug and target multi-source data can effectively reduce the cost

and time of drug development. However, in multi-source data processing, the

contribution of different source data to DTIs is often not considered. Therefore,

how tomake full use of the contribution of different source data to predict DTIs

for efficient fusion is the key to improving the prediction accuracy of DTIs. In this

paper, considering the contribution of different source data to DTIs prediction,

a DTIs prediction approach based on an effective fusion of drug and target

multi-source data is proposed, named EFMSDTI. EFMSDTI first builds

15 similarity networks based on multi-source information networks classified

as topological and semantic graphs of drugs and targets according to their

biological characteristics. Then, the multi-networks are fused by selective and

entropy weighting based on similarity network fusion (SNF) according to their

contribution to DTIs prediction. The deep neural networks model learns the

embedding of low-dimensional vectors of drugs and targets. Finally, the

LightGBM algorithm based on Gradient Boosting Decision Tree (GBDT) is

used to complete DTIs prediction. Experimental results show that EFMSDTI

has better performance (AUROC and AUPR are 0.982) than several state-of-

the-art algorithms. Also, it has a good effect on analyzing the top

1000 prediction results, while 990 of the first 1000DTIs were confirmed.

Code and data are available at https://github.com/meng-jie/EFMSDTI.
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1 Introduction

The accurate prediction of DTIs is worth that improves the

speed and accuracy of new drug discovery. Although the

traditional experimental methods have made some progress in

DTIs identification, it is a costly, time-consuming process with a

high failure rate (Whitebread et al., 2005; Avorn, 2015; Zhao

et al., 2018; Liu et al., 2019). With the popularity of artificial

intelligence concepts and technologies such as machine learning,

more and more researchers are applying machine learning to

predict DTIs, dramatically accelerating the new drug

development process and revolutionizing the traditional drug

development process. It provides accurate drug candidates for

drug discovery, further reducing the cost and time of drug

discovery. Currently, many researchers have focused on DTI

prediction and achieved remarkable achievements through

machine learning and deep learning (Li et al., 2016; Ezzat

et al., 2019; Abbasi et al., 2020; Bagherian et al., 2021).

Over recent years, a substantial number of computational

methods have been developed for predicting drug discovery (Zhu

et al., 2005; Sousa et al., 2006; Keiser et al., 2007; Bleakley and

Yamanishi, 2009; Buza and Peška, 2017; Luo et al., 2017; Cheng

et al., 2018; Olayan et al., 2018; Wan et al., 2018; Yan et al., 2019;

Zeng et al., 2019; Wang et al., 2020a; Tang et al., 2020; Zeng et al.,

2020; An and Yu, 2021; Chu et al., 2021; Yan et al., 2021; Zong

et al., 2021). Target-based (Sousa et al., 2006), ligand similarity-

based (Keiser et al., 2007) and machine learning-based (Zhu

et al., 2005) methods are the three main-stream in prediction

methods. However, obtaining the 3D structure of the protein is

very time-consuming, making it difficult to use the target-based

approach on a genome-wide scale. Similarly, the ligand-based

target prediction usually depends on the structural characteristics

of known target ligands. However, the number of known ligands

from a single data source for the target protein is insufficient, and

the prediction results of ligand-based methods may become

unreliable. Currently, with the increasing availability of public

data sets, the prediction of DTIs based on machine learning

methods has been widely proposed and applied in recent years

(Bleakley and Yamanishi, 2009). Moreover, huge amounts of

multi-source data are being used to study the properties of drugs

and targets to predict DTIs (Tao et al., 2022; Wang et al., 2022).

