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Background: Fibroblast growth factor 21 (FGF-21) is an evolutionarily conserved

protein that playsmultiple roles inmetabolic regulation.Over the past twodecades,

numerous studies have deepened our understanding of its various functions and its

pharmacological value. Nevertheless, most clinical trials have not achieved the

desired results, which raises issues regarding its clinical value. In this bibliometric

analysis, we evaluated the state of FGF-21 research over the last 20 years and

identified important topics, achievements, and potential future directions.

Methods: Publications related to FGF-21 were collected from the Web of

Science Core Collection-Science Citation Index Expanded. HistCite,

VOSviewer, and CiteSpace were used for bibliometric analysis and

visualization, including the analysis of annual publications, leading countries,

active institutions and authors, core journals, co-cited references, and

keywords.

Results: Altogether, 2,490 publications related to FGF-21 were obtained. A total

of 12,872 authors from 2,628 institutions in 77 countries or regions reported

studies on FGF-21. The United States of America was the most influential

country in FGF-21 research. Alexei Kharitonenkov, Steven A. Kliewer, and

David J. Mangelsdorf were the most influential scholars, and endocrinology

journals had a core status in the field. The physiological roles, clinical translation,

and FGF-21-based drug development were the main topics of research, and

future studies may concentrate on the central effects of FGF-21, FGF-21-based

drug development, and the effects of FGF-21 on non-metabolic diseases.

Conclusion: The peripheral metabolic effects of FGF-21, FGF-21-based drug

development, and translational research on metabolic diseases are the three

major topics in FGF-21 research, whereas the central metabolic effects of FGF-

21 and the effects of FGF-21 onmetabolic diseases are the emerging trends and

may become the following hot topics in FGF-21 research.
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Introduction

Fibroblast growth factor (FGF) is a large protein family with

22 members, which can function as paracrine or endocrine

factors related to many biological processes, including

embryogenesis, wound healing, angiogenesis, and metabolism

(Beenken andMohammadi, 2009). Based on sequence homology

and phylogeny, the FGF family can be divided into several

subfamilies, among which the endocrine FGF-19 subfamily

consists of three FGFs, namely, FGF-19 (FGF-15 in rodents),

FGF-21, and FGF-23 (Beenken and Mohammadi, 2009). As a

second member of the FGF-19 subfamily, FGF-21 was identified

in 2000 (Nishimura et al., 2000); however, its exact function

remained unknown for five years. In 2005, Kharitonenkov et al.

reported the glucose- and lipid-lowering effects of FGF-21

(Kharitonenkov et al., 2005), which was the first finding

regarding its metabolic functions. Subsequently, β-klotho was

revealed to be indispensable for FGF-21-induced fibroblast

growth factor receptor (FGFR) activation and metabolic

improvements (Ogawa et al., 2007), and the expression of β-
Klotho is limited to metabolism-related tissues (She et al., 2022).

These results confirm the metabolic functions of FGF-21.

Notably, FGF-21 can significantly mitigate metabolic disorders

without inducing hypoglycemia or mitogenesis (Kharitonenkov

et al., 2005), further implying its significant potential in clinical

applications.

Since these discoveries, an increasing number of studies have

shown that it can act on adipose tissue, pancreas, liver, muscle,

and hypothalamus to integrally regulate glucometabolism and

lipometabolism (She et al., 2022). In addition, several FGF-21-

based bioengineered drugs were developed, taking into

consideration the short half-life of native FGF-21 in vivo

(Kharitonenkov et al., 2007; Huang et al., 2013), such as

LY2405319 (Kharitonenkov et al., 2013), PF-05231023 (Huang

et al., 2013), bFK1 (Kolumam et al., 2015), AKR-001 (Stanislaus

et al., 2017), and BMS-986036 (Charles et al., 2019). The glucose-

lowering effects of these drugs were obvious in diabetic/obese

rodents (Huang et al., 2013; Kharitonenkov et al., 2013;

Kolumam et al., 2015; Weng et al., 2015) and diabetic non-

human primates (Adams et al., 2013a; Thompson et al., 2016;

Baruch et al., 2020), whereas such effects were not observed in

most of the clinical trials (Gaich et al., 2013; Talukdar et al., 2016;

Kim et al., 2017; Baruch et al., 2020), indicating that the precise

functions of FGF-21 remain poorly understood.

Bibliometrics was first introduced by Pritchard (1969) in

1969, and it is used as a quantitative and statistical method for

analyzing large volumes of scientific data. As an analytic model,

bibliometric analysis can quickly reveal the knowledge network,

evolution of the research topic, and emerging trends of a specific

research field by analyzing relevant literature (Chen and Song,

2019). In recent years, bibliometrics has been applied to present

the evolution of specific research fields, such as information

science (He et al., 2017), decision science (Lin et al., 2020; Luo

and Lin, 2021; Yu et al., 2021; Zhang and Lin, 2022),

environmental science (Chen et al., 2022), artificial

intelligence (Wamba et al., 2021), sociology (Foroudi et al.,

2020), and medicine (Rubagumya et al., 2022). On the other

hand, bibliometric analysis has been used to analyze certain

journals to better understand their scope, such as the Journal

of Nursing Management (Yanbing et al., 2020), Journal of

Business Research (Dhontu et al., 2020), and Pharmacological

Research (Hassan et al., 2021). As a rapidly growing field,

biomedical research is especially well-adapted for bibliometric

analysis. For example, Zhang et al. analyzed diabetic kidney

disease-induced renal fibrosis research through bibliometric

analysis and revealed the top contributing countries and

authors and the most popular journals in this field. Most

importantly, they also demonstrated main research topics,

including “microRNAs”, “bone morphogenetic protein”,

“hypertrophy”, “glomerulosclerosis”, and “diabetic kidney

disease”, and identified that “microRNAs” is a hot topic in

recent works (Zhang et al., 2022). Thus, bibliometric analysis

can be performed to provide an in-depth evaluation of the

development of the research concerning FGF-21, and this can

guide us in future work. To our knowledge, bibliometric analysis

of FGF-21 research is lacking, and our aim is to analyze

publications on FGF-21 to evaluate the current status and

potential future directions.

