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Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNA

molecules. Four types of circRNAs have been reported in animal cells, and they

have typical characteristics in their biogenesis, nuclear export and degradation.

Advances in our understanding of the molecular functions of circRNAs in

sponging microRNAs, modulating transcription, regulating RNA-binding

proteins, as well as encoding proteins have been made very recently.

Dysregulated circRNAs are associated with human diseases such as acute

myeloid leukemia (AML). In this review, we focus on the recently described

mechanisms, role and clinical significance of circRNAs in AML. Although great

progress of circRNAs in AML has been achieved, substantial efforts are still

required to explore whether circRNAs exert their biological function by other

mechanisms such as regulation of gene transcription or serving as translation

template in AML. It is also urgent that researchers study the machineries

regulating circRNAs fate, the downstream effectors of circRNAs modulatory

networks, and the clinical application of circRNAs in AML.
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Introduction

Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal

expansion of myeloid blasts cells with uncontrolled proliferation in the bone marrow and

peripheral blood (Almatani et al., 2021; Aung et al., 2021; Andreozzi et al., 2022). AML has

become a central research focus because it is the most common type of acute leukemia in

adults worldwide, with rising morbidity and mortality (Gallipoli et al., 2015; Liu et al.,

2019; Bhattacharya and Gutti 2022). The key therapeutic strategies for AML include

chemotherapy, allogenic hematopoietic stem cell transplantation and palliative care

(Xiang et al., 2022). However, although these advancements in the treatment of AML,

the overall prognosis is poor (5-yeal overall survival only 28.7%) (Singh V. et al., 2021).

Thus, new biomarker and precision therapy method are urgent to be found for the

treatment of AML.
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By the splicing machinery in linear order, most eukaryotic

genes were divided by introns which must be removed from

precursor message RNA via linking an upstream 5′ splicing site
to a downstream 3′ splicing site (Wahl et al., 2009; Wilusz 2018)

(Figure 1A). However, it has been reported that the splicing event

can also occur in a non-canonical way to make the backsplicing

reaction by linking a downstream 5′ splicing site to an upstream

3′ splicing site, thereby producing circular RNAs (Nigro et al.,

1991; Cocquerelle et al., 1993; Chen et al., 2015; Wilusz 2017;

Chen 2020). Circular RNAs (circRNAs), typically produced from

protein-encoding genes through backsplicing, are a large class of

covalently closed single-stranded RNA molecules, without a 5′
end or a 3’ poly (A) tail (Wilusz 2018; Kristensen et al., 2019;

Papatsirou et al., 2021; Zhou et al., 2021) (Figure 1B). There are

four types circRNAs in animal cells, including exonic circRNAs

(EcircRNAs), exon-intron circRNAs (EIciRNAs), and intronic

circRNAs (ciRNAs) (Jeck et al., 2013; Chen et al., 2015; Wilusz

2018; Chen 2020; Chen L. et al., 2022) (Figure 1B). Recently

another type has been reported as mitochondria-encoded

circRNAs (mecciRNA) (Liu et al., 2020) (Figure 1C).

Although some circRNAs (such as EIciRNAs and ciRNAs)

have been found in the nucleus (Li Z. et al., 2015; Conn et al.,

2017), most circRNAs (EcircRNAs) are export to the cytoplasm

(Salzman et al., 2012; Jeck et al., 2013). With the development of

high-throughput RNA sequencing, many circRNAs have been

identified from protein-coding genes across different species,

tissues and cell lines (Memczak et al., 2013; Chen et al., 2015;

Wang et al., 2016; Wilusz 2018; Zheng et al., 2021). CircRNAs

have been found to play vital roles in different molecular and

cellular events through different mechanisms including acting as

microRNA sponges, regulation of transcription, interacting with

RNA binding proteins and serving as translation template

(Kristensen et al., 2019; Li et al., 2020b; Ma et al., 2020; Singh

D. et al., 2021; Zheng et al., 2021; Zhou et al., 2021).

With the development of study methods, our understanding

of the general characteristics of circRNAs and their functions in

normal physiology and most human diseases has been improved.

Here, we focus on the recently described functional relevance of

individual circRNAs to leukemia and their clinical significance.

We first offer a brief introduction to the mechanisms of

circRNAs, and then focus on recently described their roles

and clinical significance in AML.

Mechanisms of circRNAs

Although the functions of most circRNAs are not fully

explored, emerging evidence is beginning to uncover that

dysregulated circRNAs play invital roles in many biological

processes as regulatory noncoding RNAs, such as acting as

microRNAs, regulating transcription, interacting with RNA

binding proteins (Figures 2A–C). A part of circRNAs are also

recognized as regulatory coding RNAs encoding small functional

peptides (Figure 2D).