In the calculation strategy of DTIs prediction, multiple drug

and target data sources are often considered. Multi-source data of

drugs and targets contain their inherent features and network

topology information based on other attributes such as drug side

effects. It is found that topology and semantic information often

play different roles in the prediction task by analyzing the

topological structure and feature graphs using the attention

mechanism (Wang et al., 2020b). Tang et al. (2020) provided

a marginalized denoising model to predict DTIs by calculating

the similarities of target protein sequences and drug chemical

structure. Chu et al. (2021) developed DTI-CDFmodel to predict

DTIs through integrating target protein sequences and three drug

side effects datasets. It uses multiple data sources to analyze drugs

and targets. However, only the side effect and target protein

sequences of drugs were considered, and other information about

drugs and targets, such as the molecular structure of drugs and

disease target correlation, was not considered, which may lose

part of the information of drugs targets, resulting in inaccurate

DTIs prediction. Olayan et al. (2018) proposed DDR model

based on multi-source data of drug and target. It contains

eight drug similarity networks and eight target similarity

networks, which consider both topology and semantic in-

formation. Although the fusion of multi-source data is

considered, the contribution of different data sources is not

considered. Zeng et al. (2020) proposed deepDTnet model

based on multi-source data to predict DTIs. The feature

vectors of drugs and tar-gets were learned and spliced for

multi-source data of drugs and targets. They treated data

from different sources equally, but different data often play

different roles in DTIs prediction. An et al. proposed NEDTP

model based on network embedding framework (An and Yu,

2021). They applied a random walk to extract the information of

each node in the network and learn it as a low-dimensional

vector. Finally, the GBDTmodel was constructed to complete the

classification task. Although they consider how to extract and

merge multi-source data, they learned the embedding features of

drugs and targets by treating random walking paths through

different networks equally, without fully considering the

contributions of different data sources. Therefore, effectively

fusing multi-source data is a challenge for accurately

identifying DTIs through considering the topological and

semantic information of multi-source data and exploring the

weight of different networks. Yan et al. (2019) proposed MKLC-

BiRW model to predict DTIs. Although they integrated multi-

source heterogeneous data based on the kernel idea of KronrLS-

MKL algorithm, they did not comprehensively organize the

related data of drugs and targets.

In this paper, we propose a framework named EFMSDTIs to

predict DTIs based on the effective fusion of multi-source data.

Specifically, EFMSDTI constructed similarity networks of

multi-source drugs and targets from heterogeneous data,

including the biological characteristics, molecular structure,

biological function of drugs and targets. By classifying the

different source data of drugs and targets, the drug and

target similarity network is divided into the semantic graphs

and topology graphs. We propose a selection and weighted

entropy fusion algorithm based on SNF (Wang et al., 2014) for

the semantic and topology graphs. Network embedding

algorithm extracts low-dimensional features of drugs and

targets. Finally, the features of drugs and targets learned

were input into the prediction model to improve the

prediction accuracy of DTIs. The results show that

EFMSDTI has better performance over several state-of-art

algorithms by classifying the data and treating the classified

data with different weights during fusion.
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2 Materials and methods

2.1 Overview of the EFMSDTI method

Considering the contribution of different source data to DTIs

prediction, a framework called EFMSDTI is proposed to predict

DTIs. In Figure 1, firstly, multi-source data of drugs and targets

can be fused (including selective fusion and weighted fusion) or

spliced by classifying multi-source data of them (see Results). For

original data, it includes the topological graph (such as Drug-

drug, Drug-disease, Drug-side Effect, Target-target, and Target-

disease) and semantic graph (such as Drug similarities and

Target similarities). According to the biological characteristics

of the drug or target, drug or target related networks are divided

into several categories, respectively. When there are multiple

networks in a category, whether to fuse them into one network is

determined according to the contribution of them to DTI

prediction. Secondly, the networks are embedded to obtain

the low-dimensional representations of drugs and targets

based on the Deep neural Networks model for Graph

Representations (DNGR) (Shaosheng et al., 2016),

respectively. Finally, LightGBM (Qi, 2017) is used to predict

FIGURE 1
EFMSDTI framework of predicting DTIs. EFMSDTI constructs 15 drug-related networks and target-related networks from heterogeneousmulti-
source data. Based on the contribution of the class network, the drug and target networks are fused or spliced after the network embedding. Through
selective and weighted fusion based on SNF and extract low-dimensional vector of drugs and targets, then features are input into the LightGBM to
predict DTIs. Among them, drug-related networks are DDI (Drug-drug), DD (Drug-disease), DSE (Drug-sideEffect), SDC (Chemical similarities),
SDATC (ATC similarities), SDP (Drug targets sequence similarities), SDMF (molecular function similarities), SDCC (cellular component similarities) and
SDBP (biological process similarities), target-related networks are TTI (Target-target-interaction), TD (Target-disease), STP (Target sequence
similarities), STMF (molecular function similarities), STCC (cellular component similarities) and STBP (biological process similarities).
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the potential DTIs. EFMSDTI has the advantage that a selective

weighted fusion algorithm based on similarity fusion is

proposed according to the contribution of different source

data to DTIs prediction. The aim is to explore an optimal

scheme for predicting DTIs by classifying drugs and targets

from multiple data sources according to their topology and

semantic graphs.

2.2 Data source

The drug and target are collected from the DrugBank

database (v4.3) (Wishart et al., 2017), the Therapeutic Target

Database (Yang et al., 2016), and the PharmGKB database

(Hernandez-Boussard et al., 2008). Specifically, bioactivity

data for drug–target pairs are collected from ChEMBL (v20)

(Gaulton et al., 2012), BindingDB (Liu et al., 2007), and

IUPHAR/BPS Guide to PHARMACOLOGY (Pawson et al.,

2014). A total of 4978 DTIs are used to build a drug-target

interaction network by 732 FDA-approved drugs and

1915 unique human targets (proteins), which include nine

different data describing drugs and six data describing

targets which refer to Zeng’s work (Zeng et al., 2020). The

goal is to analyze the properties of drugs and targets from as

many aspects and perspectives as possible in order to improve

the prediction accuracy of DTIs.