Methods

Search strategy in Web of Science Core
Collection

Although PubMed contains more biomedicine-related

publications than Web of Science Core Collection (WoSCC),

the latter has a better citation network, which is important for co-

citation analysis. WoSCC includes the most influential

publications on FGF-21 research, which avoids the omission

of important research studies to a large extent. Furthermore,

HistCite, VOSviewer, and CiteSpace are the most suitable for

analyzing WoSCC-derived datasets. Hence, we conducted a

literature search mainly on the Science Citation Index

Expanded (SCIE) on the WoSCC. Topic search is a search

model of words in titles, abstracts, author keywords, and

keywords plus, and we chose a topic search to precisely obtain

the dataset of FGF-21. The search formula was set as follows:

Topic Search (TS) = (“fibroblast growth factor 21” OR “FGF21”

OR “FGF 21”). The publication years were restricted to the period

between 2000 and 2021, and the document types were “articles”

or “reviews”. The article language was set as English. Then, the

publication number, publication titles, authors, affiliations,

countries, keywords, published journals, publication years,

references, and citations were collected for analysis. We finally

obtained 2,492 publications, and two retracted publications were
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removed (Supplementary Table S1). To avoid deviations from

WoSCC updates, all of the abovementioned operations were

completed within one day (25 June 2022).

Bibliometric analysis

HistCite (version 12.03.17) (Garfield et al., 2006) was used to

analyze the publication number, total global citation score (TGCS),

and total local citation score (TLCS) for each publication year,

active countries, active institutions, active authors, and core

journals. TGCS is the number of citations in WoSCC, and

TLCS is the number of citations in the current dataset.

Co-citation and co-occurrence networks were completed

using VOSviewer (version 1.6.18) (van Eck and Waltman,

2010). Collaborations between countries, institutions, and

authors and mutual citations between journals were analyzed

using co-citation networks. Keyword occurrences in various

publications were analyzed using co-occurrence networks. The

minimum number of documents analyzed for co-citation and co-

occurrence is presented in the corresponding sections. The same

color indicates close cooperation, and the total link strength of an

item reflects the degree of cooperation with others. In addition,

the size of the nodes in the networks represents the total link

strength of the items, and the thickness of the connecting line in

the networks indicates the strength of the links. Scimago

Graphica was also involved in international collaboration

analysis.

CiteSpace (version 5.8.R3) (Chen, 2004) was used to analyze

the knowledge domain in FGF-21, including dual-map overlay,

cluster, centrality, timeline view, reference burst analysis, and

keyword burst analysis. Time slicing was set from 2000 JAN to

2021 DEC, with two years per slice. The node type was set as

“References” or “Keywords”, and the selection criteria were set as

the top 50 levels of most cited or occurred items from each slice.

Modularity Q and mean silhouette were used to evaluate the

reliability of clustering; Q > 0.3 and mean

silhouette >0.5 indicated enough clustering structure and

convincing clustering results, respectively. Moreover,

CiteSpace was used to analyze publications from the last

five years (2017–2021). Time slicing was set from 2017 JAN to

2021 DEC, with one year per slice. The node type was set as

“References”, and the selection criteria were set as the top

50 levels of most cited or occurred items from each slice.

Results

An overview of FGF-21-related
publications

A total of 2,490 publications related to FGF-21 were

obtained, including 2,172 articles and 318 reviews

(Supplementary Table S2). Global publications in the field

demonstrated an overt growth trend, from two publications in

2000 to 371 publications in 2021 (Figure 1A). This can be divided

into two stages according to the annual publications: the initial

stage (2000–2004) and the growing stage (2005–2021). Initially,

only two articles were published, one of which was published by

Nishimura et al., who identified the existence of FGF-21 in

mammals (cited 582 times) (Nishimura et al., 2000). In 2005,

Kharitonenkov et al. first demonstrated that FGF-21 can act as a

metabolic regulator to normalize metabolic disorders without

inducing hypoglycemia and neoplasm (cited 1452 times)

(Kharitonenkov et al., 2005), which resulted in a significant

increase in FGF-21-related publications.

Publications concerning FGF-21 were cited 93,982 times on

WoSCC, with an average of 37.74 times per article.

Corresponding to publication number, the TGCS and TLCS

of publications were relatively low in the initial stage;

however, the TGCS exhibited a gradual increase from 2005 to

2013 and peaked in 2013 (8898 citations). Since 2014, the TGCS

and TLCS have been relatively stable (Figure 1B), further

indicating that FGF-21 research has remained a hot topic in

recent years.

Countries leading in FGF-21 research

A total of 77 countries and regions contributed to FGF-21

research, and the United States of America (United States)

contributed the largest number of publications (923), followed

by China (720), Japan (210), Germany (176), and Spain (131)

(Figure 2A, Supplementary Table S3). Correspondingly, studies

from the United States had the highest number of TGCS

(54,087 citations), followed by those from China (15,823),

Japan (8,595), Germany (7,612), and Spain (5,610); the rest

were all less than 5,000 citations (Supplementary Table S3).