Acting as microRNA sponges

Numerous researches have indicated that circRNAs have one

or more microRNA binding sites and serve as microRNA

sponges to prevent microRNAs away from their target genes

which have been well-documented by researchers (D’Ambra

et al., 2019; Kristensen et al., 2019; Zhou et al., 2021). For

instance, CDR1as/ciRS-7 is one of the classic and most

FIGURE 1
Biogenesis of linear RNAs and circRNAs. (A) Linear RNAs are produced by canonical splicing via joining an upstream 5′ splicing site to a
downstream 3′ splicing site. (B) The biogenesis of circRNAs. EcircRNAs are produced by backsplicing and distribute predominantly in the cytoplasm.
EIciRNAs are generated by intronic sequences retained between the backsplicing exons that are distributed mainly in the nucleus. CiRNAs from
intronic lariat RNA precursors that distribute in the nucleus. (C) MecciRNAs are mitochondria-encoded circRNAs that are found in the cytosol
and mitochondria.
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researched circRNAs which contains one miR-671 binding site

and over 60 conserved miR-7 binding sites (Memczak et al.,

2013) (Figure 2A). In addition, circBIRC6 contains miR-145 and

miR-34a binding sites to regulate human cell pluripotency (Yu

et al., 2017). Some other circRNAs also can sponge microRNAs,

despite the majority of them only have a limited amount of

microRNA binding sites (Panda 2018; Qiu et al., 2021; Shen et al.,

2022). Further researches are required to identify in what extend

circRNAs could sponge microRNAs due to the lower expression

of circRNAs.

Regulation of transcription

Nucleus-localized circRNAs (EIciRNAs and ciRNAs) and

some EcircRNAs were proposed to play important role in

transcriptional regulation. EIcircRNAs such as circEIF3J and

circPAIP2, facilitate transcription initiation by RNA

polymerasemer II (Pol II) at the promoter of host gene

through recruiting U1 small nuclear ribonucleoprotein

(U1 snRNP) in human cells (Li Z. et al., 2015) (Figure 2B).

Furthermore, ci-ankrd52, a ciRNA, produces an R-loop in cis and

facilitates transcription elongation via Pol II (Zhang et al., 2013;

Li X. et al., 2021) (Figure 2B). Furthermore, some EcircRNAs also

modulate transcription through interacting with chromatin. For

instance, circFECR1 promotes FLI1 transcription in cis through

recruting the TET1 (a demethylase) to result in DNA

demethylation (Chen N. F. et al., 2018), and

circSMARCA5 forms an R-loop by binding to its parent gene

locus, resulting in transcriptional pausing at exon 15 of

SMARCA5 (Xu et al., 2020).

Interacting with RNA binding proteins

Numerous studies indicated that circRNAs were also found

to reveal different functions through directly interacting with

different proteins (Holdt et al., 2016; Abdelmohsen et al., 2017; Li

X. et al., 2017; Wu et al., 2019; Shen et al., 2020; Chen C. et al.,

2021; Shi et al., 2021). For instance, Circ1662 accelerated the

FIGURE 2
Diverse mechanisms of circRNAs. (A) Acting as microRNAs sponges, (B) Regulation of transcription. (C) Interacting with RNA binding proteins.
(D) Serving as translation templates.
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nuclear transport of TAP1 by restraining YAP1 phosphorylation

(Chen C. et al., 2021) (Figure 2C). In a ubiquitination-dependent

manner, circPABPC1 directly linked ITGB1 to the 26S

proteasome for degradation in liver cancer (Shi et al., 2021)

(Figure 2C). Furthermore, circECE1 prevented speckle-type

POZ-mediated c-Myc ubiquitination and degradation through

interacting with c-Myc in osteosarcoma (Shen et al., 2020). In

addition, circYAP negatively modulated YAP expression by

inhibiting the assembly of the YAP translation inititaion

marinery in breast cancer cells (Wu et al., 2019).

Serving as translation template

CircRNAs have been regarded as a class of non-coding RNAs

for long periods of time. However, recent researches have

revealed that circRNA can be translated into functional

peptides (Legnini et al., 2017; Liu Y. et al., 2021; Wu et al.,

2021; Liu et al., 2022; Zhang et al., 2022) (Table 1). CircRNAs

could be translated into proteins through internal ribosome entry

site (IRES) in a cap-independent manner, m6A-dependent

initiation of translation and rolling circle translation

(Figure 2D). For instance, endogenous circRNAs, such as viral

circRNA_000048, circ-E-Cad and circHNRNPU, can translate to

a micropeptide vsp21, C-E-Cad-254aa and MAPK1-109aa

through IRES-dependent manner (Gao et al., 2021; Tang

et al., 2022; Zhang et al., 2022) (Figure 2D), respectively.