2.2.1 Drug-related networks
For drugs, there are nine drug-related networks: (i) drug-

drug interaction (DDI), (ii) drug-disease (DD), (iii) drug side-

effect (DSE), (iv) chemical similarity (SDC), (v) Anatomical

Therapeutic Chemical (ATC) (Cheng et al., 2013) similarity

(SDATC), (vi) protein sequence similarity (SDP), (vii) Go

(SDGO) molecular function similarity (SDMF), (viii) Go

cellular component similarity (STCC), (ix) Go biological

process similarity (STBP). Where (ii) and (iii) calculate their

similarity through the Jaccard coefficient.

2.2.2 Target-related networks
For targets, there are six target-related networks: (i) target-

target interaction (TTI), (ii) target-disease (TD), (iii) target

protein sequence similarity (STP), (iv) Go (STGO) molecular

function similarity (STMF), (v) Go cellular component

similarity (STCC), (vi) Go biological process similarity (STBP).

Where (ii) calculates its similarity through the Jaccard coefficient.

2.2.3 Drug-target interaction network
The drug-target interaction network is described by a

bipartite graph G � {D, T, R}, where D � {d1, d2,/, dn}, T �
{t1, t2,/, tm} and R � {rij|i ∈ di, j ∈ tj} describes the

interaction between drug di and target tj, and rij � {0, 1},
where rij � 1 indicate that drug di interacts with target tj.

2.3 Biometric classification of networks
from multiple information

In order to facilitate and effectively evaluate the contribution

of different source data to DTI prediction, we divide them into

topology and semantic graphs according to the information

described by the network manually. Take drugs for example,

the drug-drug similarity network, which is obtained through the

association of various drugs, is considered as a topological graph;

and drug-drug similarity networks based on drug attributes, such

as drug molecular structure and drug classification, are

considered as semantic graphs. Therefore, the association

networks, including DDI, DSE, DD, TTI and TD, are the

topology graphs of drugs and targets. The similarity networks

between drugs (or targets) calculated based on multi-attribute

information of drugs (or targets) are considered semantic graphs.

2.3.1 Target classification
The target-related networks contain two types of graphs: one

is the topological graphs of the target, including the TTI and the

TD, and the other is the semantic graphs of the target, including

the STP and the STGO. The above topology and semantic graphs

are further subdivided according to the described topology

information and semantic similarity:

• The first category T1 is the TTI, there is a relationship of

interaction between targets. If there is an interaction

between ti and tj, then TTIij � 0, otherwise, TTIij � 0;

• The second category T2 is the TD, it describes the

relationship between the target and the disease. Where,

TD ∈ {0, 1}, TDij � 1 means that the target is associated

with the disease;

• The third category T3 is the similarity network STP, it

describes the similarity of protein sequences. The STP is

calculated by the Smith-Waterman algorithm (Smith and

Waterman, 1981) based on target sequence;

• The fourth category T4 is the similarity networks STGO, it

describes the function similarity of targets. It contains three

networks: STMF, STCC and STBP which are calculated by a

graph-based semantic similarity measure algorithm (Wang

et al., 2007). The target classification is shown in Table 1.

2.3.2 Drug classification
For drugs, the topological graphs include DDI, DD and DSE,

the semantic graphs are SDC, SDATC, SDP and SDGO. The

network corresponding to the topology and semantic graphs

of target are further subdivided into six categories:

• The first categoryD1 is the DDI. It is mainly determined by

clinical data;

• The second category D2 are the DD and DSE. Drug

similarity based on disease and side effects describes
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drug characteristics from the topological perspective of

disease and side effects, respectively;

• The third category D3 is the SDC. The SDc ∈ {0, 1} is

calculated based on the molecular structure of drug pairs;

• The fourth category D4 is the SDATC. The SDATC ∈ {0, 1}
is calculated based on Jaccard coefficient, and averaging

ATC classification codes of each drug are up to five levels;

• The fifth category D5 is the SDP, it describes the sequence

similarity of targets associated with different drugs. The

protein sequence similarity between drug pairs (SDP) is the

average of the similarity of all drug targets;

• The sixth categoryD6 is the SDGO. It describes the function

similarity of targets associated with different drugs,

including the similarity networks SDMF, SDCC and SDBP.