As mentioned earlier, the TLCS is the number of citations in

the current dataset, and it can better reflect the influence of

publications in the field of FGF-21 research. Compared to TGCS,

the first five countries with the highest TLCS were the

United States (21,715 citations), China (5,328), Germany

(2,550), Japan (2,443), and Spain (1,258) (Figure 2B), further

indicating their dominant roles in FGF-21 research. Notably,

although China had a high publication number, TGCS, and

TLCS (Figure 2A, Figure 2B, and Table 1), its average TLCS

and TGCS were relatively low (Figure 2C, Table 1, and

Supplementary Table S3), implying a minor influence of these

studies.

There were 30 countries with more than ten publications that

were included in the co-authorship analysis. The highest total

link strength was observed in the United States (total link

strength = 591 times) (Figure 2D). Betweenness centrality is

an indicator of a node’s impact on a network; a node with higher

betweenness centrality has a greater influence on the transfer of
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information through the network. Corresponding to the total

link strength, the betweenness centrality of the United States, in

collaboration, was the highest (Table 1), further indicating its

critical role in international cooperation. In this largest

cooperative network led by the United States, China (294),

Germany (200), the United Kingdom (United Kingdom)

(190), and Sweden (149) were in key positions (Figure 2D).

Active institutes and authors in FGF-21
research

Altogether, 12,872 authors from 2,628 institutions have

published reports regarding FGF-21. The top ten productive

institutions were mostly in China (three institutions) and the

United States (three institutions). Wenzhou Medical University

published the most articles (106 publications), followed by the

University of Barcelona (66), the University of Hong Kong (59),

Harvard Medical School (57), and the University of Copenhagen

(57) (Supplementary Table S4). However, in the top ten

institutions with the highest TLCS, there was only one

Chinese institution (the University of Hong Kong), and the

rest were almost entirely from the United States, except Kyoto

University (Table 2).

We further analyzed the co-authorship of 141 institutions

with more than five publications, while the institutions that

were not connected were removed, leaving behind

138 institutions. Harvard Medical School showed the most

frequent collaboration with other institutions (total link

strength = 147 times) (Figure 3A), followed by Wenzhou

Medical University (113), Boston University (110),

University of Washington (95), and Brigham and Women’s

Hospital (88). Cooperation among the institutions could be

divided into five clusters, and cooperation led by Harvard

Medical School showed the most complex network

(Figure 3A).

FIGURE 1
Publication outputs and citations on FGF-21 in the past 22 years. (A) Global annual production trends. Blue bars represent the number of
publications related to FGF-21 per year, and the dotted line represents the trend-fitted curve. The fitting equation and the correlation coefficients (R2)
are presented. (B) Annual TGCS and TLCS of publications.
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The top ten most productive authors were Xiaokun Li of

Wenzhou Medical University (68 publications), Alexei

Kharitonenkov of AK Biotechnologies LLC (64), Francesc

Villarroya of Universitat de Barcelona (49), Deshan Li of

Northeast Agricultural University (48), Aimin Xu of The

University of Hong Kong (44), Andrew C. Adams of Lilly

Research Laboratories (39), Marta Giralt of Universitat de

Barcelona (34), Nobuyuki Itoh of Kyoto University (33),

Guiping Ren of Northeast Agricultural University (32), and

Weiping Jia of Shanghai Jiaotong University (29). Notably,

half of the authors were from China (Supplementary Table

S5). Nevertheless, almost all the top ten authors with the

highest TLCS were from the United States, except for Aimin

Xu (Table 3).

A total of 379 authors who had more than ten publications

were included in the co-author analysis, and 52 authors that were

not connected were excluded. These authors were divided into

the seven largest collaboration networks, which were constructed

by Xiaokun Li (total link strength = 231 times), Deshan Li (182),

Francesc Villarroya (151), Yang Li (147), Alexei Kharitonenkov

FIGURE 2
Leading countries in the field of FGF-21 research. (A) The top ten productive countries concerning FGF-21. (B and C) TLCS and average TLCS of
the top ten countries with the highest TLCS. (D) The international collaboration among different countries. Each country is represented as a node,
and each line means a co-authorship relationship. The node size is proportional to the collaboration link strength.
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(140), Aimin Xu (115), and Steven A. Kliewer (98). The

collaboration networks of Xiaokun Li, Deshan Li, Alexei

Kharitonenkov, and Yang Li mainly focused on drug

discovery and translational research based on FGF-21, and the

collaboration network of Aimin Xu focused on the clinical and

translational aspects of FGF-21, while the networks of Steven A.

Kliewer’s and Francesc Villarroya concentrated on the

physiological mechanisms of FGF-21. These collaborative

networks represent the main topics in the FGF-21 research

field. Interestingly, Francesc Villarroya’s network

demonstrated less collaboration with the other groups

(Figure 3B). Collectively, the results of active institutions and

authors also imply the leading role of the United States in the

field of FGF-21.

Core journals in FGF-21 research

FGF-21-related studies were published in 695 journals. The

top ten journals with the highest number of publications are

shown in Supplementary Table S6, and approximately 20.64% of

all publications were published in these journals. Interestingly,

although PLoS One, Scientific Reports, and the International

Journal of Molecular Sciences published a larger number of

articles, these articles were less cited by FGF-21-related

articles. Table 4 shows the top ten journals with the highest

TLCS, which better reflects the influence of these journals on

FGF-21-related topics. Approximately 52.20% of the total TLCS

occurred in the top ten journals with the highest TLCS, indicating

their significant influence. Among these journals, six were

endocrinology journals, namely, Cell Metabolism (TLCS:

4428), Diabetes (2918), Endocrinology (2641), Journal of

Clinical Endocrinology & Metabolism (1216), Molecular

Metabolism (888), and Clinical Endocrinology (603).