Moreover, circE7 and circARHGAP3 can translate to

E7 protein and circARHGAP35-encoded protein by

m6A-dependent initiation of translation (Zhao et al., 2019; Li

Y. et al., 2021) (Figure 2D), respectively. Furthermore, circ-EGFR

can translate to rolling-translated-EGFR through rolling circle

translation (Liu Y. et al., 2021) (Figure 2D), respectively. In

addition, Fan et al. recently reported that 50% of translatable

endogenous circRNAs experience rolling circle translation,

several of which are experimentally verfied (Fan et al., 2022)

TABLE 1 Reported translatable circRNAs.

CircRNAs Proteins Found in Mechanism References

Viral curcRNA_000048 Micropeptide vsp21 Bombyx mori cypovirus IRES in a cap-independent manner Zhang et al. (2022)

Circ-E-Cad C-E-Cad-254aa Glioblastoma IRES in a cap-independent manner Gao et al. (2021)

CircHNRNPU CircHNRNPU-603aa Mutiple myeloma IRES in a cap-independent manner Tang et al. (2022)

CircMAPK1 MAPK1-109aa Gastric cancer IRES in a cap-independent manner Jiang et al. (2021)

Circ-SMO SMO-193aa Glioblastoma IRES in a cap-independent manner Wu et al. (2021)

CircDIDO1 DIDO1-529aa Gastric cancer IRES in a cap-independent manner Zhang Y. et al. (2021)

Hsa_circ_0006401 Hsa_circ_0006401 peptide-198aa Colorectal cancer IRES in a cap-independent manner Zhang C. J. et al. (2021)

CircHER2 HER2-103aa Triple negative breast
cancer

IRES in a cap-independent manner Li et al. (2020a)

CircAβ-a Aβ175 Alzheimer’s disease IRES in a cap-independent manner Mo et al. (2020)

Circ-AKT3 AKT3-174aa Gliobastoma IRES in a cap-independent manner Xia et al. (2019)

CircPPP1R12A PPP1R12A-73aa Colon cancer IRES in a cap-independent manner Zheng et al. (2019)

Circ-SHPRH SHPRH-146aa Gliobastoma IRES in a cap-independent manner Zhang et al. (2018a)

CircPINTexon2 PINT-87aa Gliobastoma IRES in a cap-independent manner Zhang et al. (2018b)

Circ-ZNF609 ZNF609-250aa Myogenesis IRES in a cap-independent manner Legnini et al. (2017)

Circβ-catenin β-catenin isoform-370 aa Hepatocellular carcinoma IRES in a cap-independent manner Liang et al. (2019)

CircMbl1 Circ-Mbl1-encoded protein Fly head IRES in a cap-independent manner Pamudurti et al. (2017)

Circ-FBXW7 FBXW7-185aa Gliobastoma IRES in a cap-independent manner Yang et al. (2018)

CircMbl3 Circ-Mbl3-encoded protein Fly head IRES in a cap-independent manner Pamudurti et al. (2017)

CircE7 E7 protein High-risk HPV m6A-dependent initiation of
translation

Zhao et al. (2019)

CircARHGAP35 CircARHGAP35-encoded
protein

Hepatocellular carcinoma m6A-dependent initiation of
translation

Li Y. et al. (2021)

CircMET MET404 Glioblastoma m6A-dependent initiation of
translation

Zhong et al. (2022)

Circ-EGFR Rolling-translated-EGFR Glioblastoma Rolling circle translation Liu Y. et al. (2021)

50% of translatable endogenous
circRNAs

NA 293T Rolling circle translation Fan et al. (2022)

CircSfl CircSfl-encoded peptide Fly brain and muscle NA Weigelt et al. (2020)

CircGprc5a CircGprc5a-peptide Bladder cancer stem cells NA Gu et al. (2018)

Frontiers in Pharmacology frontiersin.org04

Zhou et al. 10.3389/fphar.2022.1010579

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1010579


(Figure 2D). For instance, mutation of the IRES-like element

(AAGAAG) in circPFAS decrease its translation (Fan et al.,

2022).

The role of circRNAs in acute myeloid
leukemia

The role of circRNAs in AML biology and pathogenesis has

been investigated (Table 2). Increasing evidenence shows that

circRNAs play important role in gene expression and regulate

distinct steps of leukemogenesis, such as differentiation, cell cycle

progress, proliferation and apoptosis (Jamal et al., 2019; Singh V.

et al., 2021). They also involve in drug resistance in AML

chemotherapy (Shang et al., 2019; Li M. et al., 2020; Ding

et al., 2021). The role of circRNAs in AML will be discussed

in the following sections.