Similar to the SDP, the GO similarity SDGO of drug di and

drug dj is calculated by averaging the GO similarity of all

drug targets. The drug classification is shown in Table 2.

2.4 Selection and weighted fusion
networks based on similarity network
fusion

In order to fuse different categories of multi-source data

more effectively, we use fusion and splicing methods respectively

to achieve drug and target feature representation according to the

contribution of the different networks to DTI prediction. Among

them, the fusion method of multiple networks in this paper is

based on SNF algorithm. The SNF solves a multi-source problem

by constructing networks of samples (e.g., drug) for each data

type and then efficiently fusing these into one network. The

procedure of the algorithm is shown in Table 3.

Suppose that there are L drug networks, letMi represents the

adjacency matrix of the drug networkl � {1, 2,/, L}. The matrix

element Wl(di, dj) is defined as follows:

Wl(di, dj) � exp⎛⎝−ρ2(di, dj)
μϵi,j

⎞⎠, (1)

where ρ2(di,dj)represents the Euclidean distance between drug

di and dj, di is the vector of similarity between the i-th drug and

all the other drugs, μ is a hyperparameter and we recommend

setting µ in the range [0.3, 0.8]. Note that while this distance

measure works for continuous variables, we recommend using

chi-square distances for discrete variables and protocol-based

measures for binary variables. ϵi,j is described as follows.

ϵi,j �
mean(ρ(di,Ni)) +mean(ρ(dj,Nj)) + ρ(di, dj)

3
, (2)

where Ni � {dj|Ml(di, dj)> 0} represents the neighbors of the

drug in the network l, mean(ρ(di,Ni)) is the average value of the
distances between di and its neighbors.

To compute the fused matrix from multiple types of

measurements, we need to project multiple data types into the

same space. Thus, all data types are normalized by calculating

matrix Ei. The normalized matrix El is described as follows,

TABLE 1 Classification of target-related data.

Target category Networks

Topological graphs T1 Target-target network TTI

T2 Target-disease network TD

Semantic graphs T3 Similarity network of target protein sequence STP

T4 Three networks based on GO, STMF, STCC and STBP

TABLE 2 Classification of drug-related data.

Drug category Networks

Topological graphs D1 Drug-drug network DDI

D2 Drug-disease network DD and drug-side effect network DSE

Semantic graphs D3 Drug chemical similarity network SDC

D4 Drug ATC similarity network SDATC

D5 Drug-associated protein sequence similarity network SDP

D6 Three networks based on GO, SDMF, SDCC and SDBP
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El(di, dj) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Wl(di, dj)
2∑

a≠i
Wl(di, da)

, j ≠ i

1
2
, j � i

, (3)

where the matrix El is not affected by self-similarity in the

diagonal entries and ∑jEl(di, dj) � 1.

Considering that different drugs tend to have different

numbers of neighbors, K nearest neighbors (KNN) is used to

measure local affinity as:

Sl(di, dj) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Wl(di, dj)∑
k∈NKNN

i

Wl(di, dk)
, j ∈ NKNN

i

0, otherwise

, (4)

where NKNN
i represents K neighbors of drug di.

After calculating similarity matrixes and local affinity

matrixes of drugs under different source data, we iteratively

update similarity matrixes as follows:

El � Sl⎛⎝∑b≠lEb

L − 1
⎞⎠ × (Sl)T, l � 1, 2,/, L (5)

Finally, we get state matrix EG by calculating the average of

matrix El after t iterations as follows:

E(G) � ∑L
l�1E

t
l

L
(6)

According to the contribution of multi-source data of

drugs and targets to DTIs prediction, we will adopt three

different strategies for data fusion. Detailed description is as

follows.

2.4.1 Selective fusion
Considering the high-noise nature of multi-source data, we

measure the contribution of each data source to DTIs prediction. In

order to avoid the data with low contributionmixingwith high noise

in the process of data fusion and affecting the prediction accuracy,

the data sources with low contribution are deleted (see Results), and

the remaining drug and target data are fused using SNF respectively.

2.4.2 Weighted fusion based on entropy
The drug or target similarity network calculated by each data

source often contains different information. Thus, we compute

the nodes’ average entropy to determine each network’s

information. For any matrix Mi, the entropy of node di is

defined as:

Hdi � −∑n

j�1pij log(pij), (7)

Pij � mij

Σk
jmij

(8)

where mij represents a item in the matrixMl. Finally, we get the

average entropy of all rows as:

Hl � ∑n

i�1Hi (9)

We take entropy as the weight and update Ml as follows:

HWl � Ml × Hl (10)

2.4.3 Selective and weighted fusion
Combine the two strategies above, the data are filtered which

is based on the feedback of the classification networks’ combined

results in Supplementary Table S1 (see Supplementary Material),

then similar networks are updated though weighting entropy

value of networks.