Significantly, although the Journal of Clinical Investigation

only published nine FGF-21 research articles, the TLCS of

these articles ranked fourth (Table 4). This was mainly

attributed to the article “FGF-21 as a novel metabolic

regulator”, which first identified the biological functions of

FGF-21 (Kharitonenkov et al., 2005).

TABLE 1 Top ten countries with the highest TLCS.

Rank Country Publications TLCS TGCS Average
TLCS

Betweenness
centrality

1 United States 923 21715 54087 23.53 0.33

2 China 720 5328 15823 7.40 0.16

3 Germany 176 2550 7612 14.49 0.09

4 Japan 210 2443 8595 11.63 0.04

5 Spain 131 1258 5610 9.60 0.08

6 Sweden 79 1210 3812 15.32 0.07

7 Czech Republic 32 914 1624 28.56 0.17

8 Denmark 83 813 2298 9.80 0.01

9 South Korea 110 812 2885 7.38 0.06

10 United Kingdom 110 790 3523 7.18 0.16

TABLE 2 Top ten institutions with the highest TLCS.

Rank Institution Publications TLCS TGCS Average TLCS

1 University of Texas, Southwestern Medical Center at Dallas 32 3523 6285 110.09

2 Lilly Research Laboratories 28 2762 4241 98.64

3 Eli Lilly and Company 30 2620 4203 87.33

4 New York University 25 2545 4392 101.80

5 The University of Hong Kong 59 2506 4360 42.47

6 Harvard University 46 2482 5485 53.96

7 Beth Israel Deaconess Medical Center 20 1836 3266 91.80

8 Amgen Incorporation 40 1673 3025 41.83

9 Kyoto University 42 1486 3769 35.38

10 Lilly Cooperate Center 22 1457 2573 66.23
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FIGURE 3
Active institutes and authors analysis. (A) Clustering of collaboration among institutes. (B) Clustering of collaboration among authors. In these
maps, each institute or author is represented as a node, and each line means a co-authorship relationship. The node size is proportional to the
collaboration link strength, and the line thickness indicates the collaboration link strength. In addition, the node color reflects the cluster to which it
belongs.
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A total of 109 journals that were cited more than 200 times were

included in the co-cited analysis. Cell Metabolism (total link strength =

415,641 times), Diabetes (321,286), Journal of Biological Chemistry

(318,210), Endocrinology (245,442), and Journal of the Clinical

Investigation (226,705) had the most co-citations with other journals

(Figure 4A), suggesting their important status in FGF-21 research. The

dual-map overlay showed three main citation pathways. As the cited

journals provide the knowledge base of the citing journals, such citation

pathways showed that the investigations onFGF-21mainly concentrated

on “molecular, biology, immunology” and “medicine, medical, clinical”,

and these works were mainly based on studies on “molecular, biology,

genetics” and “health, nursing, medicine” (Figure 4B).

Co-cited publications in FGF-21-related
field

The top 20 publications with the highest TLCS are listed in

Table 5. These publications were all research articles, most of

which were physiological or translational research. Among these

publications, four were clinical investigations and one was related

to drug research/development, indicating that FGF-21-based

drug discovery and the clinical value of FGF-21 are also

important.

Analysis of keyword clustering demonstrated ten rational

clusters, whereas clusters without co-cited these largest clusters

were excluded (Figure 5A and Table 6). The modularity Q and

mean silhouette value of clustering were 0.8106 and 0.9502,

respectively, indicating a reliable structure and results of

clustering. We then created a visualized timeline for these

clusters to identify the involvement of FGF-21-related

research topics (Figure 5B). The identification and

classification of liver-expressed FGF-21 were early topics in

FGF-21 research (Nishimura et al., 2000) (Cluster ID #3 and

ID #8). As a member of the FGF-19 subfamily (Beenken and

Mohammadi, 2009), the metabolic functions of FGF-21 are

similar to those of FGF-19 (Dolegowska et al., 2019), and β-
klotho is required for their metabolic effects (Kurosu et al., 2007;

TABLE 3 Top ten authors with the highest TLCS.

Rank Name Publications TLCS TGCS Institutions

1 Alexei Kharitonenkov 64 6990 11085 AK Biotechnology LLC

2 Steven A. Kliewer 27 3777 6577 University of Texas Southwestern Medical Center at Dallas

3 David J. Mangelsdorf 25 3483 6020 University of Texas Southwestern Medical Center at Dallas

4 Eleftheria Maratos-Flier 28 2989 5273 Novartis Institutes for BioMedical Research

5 Moosa Mohammadi 19 2528 4261 New York University

6 Aimin Xu 44 2417 4078 The University of Hong Kong

7 Regina Goetz 10 2233 3715 New York University

8 Jeffrey S. Flier 16 2185 3755 Harvard Medical School

9 Xunshan Ding 10 2154 3402 Southwestern Medical Center at Dallas

10 Holly A. Bina 10 2018 2789 Lilly Research Laboratories

TABLE 4 Top ten journals with the highest TLCS.