Dysregulation of circRNAs in acute
myeloid leukemia and their
association with acute myeloid
leukemia phenotype

CircRNAs was first reported in viroids by Sanger et al., in 1976

(Sanger et al., 1976). With the development of high-throughput

sequencing and increased research interest in circRNAs, many

bioinformatics tools have been improved to study circRNAs in

the past few years (Wang Y. et al., 2020; Rbbani et al., 2021; Yang

et al., 2021). Especially, accumulating evidence demonstrates that

circRNA expression is deregulated in AML compared with healthy

control and reveals AML subgroup-specific signatures (Li W. et al.,

2017; Chen H. L. et al., 2018; Lv et al., 2018; Lux et al., 2021; Wang

J. H. et al., 2021). For instance, Lux et al. reported that hundreds of

circRNAs were differentially expressed between 61 AML patients

(including 20NPM1mut patients, 25 CBF leukemias and 16 patients

with mutations in splicing factors (PMSF)) and 16 healthy

hematopoietic stem and progenitor cell samples (HSPCs)

through using ribosomla RNA-depleted RNA sequencing (Lux

et al., 2021) (Figure 3A). Their results showed that circRNA

expression patterns are distinct in AML subgroups compared

with healthy HSPCs. Many circRNA isoforms were deregulated

in only one of the AML subgroups with 40%, 51% and 24% of the

differentially expressed circRNAs in NPM1mut, CBF leukemia and

PMSF, repecstively. Their results also showed that AML-related

circRNA expression patterns are enriched for leukemia-relevant

genes, such as JAATINEN_HEMATOPOIETIC_STEM_CELL_UP

gene set, VERHAAK_AML_WITH_NPM1_MUTATED gene set

and ROSS_AML_CBF gene set (Figure 3A).

AML can develop as myobasts infiltrate into organs and

tissues anywhere other than the bone marrow, which called

extramedullary infiltration (EMI), revealing a poor prognosis.

TABLE 2 Dysregulated circRNAs and their function in AML.

CircRNA Expression Molecular mechaism Biological function References

Circ_00059707 Down Regulaing miR-1287-5p Regulation of cell growth and apoptosis Ma et al. (2022)

Cir_POLA2 Up Regulating miR-34a Regulation of cell proliferation Li H. et al. (2021)

CircSPI1 Up Sponging miR-1307-3p/miR-382-5p/miR-767-5p Oncogene, regulation of cell proliferation and apoptosis Wang X. L. et al.
(2021)

Hsa_circ_0012152 Up Regulating miR-625-5p/SOX12 axis Regulation of cell proliferation and apoptosis Shang et al. (2021)

Hsa_circ_0002483 Up Regulating miR-758-3p/MYC axis Regulation of cell proliferation and cell cycle arrest and
apoptosis

Xiao et al. (2021)

Circ_PTK2 Up Regulating miR-330-5p/FOXM1 axis Regulation of cell proliferation and apoptosis Yi et al. (2021)

Hsa_circ_0121,582 Down Regulation of miR-224/GSK3β Inhibition of cell proliferation Chen et al. (2020)

Hsa_circ_0000370 Up Regulating of miR-1299 and S100 calcium-
binding protein A7A protein

Regulation of cell viability and apoptosis Zhang L. et al.
(2020)

CircRNA RNF13 Up Regulating miR-1224-5p Regulation of cell proliferation, migration and
apoptosis, and cell cycle progression

Zhang R. et al.
(2020)

Hsa_circ_0009910 Up Regulating miR-20-5p Regulation of cell proliferation and apoptosis Ping et al. (2019)

Hsa_circRNA-
100290

Up Regulation of miR-203/Rab10 axis Regulation of cell proliferation and apoptosis Fan et al. (2018)

Circ-DLEU2 Up Regulating of miR496/PRKACB axis Regulation of cell proliferationn and apoptosis Wu et al. (2018)

CircSPI1 Up Regulating Eif4AIII and PU.1 Regulation of myeloid differentiation of AML cells Wang X. L. et al.
(2021)

CirPLXNB2 Up Regulation of PLXNB2, BCL2, cyclin D1 and BAX Regulation of cell proliferation, migration and apoptosis Lin et al. (2021)

CircMYBL2 Up Upregulation of FLT3 translation Regulation of cell proliferation and apoptosis, and cell
cycle progression

Sun et al. (2019)

CircBCL11B Up NA Regulation of leukemic cell proliferation Lux et al. (2021)
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Through comparing differentially expressed circRNAs in bone

marrow mononuclear cells between EMI-AML and non-EMI

AML patients, they found that seven target genes of 17 circRNAs

(LRRK1, PLXNB2, OLFML2A, LYPD5, APOL3, ZNF511, and

ASB2) revealed a poor prognosis (Lv et al., 2018) (Figure 3B).

Through analyzing whole-transcriptome profiling of

365 younger adults with cytogenetically normal AML, another

study identified three different circRNA expression-based

clusters with distinct clinical and molecular characristics such

as somatic mutations, differences in age and white blood cell

count. They found that high circKLHL8 and

circFCHO2 expression were independently associated with

better clinical outcome of cytogenetically normal AML

patients (Papaioannou et al., 2020) (Figure 3C). Above all,

these circRNAs sequencing results highlight a potential

involvement of circRNAs in the pathogenesis of AML.

However, most researches have applied bone marrow samples,

and only a few used peripheral blood samples. Correlative

researches between bone marrow samples and peripheral

blood are also limited.