2.5 Low dimensional vectors for learning
node features

In this paper, DNGR model is used to learn node features

from multi-source networks. It consists of three parts, including

random surfing, calculation of Positive Pointwise Mutual

Information (PPMI) matrix and feature reduction by Stacked

Denoising Auto Encoder (SDAE).

2.5.1 Random surfing
The random surfing model motivated by the PageRank

model used for ranking tasks. The nodes in the network are

randomly ordered. For a node, there is a transition matrix Tr that

TABLE 3 The process of six classes of drug networks by using SNF algorithm is described in algorithm 1.

Algorithm 1: SNF_drug

Input:DDI.txt, DD.txt, DSE.txt, SDC.txt, SDP.txt, SDATC.txt, SDGO.txt Output: FuDrug.mat Begin

1. Compute the similarity matrix of heterogeneous association matrix based on Sim(di, dj), including DD and DSE: for b 1 to 2 by 1 step do Sim(di, dj) � |diseasedi ∩ diseasedj |
|diseasedi ∪ diseasedj |

end for;

2. Calculate edge wights matrixWl(di, dj), normalized matrix El(di, dj) and local affinity matrix Sl(di, dj) of each network: for l 1 to L by 1 step do ComputeWl(di, dj) based
on Eqs 1, 2; Compute El(di, dj) based on Eq. 3; Compute Sl(di, dj) based on Eq. 4; end for;

3. Each similarity network is updated t times iteratively based on Ei
l : for i 1 to t by 1 step do for l 1 to L by 1 step do Compute Ei

l based on Eq. 5; end for;

4. After t iterations, calculating the population state matrix E(G) based on Eq. 6. End.
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captures transition probability between different nodes in a

network, where Tr(i, j) represents the transition probability

from j to i. It considers a random surfing model with restart

which introduces a predetermined restart probability at the initial

node of each iteration, which can be diagonalized as follow:

pk � αpk−1Tr + (1 − α)p0, (11)

where p0 is the initial 1-hot vector, it said that the i-th item is

1 and all other items is 0. The row vector pk, whose j-th item

indicates the probability of reaching the j-th node after the k

transition. Based on Eq. 11, α is the probability that i-th node

will continue the random surfing procedure, and (1 − α) is the
probability that i-th node will back to the original node that

restart this procedure. A probabilistic co-occurrence matrix

pCO is produced by the accumulation of random walk values in

a network where two vertices exist directly or after several

jumps.

2.5.2 Positive pointwise mutual information
matrix

In random surfing process, the probabilistic co-occurrence

matrix pCO is obtained by summing up the matrices P generated

by the random surfing between two nodes in a network, either

directly or after several jumps. Then, we calculate PPMImatrix as

follows (Bullinaria and Levy, 2007):

PPMI(i, j) � ⎛⎜⎝log
Pco(i, j) × ∑i∑jPco(i, j)∑iPco(i, j) × ∑jPco(i, j), 0⎞⎟⎠ (12)

where∑i∑jPCO(i, j) represents the sum of all the elements of the

matrix PCO, ∑iPco(i, j) and ∑jPco(i, j) represent the sum of row

elements values and column elements values respectively.

2.5.3 Stacked denoising auto encoder
Finally, the PPMI matrix is used as the input feature x of

SDAE, we get high quality low-dimensional vector

representations for nodes from the PPMI matrix. The idea of

SDAE is to stack multiple denoising autoencoder (DAE) together

to form a deep framework. The SDAE uses layer-by-layer greed

training, unsupervised training is carried out on each auto coding

layer separately, to minimize the error between the input and the

reconstruction results. For each hidden layer, the DAE randomly

sets the value of the input node being 0 to add noise to the input

data in the input layer to prevent overfitting. For example, for a

network, the input matrix PPMI of SDAE is 732*732 dimensions,

and the output feature dimension is set by yourself. In this paper,

the feature dimension is set as 100 dimensions for a drug or

target. The SDAE model minimizes the regularized problem and

tackles reconstruction error (Zeng et al., 2020), defined as

follows:

min{WEy},{by} ‖ x − x̂‖2F + λ∑
y
‖ WEy‖2F, (13)

where WEy is weight matrix, and by is the bias vector of layer

y ∈ {1, 2,/, Y}. Y is the number of layers. λ is hyperparameter

and ‖•‖ denotes the Frobenius norm.