Rank Journal Counts Impact factor
(2021)

TLCS TGCS H index

1 Cell Metabolism 43 31.373 4428 9002 39

2 Diabetes 43 9.337 2918 5001 29

3 Endocrinology 51 5.051 2641 4394 30

4 Journal of Clinical Investigation 9 19.456 1432 2299 8

5 Proceedings of the National Academy of Sciences of the United States of America 22 12.779 1276 2690 17

6 Journal of Biological Chemistry 36 5.486 1216 2779 26

7 Journal of Clinical Endocrinology & Metabolism 40 6.134 907 1539 25

8 Molecular Metabolism 53 8.568 888 1889 23

9 Clinical Endocrinology 16 3.523 603 868 12

10 FEBS Letters 7 3.864 595 859 6
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Ogawa et al., 2007; Ding et al., 2012). Hence, “fgf19” (Cluster ID

#4) and “fgf (21)” (Cluster ID #5) were co-cited in subsequent

studies, and the molecular mechanisms of their metabolic effects

were hot topics during this period. The mechanism by which

FGF-21 exerts its metabolic effects is a major concern. Inagaki

et al. found that Fgf21-transgenic mice exhibited increased free

fatty acid levels (Inagaki et al., 2007) and that FGF-21 induces

lipolysis. Nevertheless, Arner et al. demonstrated that FGF-21

attenuates lipolysis in vitro and further suggested that this is a

possible link that mediates FGF-21-induced insulin

FIGURE 4
Core journals in the field of FGF-21 research. (A) Clustering of co-citation among journals. Each node represents a journal, and each line means
a co-cited relationship. The node size is proportional to the co-cited link strength, and the node color reflects the cluster to which it belongs. (B) The
dual-map overlay of articles citing FGF-21 research. The left and right sides are the citing and cited journals, respectively, and the line path represents
the citation relationship.
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sensibilization (Arner et al., 2008). In addition, FGF-21 was

found to stimulate the browning of white adipose tissues

(Fisher et al., 2012), which may promote glucose uptake (Xu

et al., 2009a; Ding et al., 2012; Markan et al., 2014; BonDurant

et al., 2017). These studies placed “free fatty acid” and “brown

adipose tissue” into the central stage (Cluster ID #1 and ID #2).

The metabolic effects associated with FGF-21 levels in several

metabolism-related diseases, such as coronary artery disease

(Shen et al., 2013), may provide diagnostic value (Cluster ID

#7). Laeger et al. demonstrated that protein restriction promotes

FGF-21 expression and mediates metabolic alterations of protein

restriction (Laeger et al., 2014). Since protein restriction was

correlated with metabolic and aging-related diseases (Wang et al.,

2022), the role of FGF-21 in protein restriction and metabolic

diseases/aging has been an important topic in recent years

(Cluster ID #0).

The term “citation burst” refers to references that were

frequently cited over a period of time, and burst detection can

reflect the hotspots in a certain period based on the topic of

references. We conducted citation burst detection and identified

the top 20 references with the strongest citation burst

(Figure 5C). Almost all publications were research articles,

and there was only one review (Fisher and Maratos-Flier,

2016). Articles with high impact from 2005 to 2012 mostly

concentrated on the physiological roles (Badman et al., 2007;

Inagaki et al., 2007; Ogawa et al., 2007; Gälman et al., 2008; Ding

et al., 2012; Fisher et al., 2012) and preclinical applications of

FGF-21 (Kharitonenkov et al., 2005; Kharitonenkov et al., 2007;

Coskun et al., 2008; Xu et al., 2009a; Fisher et al., 2010). Based on

these studies, FGF-21 was considered an ideal medicine for the

treatment of metabolic diseases. However, native FGF-21 is

unsuitable for clinical application because of its short half-life

(Kharitonenkov et al., 2007; Huang et al., 2013), susceptibility to

proteolytic inactivation (Coppage et al., 2016; Dunshee et al.,

2016; Zhen et al., 2016), and improper aggregation under

physiological conditions (Kharitonenkov et al., 2013). In 2013,

the first FGF-21 analogue, LY2405319, was designed to overcome

the defect of native FGF-21 (Kharitonenkov et al., 2013), and this

promoted the design of other analogues, such as PF-05231023

(Huang et al., 2013). Nevertheless, although LY2405319 and PF-

05231023 demonstrated satisfactory glucose- and lipid-lowering

effects in rodents and nonhuman primates (Adams et al., 2013a;

Huang et al., 2013; Kharitonenkov et al., 2013; Weng et al., 2015),

the glucose-lowering effect was absent in obese human with

diabetes (Gaich et al., 2013; Talukdar et al., 2016; Kim et al.,

2017). Such inconsistencies indicated an inadequate

TABLE 5 Top ten publications with the highest TLCS.

Rank First author Journal Year Category TLCS TGCS

1 Kharitonenkov
Alexei

Journal of Clinical Investigation 2005 Translational research 992 1452

2 Takeshi Inagaki Cell Metabolism 2007 Physiological research 689 1084

3 Michael K. Badman Cell Metabolism 2007 Physiological research 684 1087

4 Jing Xu Diabetes 2009 Translational research 594 812

5 Tamer Coskun Endocrinology 2008 Translational research 568 755

6 Xinmei Zhang Diabetes 2008 Clinical research 468 634

7 Kharitonenkov
Alexei

Endocrinology 2012 Translational research 451 578

8 Ffolliott M. Fisher Genes & Development 2012 Physiological research 427 1006

9 Tetsuya Nishimura Biochimica et Biophysica Acta 2000 Physiological research 417 582

10 Ffolliott M. Fisher Diabetes 2010 Translational research 376 506

11 Gregory Gaich Cell Metabolism 2013 Drug discovery and clinical
research

375 579

12 Matthew J. Potthoff Proceedings of the National Academy of Sciences of the United States of
America

2009 Physiological research 345 486

13 Yasushi Ogawa Proceedings of the National Academy of Sciences of the United States of
America

2007 Physiological research 308 438

14 Hiroshi Kurosu Journal of Biological Chemistry 2007 Physiological research 294 544

15 Jody Dushay Gastroenterology 2010 Clinical research 290 403

16 Cecilia Gälman Cell Metabolism 2008 Clinical research 285 377

17 Wolf Wente Diabetes 2006 Translational research 265 365

18 Zhuofeng Lin Cell Metabolism 2013 Translational research 257 402

19 Kathleen R. Markan Diabetes 2014 Physiological research 247 334

20 Klementina Fon
Tacer

Molecular Endocrinology 2010 Physiological research 243 453
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understanding of FGF-21 and motivated scholars to further

investigate the metabolic role of FGF-21 (Bookout et al., 2013;

Laeger et al., 2014; Markan et al., 2014; Owen et al., 2014;

BonDurant et al., 2017). Notably, the effects of FGF-21 on the

central nervous system came into focus after 2013 (Owen et al.,

2014).