CircRNAs regulte cell differentiation,
cell cycle progression, and cell
proliferation

AML is characterized by aberrant differentiation and

abnormal clonal expansion of myeloid blasts (Newell and

Cook 2021; Xiang et al., 2022). It has been reported that

dysregulated circRNAs can regulate cell differentiation, cell

cycle progression and cell proliferation through acting as

microRNA sponges in various diseases (Xiao et al., 2021; Shi

et al., 2022; Wang et al., 2022). The myelocytomatosis oncogene

(MYC) is a typical leukemia-associated transcription factor and

plays important role in leukemic cell growth, AML cell

proliferation and apoptosis (Beyer et al., 2019; Li et al.,

2020c). Hsa_circ_0002483 (circ_0002483) expression was

increased in AML patients and cells (Table 2). Knockdown of

circ_0002483 inhibited AML cell proliferation and facilitated cell

cycle arrest and apoptosis by regulating miR-758-3p/MYC axis

(Xiao et al., 2021) (Figure 4A). Shang et al. found that the

expression of circ_0012152 was enhanced in AML tissues and

cells, circ_0012152 knockdown inhibited cell proliferation,

induced cell apoptosis and facilitated death in AML cells by

regulating miR-625-5p/SOX12 axis (Shang et al., 2021)

(Figure 4A). In addition, Lux et al. reported that circBCL11B

exclusively expressed in AML patients but not detected in healthy

hematopoietic stem and progenitor cell samples, inhibition of

circBCL11B suppressed leukemic cell proliferation and led to

enhanced cell death of leukemic cells (Lux et al., 2021). However,

the molecular mechanisms of circBCL118-mediated function in

AML need to be further investigated in future studies. Except for

acting as microRNA sponges, circRNAs interacting with RNA

binding proteins functionally to exhibit their roles in various

diseases (Sun et al., 2019; Shen et al., 2020; Zhang Y. N. et al.,

2020). While, the study about circRNAs interacting with RNA

binding proteins to exert their functions in AMLwas limited. Sun

et al. reported that circMYBL2 expression to be about 5-fold

higher in AML patient samples with FLT3-ITD mutations

(FLT3-ITD+) compared with those without FLT3-ITD

mutation (FLT3-ITD-). CircMYBL2 suppressed cell apoptosis,

increased cell proliferation, and promoted cell-cycle progression

in FLT3-ITD+ leukemic cells but not FLT3-ITD- cells.

Mechanistically, it increased translation of FLT3 kinase by

FIGURE 3
CircRNAs in AML and their association with AML phenotype. (A) AML-related circRNA expression patterns are enriched for leukemia-relevant
gene. (B) seven target genes of 17 circRNAs (LRRK1, PLXNB2, OLFML2A, LYPD5, APOL3, ZNF511, and ASB2) indicated a poor prognosis. (C) High
circKLHL8 and circFCHO2 expression were independently associated with better clinical outcome of cytogenetically normal AML patient.
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promoting the PTBP1 binding to FLT3 messenger RNA (Sun

et al., 2019) (Figure 4B). In addition, some circRNAs exert

different biological functions through different mechanisms in

various diseases (Xing et al., 2020;Wang X. L. et al., 2021; Yang Z.

G. et al., 2022). Overexpression of circ-FOXO3 suppressed cell

growth, migration and invasion through sponging miR-23 in

esophageal squamous cell cancer (Xing et al., 2020), while circ-

FOXO3 relieved blood-brain barrier by sequestering mTOR and

E2F1 in ischemia/reperfusion injury (Yang Z. G. et al., 2022).

While in AML, Wang et al. reported that silencing

circSPI1 decreased myeloid differentiation of AML cells

through interacting with the translation initiation factor

eIF4AIII to inhibit PU.1 expression at the translation level.

While, knockdown of it specially reduced cell proliferation

and apoptosis through interacting with miR-1307-3p, miR-

382-5p, and miR-767-5p (Wang X. L. et al., 2021) (Figure 4C).

CircRNAs regulte cell apoptosis

Apoptosis, or programmed cell death, plays a key role in the

development and homeostasis of the hematopoietic system

(Testa and Riccioni 2007; Testa 2010). Although there are

many factors contributing to the hematopoetic cell

homeostasis, apoptotic machinery seems to have an important

role (Droin et al., 2013). Recent studies indicated that circRNAs

play vital role in cell apoptosis through sponging micrioRNAs in

AML (Fan et al., 2018; Wu et al., 2018; Zhang L. et al., 2020;

Wang X. L. et al., 2021; Xiao et al., 2021; Yi et al., 2021). Forkhead

box M1 (FOXM1) functioned as an oncogene in cancers and can

be regulated by multiple microRNAs in mang maliganancies

(Gartel 2017; Hamurcu et al., 2021; Xing et al., 2021). While in

AML, suppression of highly expressed-circ_PTK2 induced

apoptosis and inhibited proliferation of AML cell by

regulating miR-330-5p/FOXM1 axis (Yi et al., 2021) (Table 2)