2.6 Drug target interactions prediction
based on LightGBM

LightGBM which is an efficient implementation of Gradient

Boosting Decision Tree (Friedman, 2001) (GBDT) is proposed by

Microsoft. GBDT is a decision tree-based algorithm, it contains

multiple based classifiers. The based classifier of each layer is

based on the residual of the training data of the based classifier of

the previous layer. According to the residual of a layer, the

gradient is calculated to fit the regression tree. Finally, using

the principle of addition model, all the trained based classifier are

added and integrated into the final decision. Compared to the

traditional GBDT model, LightGBM improves the efficiency of

training data and the accuracy of DTIs prediction.

3 Results

3.1 Performance analysis of drug target
prediction based on combined multiple
networks

In order to measure the DTIs prediction effects of different

drugs and target data sources of different classes, pairwise

combinations of different drug data and target data are

conducted to calculate the DTIs prediction performance. If a

type of network contains more than one, we have two ways to

learn the features of nodes in the net-work: 1) Multiple networks

are fused using SNF, and low-dimensional representations of

nodes of the fused network are learned using DNGR; 2) Low-

dimensional representations of nodes of each network are

learned using DNGR, and then the features of nodes are

spliced for multiple networks.

*T4Smeans the fourth category T4 including three networks

select splicing method.D2F andD6Fmean the second and sixth

category of drugs, including multiple networks that select fusing

method.

Considering that the category networks of drugs D2, D6 and

that of target T4, we used the above two methods respectively to

compare the area under the receiver operating characteristic curve

(AUROC) of DTIs combined with different data (Figures 2A,B). It is

shown that the contribution of drugsD1 andD2, targets T1 and T2

to DTIs prediction is much lower than other data. Also, it is found

that the fusion method has advantages in DTIs prediction for drugs

and that of the splicing method for target (Figures 2A,B). According

to the comprehensive analysis of Figure 2, we come to two

conclusions about drugs based on the SNF fusionmethod as follows:
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FIGURE 2
Comparison of DTI prediction accuracy (AUROC) under different drug and target data combinations. It describes the DTIs prediction of six
categories of drugs and four categories of targets combinations. (A) The DTIs prediction of drugs Di(i � 1, 3,4,5) which contains one network
combine all target class networks and target Tj � (j � 1, 2, 3) which contain one network combine all drug class networks; (B) the DTIs prediction of
drugs Di � (2,6) and target Tj � (j � 4) with fusion and splicing respectively.

TABLE 4 Prediction performance of selective fusion. For ease of description, abbreviations in the model are expressed as follows.

Model AUROC AUPR

DF_TFS 0.903 0.908

DE_D125_DF_TFS 0.918 0.923

DE_D12_T12_DF_TS 0.924 0.933

DE_D12_DF_TFS 0.942 0.950

WEC_DF_TFS 0.903 0.904

WE_DF_TFS 0.904 0.905

DE_D12_WE_DF_TFP 0.982 0.982

*D and T are drug and target; F and S are fusion and splicing; DE represents delete; A D or T followed by numbers indicates what kinds of data is deleted. The abbreviations WE andWEC

represent unclassified network-based entropy and classified network entropy respectively.

DE_D12_DF_TFS means that the first class of the drug is deleted, and the remaining drugs are fully fused, and the first, second and third classes of the target are fused to learn the features

and then spliced with the fourth class.

WE_DF_TFS means represents the entropy weighting of all the networks of the drug and the target, and all the networks of the drug are fused, and the three types of networks before the

target are fused to learn features, and then they are spliced with the fourth type of network.

DE_D12_WE_DF_TFP represents the synthesis of the first two boldmethods, that is, the first type of drug network is deleted, all the networks are entropy-weighted, and the drug network is

fully fused, and the first three types of target networks are fused to learn features, and then spliced with the fourth type of network.
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(1) D3, D4 and D6 of drugs, T3 and T4 of targets have a greater

influence on the final results, whileD1,D2 and T1, T2 which

are topological graphs may have unavoidable noise that will

affect the accuracy of DTIs prediction.

(2) Fused networks that combine multiple networks in D2 and

D6 of drugs have the better performance than that of

splicing; while splicing the feature vectors of nodes in

each network is slightly better than fusing network in T4,

as shown as in Figure 2B.

Therefore, in the subsequent analysis, fusion and splicing

methods are used for D2, D6 and T4 respectively. Based on the

above two conclusions, we consider selective and weighted

fusion (see Materials and Methods) to complete the DTIs

prediction.

3.2 Comparison of drug target interactions
prediction performance under different
fusion methods

Through the comprehensive analysis of Figure 2, we can see that

the AUROC is lower based on D1, D2, T1 and T2 in the DTI

prediction than others. Although there are better results whenD1,D2

combines with T3 and T4, and T1, T2 combines D3, D4 and D6F,

this may be due to the high contribution of T3, T4,D3,D4 andD6F

to thefinal results. Therefore, we think thatD1,D2,T1 andT2 provide

less contribution to DTIs prediction and may introduce high noise.