Keywords analysis

A total of 107 keywords (set as author keywords) were

identified as having occurred more than ten times. According

to the clustering, the research topic of FGF-21 was roughly

divided into four parts, namely, the relationship between

FGF-21 and other hormones, the action of FGF-21 on adipose

tissues, the action of FGF-21 on liver, and the molecular

mechanism of the effects of FGF-21 (Figure 6A), and these

parts were the main topics in FGF-21 research. Several novel

aspects were found in the co-occurrence network, including

“Alzheimer’s disease” (co-occurrence: 10 times),

“hypertension” (10), “protein restriction” (11), “body

composition” (12), “gdf15” (13), “chronic kidney disease” (14),

and “cardiovascular disease” (15), which were all less exposed in

FGF-21 research but may have potential significance (Figure 6B).

Furthermore, we performed keyword burst detection, and

62 keywords with higher burst strength were extracted. The

FIGURE 5
Co-cited references analysis. (A) Cluster analysis of co-cited references. Each line indicates a co-cited relationship. (B) Timeline view of the ten
clusters. The position of the node on the horizontal axis indicates the time point of the first appearance, and each line represents a co-cited
relationship. The size of each node is proportional to the number of citations. (C) The top twenty references with the highest citation bursts.
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top 20 keywords are shown in Figure 6C. Consistent with

previous results, “identification” and “fibroblast growth factor

19” were major concerns in the initial stage; metabolic effects of

FGF-21 were hot topics during the period 2008–2014, and the

relationship between FGF-21 and metabolic disease, such as

“atherosclerosis” and “fatty liver”, received attention later. In

the last four years, “stress”, “mechanism”, “homeostasis”, and

“mouse model” were the keywords with higher burst strength

(Figure 6C).

Analysis of publications in the last five
years

To further demonstrate the potential directions of FGF-

21 research, we analyzed co-cited references in the past

five years (2017–2021). Citation burst detection identified

30 references with the strongest citation bursts (Figure 7).

Notably, in addition to traditional topics, such as the

metabolic effects of FGF-21 on peripheral tissues (Adams

et al., 2013b; De Sousa-Coelho et al., 2013; Holland et al.,

2013; Kim et al., 2013; Lin et al., 2013; Emanuelli et al., 2014;

Fisher et al., 2014; Jiang et al., 2014; Keipert et al., 2014;

Markan et al., 2014; Véniant et al., 2015; Zhang et al., 2015;

Jimenez et al., 2018) and the association between FGF-21 and

metabolic diseases (Chow et al., 2013; Shen et al., 2013),

some novel aspects can be found in these publications,

namely, the central effects of FGF-21 (Bookout et al.,

2013; Liang et al., 2014; Owen et al., 2014; Douris et al.,

2015; Lan et al., 2017) and the effects of FGF-21 on non-

metabolic diseases (Liu et al., 2013; Planavila et al., 2013; Yu

et al., 2016). These studies have extended our understanding

of FGF-21 biology, especially the central effects of FGF-21,

which may not only be a critical part of future investigations

but also a key to comprehending the inconsistencies of the

metabolic effects of FGF-21 in human and animal studies

(Gaich et al., 2013; Talukdar et al., 2016; Kim et al., 2017; She

et al., 2022).

Discussion

In the present study, we analyzed the main knowledge

domain and emerging trends in FGF-21 research through a

bibliometric analysis. The results showed that FGF-21

research has entered a mature stage since its rise in 2005, and

the United States has always been the leading country in FGF-21-

related research studied. Importantly, the clinical translation of

FGF-21 remains unclear, especially in glycometabolism, and

further investigations on its metabolic functions are still

necessary.

Leading countries in FGF-21 research

Although only three of the top ten productive institutions

were from the United States (Supplementary Table S4), eight

institutions from the United States demonstrated a higher TLCS

in FGF-21 topics (Table 2). In addition, authors from the

United States occupied eight of the most influential author list

of FGF-21 research, including Alexei Kharitonenkov, Steven A.

Kliewer, David J. Mangelsdorf, Moosa Mohammadi, Regina

Goetz, Jeffrey S. Flier, Xunshan Ding, and Holly A. Bina

(Table 3). Notably, these authors mainly concentrated on

physiological research (Steven A. Kliewer, David

J. Mangelsdorf, Moosa Mohammadi, Regina Goetz, Jeffrey S.

Flier, Xunshan Ding, and Holly A. Bina), translation research

(Alexei Kharitonenkov), and drug development (Alexei

Kharitonenkov) related to FGF-21. Since physiological

research on FGF-21 is the basis of translation and drug

TABLE 6 Top ten clusters of co-cited references with the highest K value.

Cluster ID Size Silhouette Mean year Top term Log (likelihood
ratio, p
level)

#0 49 0.935 2016 Protein restriction 17.67, 1.0E-4

#1 48 0.973 2008 Free fatty acid 8.91, 0.001

#2 48 0.903 2012 Brown adipose tissue 9.33, 0.005

#3 26 0.935 2000 Liver 4.83, 0.005

#4 25 0.950 2005 Fgf19 13.64, 0.001

#5 17 0.990 2004 Fgf (21) 9.05, 0.005

#6 13 1 2004 Fibrate 10.48, 0.005

#7 11 0.975 2013 Coronary artery disease 19.31, 1.0E-4

#8 11 1 1997 Gene family 12.36, 0.001

#9 8 0.974 2017 Gdf15 20.20, 1.0E-4
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development research (Figure 4B), the United States deservedly

exhibit a higher influence in FGF-21 research.