(Figure 4D). Hsa_circ-0000370 facilitated cell viability and

inhibited apoptosis of FLT3-ITD-positive AML cells via

modulating miR-1299 and S100 calcium-binding protein A7A

expression (Zhang L. et al., 2020). CircRNA_100290 promoted

cell proliferation and suppressed apoptosis in AML cells by

regulating miR203/Rab10 axis (Fan et al., 2018). Furthermore,

circRNA-DLEU2 was upregulated in AML tissues and cell, which

accelerated AML cell proliferation and suppressed cell apoptosis

through inhibiting miR-496 and facilitating PRKACB expression

(Wu et al., 2018). In addition, Wang et al. reported that

circ_0009910-containing exosomes regulated proliferation,

apoptosis and cell cycle progression of AML cells partially by

miR-5195-3p and GRB10 (Wang D. et al., 2021).

FIGURE 4
The role of circRNAs in AML. (A) Circ_0002483 and circ_0012152 regulate cell proliferation through sponging miRNAs. (B)
CircMYBL2 modulates cell proliferation through regulating RBP (e.g. PTBP1). (C) CircSPI1 regulates myeloid differentiation of AML cells through
interacting with the translation initiation factor eIF4AIII to inhibit PU.1 expression at the translation level. While, it regulates cell proliferation and
apoptosis through spongingmiR-1307-3p, miR-382-5p, andmiR-767-5p. (D)CircPTK2 regulates cell apoptosis throughmodulatingmiR-330-
5p/FOXM1 axis. (E) CircNPM1 reveals adriamycin resistance through regulating miR-345/FZD5 axis.
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Relation between circRNAs and drug
resistance in acute myeloid leukemia

Drug resistance is one of the key factors that lead to the

failure of AML chemotherapy (Bester et al., 2018). Various

genes and non-coding RNAs are participated in the

development of drug resistance in AML (Tian et al., 2017;

Xu et al., 2017; Hu et al., 2018; Gebru and Wang 2020; Chen X.

et al., 2021; Kirtonia et al., 2022). Non-coding RNAs, such as

microRNAs and lncRNAs, are regarding as vital players in

regulating drug resistance, and their targeting provides

avenues for the development of new treatment choices

(Tian et al., 2017; Bester et al., 2018; Wang C. et al., 2020;

Kirtonia et al., 2022). Nevertheless, studies on the potential

involvement of aberrant expressed circRNAs in drug

resistance of AML are just appearing. Ding et al. reported

that circNPM1 increased adriamycin resistance in AML

through regulating the miR-345/FZD5 pathway (Ding et al.,

2021) (Figure 4E). Similarly, Shang et al. found that

circPAN3 was increased in refractory and recurrent AML

patient tissues and doxorubicin-resistant THP-1 AML cell

lines than non-transformed tissue and THP-1 AML cell lines.

Mechanistically, circPAN3 could be an important mediator of

chemoresistance in AML cells by regulating miR-153-5p/miR-

183-5p-XIAP (X-linked inhibitor of apoptosis) axis (Shang

et al., 2019). Moreover, miR-153-5p and miR-183-5p were

revealed to interact with XIAP, which has been indicated as a

drug resistance gene in AML (Katragadda et al., 2013). In

addition, overexpression of circPVT1 has also been found to

involve in resistance to vincristine in AML (L’Abbate et al.,

2018), and knockdown of fusion circM9 revealed enhanced

sensitivity to anti-leukemic drugs (Guarnerio et al., 2016).

These results suggest that circRNAs can potentially be applied

to reverse drug resistance. However, the relation between

circRNAs and other drugs in AML needs to be further

investigated.

In conclusion, circRNAs play important role in regulating

cell differentiation, cell cycle progress, proliferation and

apoptosis, as well as involve in drug resistance through acting

as microRNA sponges or interacting with RNA binding proteins

in AML. As discussed in above, circRNAs also can regulate gene

transcription and serve as translation template to exert their

function. However, whether circRNAs exert their function

through regulating gene transcription and serving as

translation template in AML need to be further explored.