According to the above results, we complete network fusion

with different strategies. For high noise data, different filtering or

weighting strategies are used and ablation experiments are

performed. Then low-dimensional feature vectors of drugs

and targets are learned based on DNGR. Finally, LightGBM

was used to obtain a good prediction effect based on selective and

weighted strategy, that is, AUROC and AUPR were 0.982.

3.2.1 Selective fusion
To reduce the effect of high noise, we simply filterD1,D2,T1 and

T2. Table 4 shows that selective fusion has better effects in two indexes,

AUROC and the area under the recall versus precision curve (AUPR)

compared to total data fusion. It is shown that reducing the introduction

of highnoise is indeedhelpful in improving the predictionperformance.

Also, it is found that the optimal combination fusion is obtained when

onlyD1,D2 of drugs are deleted. It shows that although deleting noisy

data can improve performance, simple deletion can also cause some

information to be lost.

3.2.2 Weighted entropy fusion
Considering the fact that different data sources may provide

different contributions to DTIs prediction, simple deletion may

cause information loss, so a weighted fusion of different data

sources is carried out. In weighted fusion, we use entropy to

evaluate the weighted value of each network during fusion (see

Materials and methods). For calculating the entropy of networks,

we consider two cases: One is the unclassified networks, and the

other is the classified networks. The unclassified networks

calculate the entropy of each network by SoftMax, normalized

all values of the entropy, and weighted every network before

fusing. For the classified network, the difference is that the

normalization is based on the classified networks, that is, two

or more networks in the classified network contains have to be

multiplied by the same weight value. We can see that there is little

difference between the two methods of weighted fusion.

However, compared with directly deleting the data with low

predictive performance, the method based on weighted fusion is

significantly lower than the method based on selective fusion.

3.2.3 Selective weighted fusion
Combining the advantages of selection and weighting

strategies, a selective and weighted entropy fusion strategy is

used. After deleting D1, D2 and performing weighted fusion on

the remaining data, it is found that it has better performance in

DTIs than only selective or only weighted fusion (Table 4).

3.3 High performance of EFMSDTI

Based on the ablation experimental, the strategy of selective

weighted fusion is used to predict DTIs, named EFMSDTI. To

evaluate the performance of EFMSDTI, four previous state-of-

the-art methods are used for comparison. In a 5-fold cross-

validation, 20% of the positive and negative samples are

randomly selected as the test set, and 80% of the drug-target

pairs are used as the training set. As the Table 5, EFMSDTI,

which has the highest AUROC and AUPR, outperforms four

previous state-of-the-art methods: NEFTP, NeoDTI, deepDTnet,

DTINet. A brief description of these methods is as follows:

3.3.1 NEFTP
A heterogeneous network embedding framework for

predicting similarity-based drug-target interactions was

performed, which builds a similarity network based on

15 heterogeneous information networks, and applies a random

walk to extract the information of nodes in the network and

TABLE 5 Comparison of EFMSDTI with other state-of-the-art methods
for DTIs prediction.

Model AUROC AUPR

EFMSDTI 0.982 0.982

NEDTP An and Yu, (2021) 0.971 0.967

deepDTnet Zeng et al. (2020) 0.963 0.969

NeoDTI Wan et al. (2018) 0.97 0.91

DTINet Luo et al. (2017) 0.932 0.943
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learns low-dimensional vectors. Finally, the classifier predicts

DTIs (An and Yu, 2021). It learns node features by treating the

random walk paths of different networks equally, but the

contributions of different networks are different.

3.3.2 NeoDTI
Integration of neighbor information from a

heterogeneous network for discovering new drug-target

interactions develop a new nonlinear end-to-end learning

model (Wan et al., 2018). The model integrates various

information from heterogeneous network data and

automatically learns representations that preserve drug

and target topologies to facilitate DTI prediction.It focuses

on the topological information of drugs and targets, and the

collection of feature information is not enough, only drug

structure similarity and target sequence similarity. But the

characteristic information of drug and target is not limited to

these two.

3.3.3 deepDTnet
Target identification among known drugs by deep learning

from heterogeneous networks (Zeng et al., 2020) was

implemented, which collects 15 information networks to

learn the feature vectors of each node in each network, and

inputs the PU prediction model to predict DTIs after splicing

15 feature vectors. Similarly, the model treats multi-source

data equally, but the contribution of each information network

is different.