It is noteworthy that China published the second highest

number of articles in this field (Figure 2A, Table 1, and

Supplementary Table S3); nevertheless, the average citation of

these articles was relatively low (Table 1; Supplementary Table

S3). Correspondingly, the top ten institutions and top ten authors

with the highest TLCS only included one Chinese institution (the

University of Hong Kong) and one Chinese scholar (Aiming Xu)

(Table 2; Table 3). Among the top ten active authors

(Supplementary Table S5), Chinese authors mainly

concentrated on translational research (Aiming Xu, Xiaokun

FIGURE 6
Analysis of keywords in publications. (A)Clustering of co-occurrences among keywords. Keywords with close relationships are assigned to one
cluster with the same color, and these keywords are roughly divided into four clusters: the association between FGF-21 and other hormones, the
action of FGF-21 on adipose tissue, the action of FGF-21 on liver, and the molecular mechanisms of FGF-21. (B) Timeline visualization of co-
occurrence among keywords. The nodes marked with purple color represent the keywords that appeared relatively earlier, whereas those with
yellow color represent the current research focuses. (C) Top 20 keywords with the highest citation bursts.
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Li, Desheng Li, Guiping Ren, and Weiping Jia) and drug

development research (Desheng Li and Guiping Ren). Thus,

Chinese scholars have mainly focused on applications rather

than physiological research of FGF-21, which results in a minor

impact on FGF-21 research.

The evolving trends of FGF-21 research

In 2000, Nishimura et al. identified the existence of FGF-21 in

mammals (Nishimura et al., 2000); however, its specific function

remained unclear for several years. In 2005, Kharitonenkov et al.

uncovered the glucose- and lipid-lowering effects of FGF-21.

Most importantly, they found that FGF-21 does not induce

mitogenesis and hypoglycemia, indicating that FGF-21 is an

ideal drug for metabolic diseases (Kharitonenkov et al., 2005).

Since then, an increasing number of articles have been published

(Figure 1A), and studies on FGF-21 have focused on several

aspects, including physiological research, FGF-21-based

translational research, and FGF-21-based drug development

(Figure 5C). These studies confirmed the anti-diabetic and

anti-obesity effects of FGF-21 (Kharitonenkov et al., 2007;

Coskun et al., 2008; Xu et al., 2009a), which further

accelerated the clinical translation of FGF-21. However, these

studies also yielded a series of seemingly contradictory results

and challenged the findings of Kharitonenkov et al. (2005). FGF-

21 was found to reduce blood glucose during nutrient sufficiency

(for example, obesity or during feeding) (Xu et al., 2009a;

Berglund et al., 2009; Xu et al., 2009b; Li et al., 2009; Ding

et al., 2012; Holland et al., 2013; BonDurant et al., 2017), whereas

it increased blood glucose during nutrient-deficient periods (for

example, fasting) (Potthoff et al., 2009; Liang et al., 2014). More

importantly, FGF-21-based therapy was sufficient to reduce

blood glucose in preclinical studies (Adams et al., 2013a;

Huang et al., 2013; Kharitonenkov et al., 2013; Kolumam

et al., 2015; Weng et al., 2015; Thompson et al., 2016; Baruch

FIGURE 7
References with the highest citation bursts over the past 5 years (2017–2021).
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et al., 2020), whereas this effect was absent in most of the clinical

studies (Gaich et al., 2013; Talukdar et al., 2016; Kim et al., 2017;

Baruch et al., 2020). These findings have encouraged researchers

to further investigate the physiological roles of FGF-21.

As mentioned earlier, the effects of FGF-21 occur in a

metabolic status-dependent manner (Xu et al., 2009a;

Berglund et al., 2009; Xu et al., 2009b; Li et al., 2009;

Potthoff et al., 2009; Ding et al., 2012; Holland et al., 2013;

Liang et al., 2014; BonDurant et al., 2017), suggesting that FGF-

21 may act as an important player in maintaining metabolic

homeostasis instead of just functioning as an anti-

hyperglycemic factor. How does FGF-21 exert different

functions under different metabolic conditions? The central

nervous system (CNS) senses the metabolic status and

coordinates metabolic homeostasis at the whole-body level

(Myers and Olson, 2012), and FGF-21 has been shown to

cross the blood–brain barrier (Hsuchou et al., 2007). In

addition, the hypothalamus, brain stem, and hindbrain

express both FGFRs and β-klotho (Bookout et al., 2013;

Liang et al., 2014; Von Holstein-Rathlou et al., 2016; Lan

et al., 2017; Jensen-Cody et al., 2020), further indicating that

FGF-21 may be able to maintain homeostasis through its

actions on the CNS. Liang et al. demonstrated that Fgf21

knockout mice exhibit hypoglycemia during fasting, and

further investigations have found that FGF-21 can activate

the hypothalamus–pituitary–adrenal (HPA) axis to promote

hepatic glucogenesis and elevate glucose levels (Liang et al.,

2014). Intracerebroventricular injection of FGF-21 increased

sympathetic outflow to adipose tissues, which induced

browning of adipose tissues, energy expenditure, and

lipolysis (Owen et al., 2014; Douris et al., 2015).

Interestingly, the CNS, especially the hypothalamus,

responds differently to FGF-21, depending on the metabolic

status it detects. Matsui et al. revealed that fasting reduces

hypothalamic Klb expression, thereby weakening the

hypothalamic response to FGF-21 (Matsui et al., 2018).