Clinical significance of circRNAs in
acute myeloid leukemia

CircRNAs have the potential to be diagostic and prognostic

biomarkers, and therapeutic targets because that they are highly

stable, cell- and tissue-specific expressed, and their expression

levels often associated with clinical and pathological

characteristics (D’Ambra et al., 2019; Li et al., 2020b; Wang

Y. et al., 2020). Different molecular-based biomarkers such as

cytogenetics, epigenetics, genetics, noncoding RNAs and

protemocis have been well-documented in AML (Trino

et al., 2018; Thakral et al., 2020; Ribeiro et al., 2021; Kirtonia

et al., 2022; Wiatrowski et al., 2022). CircRNAs act as tumor

suppressors or oncogenes to involve in the development of

various diseases such as AML and are becoming new diagnostic

and prognostic biomarkers (Zhou et al., 2020; Issah et al., 2021;

Singh V. et al., 2021) (Table 3). Li et al. reported that

hsa_circ0004277 might be a potential diagnostic marker

through evaluating its expression in 115 AML patients

samples and increasing level of hsa_circ0004277 was

associated with successful chemotherapy (Li W. et al., 2017)

(Figure 5A). Lin et al. found that enhanced circPLXNB2 levels

were related to an obviously shorter overall survival and

leukaemia-free survival of patients with AML. Their study

highlights the potential of circPLXNB2 as a novel prognostic

marker and therapeutic target for AML in the future (Lin et al.,

2021) (Figure 5A). In other studies, they found that

hsa_circ_0075451, circ-VIM and circ_0009910 can serve as

important prognostic factor in AML, respectively (Ping

et al., 2019; Yi et al., 2019; Wang J. H. et al., 2021).

Furthermore, Zhou et al. reported that circ-Foxo3 and

Foxo3 expressed low in AML patients compared to control

group and patients with high expression of Foxo3 often

revealed a trend of better prognosis (Zhou et al., 2019)

(Figure 5A). In addition, Liu et al. recently found that

circRNF220 was specifically enriched in the peripheral blood

and bone marrow of pediatric patients with AML.

CircRNF220 could distinguish AML from acute

lymphoblastic leukemia and other hematological

malignancies with high sensitivity and specificity

(Figure 5A). CircRNF220 expression independently predicted

prognosis, while high expression of circRNF220 was unsuitable

prognostic marker for relapse (Liu X. et al., 2021) (Figure 5A).

Increasing reports in patient-derived xenograft mouse model

indicated that the siRNAs specifically targeting oncogenic

circRNAs can effectively suppress tumor growth (Meng et al.,

2018; Zhang et al., 2019; Du et al., 2022). Meng et al. found that

silencing of si-circ-10720 via intravenous injection inhibited the

promotive effect on tumor growth and metastasis in a mouse

hepatocellilar carcinoma model (Meng et al., 2018). Another

study reported that knockdown of circNRIP1 using siRNA

suppressed the proliferation, migration and invasion of gastric

cancer (GC) cells in vitro and blocked tumor growth in GC-

patient-derived xgenograft mouse model (Zhang et al., 2019).

Recently, Du et al. reported that poly (β-amino esters)-delivered

circMDK siRNA significantly inhibited the growth of

hepatocellular carinoma through reducing the expression of

ATG16L1 in patient-derived xenograft mouse model,

suggesting that the oncogenic circMDK may be a potential

Frontiers in Pharmacology frontiersin.org08

Zhou et al. 10.3389/fphar.2022.1010579

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1010579


treatment targtet for hepatocellular carinoma (Du et al., 2022).

An interference RNA can be designed to precisely target the

unique back-spliced junction of oncogenc circRNA in cancers in

order to eliminate the possibility of interference with the

expression of parent linear mRNA. In AML, currently, some

circRNAs have been reported as oncogenic circRNAs (Ping et al.,

2019; Zhang R. et al., 2020; Wang X. L. et al., 2021). Ping et al.

found that circ_0009910 acting as oncogene in AML patients and

knockdown of it suppressed AML cell proliferation and resulted

in cell apoptosis (Ping et al., 2019). Another study reported that

circRNF12 as an oncogene in blood of AML patients and

interference of it reduced the migration and invasion ability of

AML cells (Zhang R. et al., 2020). Wang et al. found another

circRNA, circSPl1 also as an oncogene in AML, evidenced by the

results that knockdown of circSPl1 induced apoptosis of AML

cells (Wang X. L. et al., 2021). Although some circRNAs acting as

oncogene has been reported in AML, the study about siRNAs

targeting oncogenic circRNAs in patient-derived xenograft

mouse model of AML needs to be explored in the future

researches (Figure 5B). In addition, it has been reported that

CRISPR-Cas13 system can be applied to knock down circRNAs,

without any influence on related mRNAs (Koch 2021). This

method has been used to few studies. For instance, Li et al.

reported that knockdown circFAM120A (oncogenic circRNA)

by CRISPR-RfxCas13d system promoted cell proliferation by

inhibiting FAM120A from binding the translation inhibitor

IGF2BP2 in 293FT cells (Li S. Q. et al., 2021). Ishola et al.

found that knockdown of hsa_circ_0000190 using CRISPR/

Cas13a inhibited tumor growth in vivo non-small cell lung

cancer xenograft model (Ishola et al., 2022). However, the

TABLE 3 Clinical significance of reported circRNAs in AML.