3.3.4 DTINet
A network integration approach for drug-target interaction

prediction and computational drug repositioning from

heterogeneous information was implemented, which integrates

multi-network information and learns node features through

compact feature learning algorithm, and finally inputs DTIs in

PU learning. Although it integrates multi-network information,

it does not consider the in-depth study of multi-network

information fusion.

3.4 Validation of the top-ranked
predictions

In order to further analyze the performance of EFMSDTI

method to identify DTIs, the top-ranked predictions are

verified. We select the top 1000 prediction DTIs for each

FIGURE 3
The number of DTIs that were verified to exist in the top 1000 prediction results.

TABLE 6 The 10 unverified DTIs out of the top 1000 prediction results.

DTI’s ranking in
the top 1000 predictions

Drug Target

922nd DB08882:Linagliptin 2934:GSN

953rd DB00612:Bisoprolol 3283:HSD3B1

963rd DB08896:Regorafenib 9453:GGPS1

991st DB00606:Cyclothiazide 4698:NDUFA5

993rd DB00602:Ivermectin 834:CASP1

994th DB01594:Cinolazepam 378:ARF4

995th DB06204:Tapentadol 55825:PECR

997th DB00312:Pentobarbital 4326:MMP17

998th DB01364:Ephedrine 4507:MTAP

999th DB00459:Acitretin 10606:PAICS
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fold, and merge the 5-folds by averaging. The top

1000 prediction DTIs are analyzed in our analysis. As

shown in Figure 3, 990 of the top 1000 DTIs are known

DTIs. The top 25, 50, 200 and 500 prediction results are

known DTIs. Based on the predicted score of the model,

the drug-target pairs that do not interact in known DTIs

are considered to be novel DTIs according to rank of the

predicted value in the top 1000 samples. Ten DTIs in the first

1000 prediction results that are not verified in Table 6.

There were 10 sets of drug-target interactions in the

first 1000 prediction results that were not verified in

Table 6. These DTIs are considered to be potential drug-

target interaction. Diseases can be treated with certain

drugs, and these drugs are related to the disease. We’re

going to test it from different angles. Disease can be caused

by the abnormal expression of certain proteins, so this

protein is associated with disease. As a result, drugs and

targets that share the same disease are thought to be more

likely to interact (An and Yu, 2021). The pair of bisoprolol

(drug) and HSD3B1 (target) was one of the novel DTIs

identified. The HSD3B1 is related to Hypertensive disease

and other diseases. Bisoprolol also appears to have effect

on this disease: Hypertensive disease. There is also support

for drug-target interactions in the database. Ivermectin

and caspase-1 (CASP1) was one of the novel DTIs

identified. The target prediction module of drug in

CHEMBL database was confirmed to be related to

caspase-1 (Bosc et al., 2019).

4 Discussion

By analyzing and comparing the results of several

experiments, we continuously adjust and optimize the

prediction model. The results are analyzed and explained, and

the optimal model, named EFMSDTI, is obtained based on the

currently used data set. The procedure of EFMSDTI is the

selective weighted fusing data, extracting the low-dimensional

features of drugs and targets, and predicting DTIs using the

LightGBM framework. The AUROC value of our final prediction

result reached 0.982, which has better performance than several

state-of-the-art algorithms.

DTIs prediction requires more accurate analysis of multi-

source data of drugs and targets. Multi-source data can

improve more comprehensive information than a single

data. However, at the same time, multiple data sources may

also bring some noise, so the data processing of multiple-

source data is essential. Therefore, considering the

contribution of different data, an effective fusion method

named EFMSDTI is proposed. The result of the

comprehensive analysis shows a higher performance of

EFMSDTI. Moreover, through the concept of class network,

we also found a new angle of the fusion method. In this paper,

we use the popular fusion strategies and entropy-based

weighted method to improve the prediction accuracy. The

multi-source data used in this paper included nine sources for

the drugs and six for the targets. According to current studies

(Wan et al., 2018; Zeng et al., 2020), data sources for drugs and

targets are not limited to this, such as drug-induced gene

expression profiles, drug pathways profiles, and so on. In the

future, more data sources for drugs and targets will be studied

to complement the rich-ness of drugs and targets with multiple

networks, and to further confirm our strategy’s robustness.

The fused network uses the graph embedding method of

DNGR to extract high-quality low-dimensional features in

this paper. Currently, there are many other methods to extract

features, which may also improve the model’s prediction

accuracy.

In this paper, we manually decide the weighted measure

according to the test result metric AUROC, which has certain

empiricism and is not a perfect weighting for the results. At

present, the most popular mechanism is called attention

mechanism, which uses machine self-learning to adjust the

weighted value of features during the learning process. The

mechanism of self-learning by results will also be the content

of future research.
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