Similarly, FGF-21 can potentiate Ca2+ changes in both

glucose-excited and glucose-inhibited neurons during the

process of glucose increase in cerebrospinal fluid, whereas

such effects are absent during the process of glucose

decrease (Jensen-Cody et al., 2020). These results suggest

that the CNS, especially the hypothalamus, which is a

coordinator of whole-body metabolism (Coll and Yeo, 2013),

is key to fully understanding the metabolic roles of FGF-21.

In addition to metabolic effects, the diagnostic value and

non-metabolic effects of FGF-21 have also received attention.

Circulating FGF-21 levels were positively correlated with obesity-

related metabolic complications (Zhang et al., 2008), renal

function (Lin et al., 2011), atherosclerosis (Chow et al., 2013),

and hypertension (Semba et al., 2013), indicating that FGF-21

may be used as a biomarker in metabolic or even non-metabolic

diseases. Since Planavila et al. uncovered that FGF-21 can

suppress cardiac hypertrophy (Planavila et al., 2013),

subsequent studies also demonstrated that FGF-21 exerts

protective effects against cardiac ischemic injury (Liu et al.,

2013) and inflammation (Yu et al., 2016), and FGF-21 was

considered a protective factor in non-metabolic diseases. This

further extended our understanding of FGF-21 biology

(Figure 8).

Future outlook of FGF-21

Future major directions for FGF-21 research should be

based on the current main topics (Figure 8). First, FGF-21

can mitigate metabolic disorders without inducing

hypoglycemia or mitogenesis (Kharitonenkov et al., 2005),

which shows the future significance of FGF-21-based

therapies for metabolic diseases. Thus, the development of

novel FGF-21-based bioengineered drugs that overcome the

defects of native FGF-21 in clinical applications will remain a

hot topic in the near future. Although preclinical findings of

FGF-21 translate only partially to clinical trials (Gaich et al.,

2013; Talukdar et al., 2016; Kim et al., 2017; Baruch et al.,

2020), we speculated that prolonged FGF-21 treatment may

be key to realizing its hypoglycemic effects considering the

short-term administration of FGF-21 in these studies (Gaich

et al., 2013; Talukdar et al., 2016; Kim et al., 2017; Baruch

et al., 2020). Indeed, long-term administration of two other

FGF-21-based bioengineered drugs, BMS-986036 and AKR-

001, significantly reduced blood glucose levels in patients

with diabetes (Charles et al., 2019; Harrison et al., 2021).

Therefore, studies on novel dosage regimens are required in

the future.

The central effects of FGF-21 remain unknown. Although

we have obtained some information about the action of FGF-21

on the hypothalamus in recent years, it is inconsiderable. The

reports from Jensen-Cody et al. [49] demonstrated that several

regions in the CNS express β-klotho, including the

suprachiasmatic nucleus, paraventricular nucleus, arcuate

nucleus, ventromedial nucleus of the hypothalamus, and area

postrema and nucleus tractus solitarius in the hindbrain

(Jensen-Cody et al., 2020), and these are the potential acting

sites of FGF-21. Thus, these regions are of great significance and

may be the key to understanding the metabolic effects of FGF-

21 at the whole-body level [for example, the action of FGF-21

on the arcuate nucleus, which is critical for energy sensing,

energy expenditure, and food intake (Méndez-Hernández et al.,

2020)].

Since FGF-21 was found to exert anti-hypertrophic effects

(Planavila et al., 2013), several groups further demonstrated that

FGF-21 mitigates several non-metabolic diseases, such as

inflammation (Yu et al., 2016), hypertension (Pan et al.,

2018), and neurodegeneration (Chen et al., 2019); thus, the

non-metabolic effects of FGF-21 are worth exploring, and

investigation of its relationship with severe diseases, such as
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cardiovascular diseases (Planavila et al., 2013; Pan et al., 2018),

Alzheimer’s disease (Chen et al., 2019), and chronic kidney

disease (Salgado et al., 2021) (Figure 6B), may further extend

the understanding and clinical value of FGF-21.

Notably, some studies brought FGF-21 into another wider

field. Since Laeger et al. found that protein restriction, which is

associated with metabolism and aging (Wang et al., 2022), can

induce FGF-21 expression through endoplasmic stress response

(Laeger et al., 2014), FGF-21 was considered a stress-related

factor and opened a novel aspect to comprehend the metabolic

effects of FGF-21. This attracted numerous scholars to investigate

the relationship between FGF-21 and protein restriction

(Figure 5B), and such an issue will remain a hot topic in the

near future due to the complicated association between stress

response and metabolic status (Figures 6B and C) (Keipert and

Ost, 2021; Lemmer et al., 2021).

Limitations

Our study had several limitations. First, this study focused on

FGF-21, and we enriched the search strategy as much as possible;

however, a few studies on FGF-21 were not included in the analysis

because some journals were not included in SCIE. Second, the results

fromVOSviewer and CiteSpace were based on amachine algorithm,

which may have caused deviations. Finally, future outlooks were

FIGURE 8
Evolving trends of FGF-21 from 2000 onward.
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based on the co-occurrence of keywords and citation burst detection,

and some potential aspects may not have been included.

Conclusion

The peripheral metabolic effects of FGF-21, FGF-21-based drug

development, and translational research on metabolic diseases are

the major topics in this field. Future studies will be conducted on

several novel aspects, such as the central metabolic effects of FGF-21

and the effects of FGF-21 on non-metabolic diseases. Notably, the

action of FGF-21 on the central nervous system is the key to

understanding its integrated metabolic effects at the whole-body

level and may constitute the basis of future clinical translational and

drug development research.
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