CircRNA Parent gene Expression Clinical application References

CircRNF220 RNF200 Up Prognostic marker Liu X. et al. (2021)

Hsa_circ_0075451 GMDS Up Prognostic factor Wang J. H. et al. (2021)

CircPLXNB2 PLXNB2 Up Prognostic marker Lin et al. (2021)

Circ-VIM Vimentin Up Diagnostic/prognostic biomarker Yi et al. (2019)

Circ-FOXO3 FOXO3 Down Diagnostic marker Zhou et al. (2019)

Hsa_circ_0009910 MFN2 Up Prognostic biomarker and therapeutic targets Ping et al. (2019)

Circ-ANAPC7 ANAPC7 Up Promising biomarker Chen H. L. et al. (2018)

Hsa_circ_0004277 WDR37 Down Diagnostic marker and treatment target Li W. et al. (2017)

FIGURE 5
CircRNAs can serve as biomarkers or therapeutic targets. (A) Examples of circRNAs as potential biomarkers in AML. (B) The studies about siRNAs
targeting oncogenic circRNAs in patient-derived xenograft mouse model of AML and CRISPR/Cas13 targeting oncogenic circRNAs in AML remain
unclear.
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study about CRISPR/Cas13 targeting oncogenic circRNAs in

AML needs to be investigated in the future (Figure 5B).

Conclusion and perspective

AML is a malignant tumor characterized by the

accumulation and clonal expansion of the immature myeloid

hematopoietic cells in the bone marrow, with rising morbidity

and mortality (Liu et al., 2019). Although advances in AML

molecular characterization and targeted methods, most AML

cases still lack therapeutically actionable targets and long-term

survival remains low (Decroocq et al., 2022; Pabon et al., 2022).

Therefore, it is necessary to discover new biomarkers for

prognostication, diagnosis, and therapeutic targets of AML to

explore more effective surveillance and treatment programs. It

has been reported that circRNAs could regulate cell

differentiation, cell cycle progress, proliferation and apoptosis,

as well as involve in drug resistance in AML through acting as

microRNA sponges or interacting with RNA binding proteins.

However, whether circRNAs exhibit their biological function

through regulating gene transcription or serving as translation

template in AML need to be further investigated. Moreover, the

accurate mechanism of modulation of circRNAs expression in

AML is not well researched. It is not clear if abnormal circRNA

expression is central event in leukemogenesis or an

epiphenomenon. Most researches have applied bone marrow

samples, and only a few used peripheral blood samples.

Correlative researches between bone marrow samples and

peripheral blood are also limited.

Recently, Qu et al. reported that circRNA vaccine successfully

elicited potent neutralizing antibodies and T cell response by

encoding the trimeric receptor-binding domain of SARS-CoV-

2 spike protein (Qu et al., 2022). Their results suggested that the

synthesis of translatable circRNAs is of great value in the field of

biomedicine. Moreover, Chen et al. recently found high-

efficiency method to enhance circRNA protein yields by

several hundred-fold by optimizing five functional elements

controlling circRNA translation including IRES, 5′ and 3’

UTRs, vector topology and synthetic aptamers (Chen R. et al.,

2022). Their results enable potent and durable protein

production by translatable circRNA in vivo. However, whether

translatable circRNAs could applied to the treatment of AML

required to be further investigated. Furthermore, increasing

evidence indicates the siRNAs specifically targeting oncogenic

circRNAs can effectively suppress tumor growth in patient-

derived xenograft mouse model (Huang et al., 2020; Yang

et al., 2020; Liang et al., 2021). However, siRNAs targeting

oncogenic circRNAs in patient-derived xenograft mouse

model of AML needs to be explored in the future study. In

addition, it has been reported that CRISPR-Cas13 sysrem can be

used to knock down circRNAs to explore the function of

circRNAs (Li S. Q. et al., 2021; Ishola et al., 2022). However,

the study about CRISPR/Cas13 targeting oncogenic circRNAs in

AML needs to be investigated in the future.

Our understanding of the metabolism and transport of

circRNA within and outside the cell is also lacking. It has

been reported that excessive circRNAs are transported out of

the cell in exosomes (Li Y. et al., 2015). This is also of great

interest because it is well documented in other cancers (Wang

et al., 2019; Pan et al., 2022; Yang C. et al., 2022). However, in

AML, exosomal circRNAs are few been explored. The use of

exosomal cirRNAs in regulating bone marrow

microenvironment and extreamedullary infiltration of

leukemia cells can be an interest field to research.

In summary, although great progress of circRNAs in AML

has been achieved, substantial efforts are still needed to find

whether circRNAs exert their biological function by other

mechainsms such as regulation of gene transcription or

serving as translation template in AML. It is also urgent that

scientists study the machineries regulating circRNAs fate, the

downstream effectors of circRNAs modulatory networks, and the

clinical application of circRNAs in AML. Better understanding of

these will promote our knowledge of circRNAs in AML biology

and the development of circRNAs-based diagnosis, prognosis

and therapeutic methods for AML.
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