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Anatabine, an alkaloid present in plants of the Solanaceae family (including

tobacco and eggplant), has been shown to ameliorate chronic inflammatory

conditions in mouse models, such as Alzheimer’s disease, Hashimoto’s

thyroiditis, multiple sclerosis, and intestinal inflammation. However, the

mechanisms of action of anatabine remain unclear. To understand the

impact of anatabine on cellular systems and identify the molecular pathways

that are perturbed, we designed a study to examine the concentration-

dependent effects of anatabine on various cell types by using a systems

pharmacology approach. The resulting dataset, consisting of measurements

of various omics data types at different time points, was analyzed by using

multiple computational techniques. To identify concentration-dependent

activated pathways, we performed linear modeling followed by gene set

enrichment. To predict the functional partners of anatabine and the involved

pathways, we harnessed the LINCS L1000 dataset’s wealth of information and

implemented integer linear programming on directed graphs, respectively.

Finally, we experimentally verified our key computational predictions. Using

an appropriate luciferase reporter cell system,wewere able to demonstrate that

anatabine treatment results in NRF2 (nuclear factor-erythroid factor 2-related

factor 2) translocation, and our systematic phosphoproteomic assays showed

that anatabine treatment results in activation of MAPK signaling. While there are

certain areas to be explored in deciphering the exact anti-inflammatory

mechanisms of action of anatabine and other NRF2 activators, we believe

that anatabine constitutes an interesting molecule for its therapeutic potential

in NRF2-related diseases.
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1 Introduction

Anatabine is an alkaloid present in plants of the Solanaceae

family, including green tomatoes, peppers, eggplant, and tobacco,

and it exhibits close structural resemblance to nicotine (Nielsen

et al., 2013). In vivo, anatabine has been shown to ameliorate

Alzheimer disease in mice (Paris et al., 2011; Verma et al., 2015)

and Hashimoto thyroiditis in mice (Caturegli et al., 2012) and

humans (Schmeltz et al., 2014). On the basis of experiments in

mice, anatabine has also been suggested to be effective in

treatment of multiple sclerosis (Paris et al., 2013b).

As a result, anatabine was marketed from 2011 to 2014

(Anatabloc, Star Scientific Inc.) as a dietary supplement and

as an active ingredient in a facial cream with anti-inflammatory

properties. During this period, an open-label case series showed

that a facial cream containing anatabine could improve the

appearance of skin in patients with mild to moderate rosacea

(Lanier et al., 2013a), while an internet-based survey study

provided evidence that anatabine supplementation could

improve chronic joint pain disorders (Lanier et al., 2013b).

More recently, anatabine has been shown to ameliorate

intestinal inflammation in mice (Ruiz Castro et al., 2020),

inhibit acute and chronic inflammation in mice in a dose-

dependent manner (Xia et al., 2021), and improve the

outcomes of repetitive mild traumatic brain injury in mice

upon a 3-month delayed treatment (Morin et al., 2021).

At the molecular level, anatabine inhibits the activity of two

transcription factors that are involved in cellular inflammatory

response—NF-κB (nuclear factor-kappa B) and STAT3 (signal

transducer and activator of transcription 3)—both in vivo (Paris

et al., 2013a; Paris et al., 2013b) and in vitro (Paris et al., 2011;

Paris et al., 2013a). In addition, it decreases lipopolysaccharide

(LPS)-induced TNFα (tumor necrosis factor α) and IL-6

(interleukin 6) levels in a dose-dependent manner while

increasing the levels of the anti-inflammatory cytokine IL-10

in vivo (Xia et al., 2021).

While several molecular mechanisms have been proposed

and categorized in detail to explain how phytochemicals function

as anti-inflammatory agents (Bellik et al., 2012), it remains

unclear which of those could pertain to anatabine’s

mechanism(s) of action and how the observed molecular

perturbations are linked to its anti-inflammatory activity.

Before investigating the effects of anatabine in the context of

inflammation, we wanted to understand its impact on cellular

systems and identify molecular networks and pathways that are

perturbed by anatabine. To this end, we designed a study to

examine the concentration-dependent effects of anatabine on

various cell types by using a systems pharmacology approach.

The investigations were supported by multiomics measurements

(transcriptomics, proteomics, and phosphoproteomics) at

different time points. To identify concentration-dependent

perturbed biological processes/pathways, we performed linear

modeling analysis of transcriptomics data followed by gene set

enrichment analyses. To predict the functional partners of

anatabine and the involved pathways, we harnessed the

L1000 wealth of information and implemented integer linear

programming on directed graphs, respectively. We then verified

some hypotheses using specific cellular assays. Thus, using an

appropriate luciferase reporter cell system, we showed that

anatabine treatment results in NRF2 translocation. Finally, by

leveraging systematic phosphoproteomic assays, we

demonstrated that anatabine treatment resulted in activation

of MAPK signaling.

2 Materials and methods

2.1 Cell culture

In this study, we employed four different cell systems: the cell

lines HEK-293, SH-SY5Y, and PMA-differentiated THP-1, and

primary human epidermal keratinocytes.

The human embryonic kidney cells HEK-293 (Merck, Buchs,

Switzerland) were seeded at 60,000 cells per well in a 96-well plate

and cultured in Eagle’s minimum essential medium (EMEM;

Gibco, Grand Island, NY, United States) supplemented with 10%

FBS (Sigma, Burlington, MA, United States), 1% non-essential

amino acids (Merck), 1% sodium pyruvate (Gibco), and 1%

penicillin/streptomycin (PenStrep; Gibco).

SH-SY5Y is a human bone marrow neuroblastoma cell line

that has previously been used to investigate the potential anti-

inflammatory effect of anatabine (Paris et al., 2013a). SH-SY5Y

cells (CRL-2266, ATCC, Manassas, VA, United States) were

seeded at a density of 15,000 cells per well in a 96-well plate

and cultured in a medium consisting of 50% EMEM and 50%

Ham’s F12 nutrient mix (Gibco), along with 10% FBS, 1%

PenStrep, and 1% L-glutamine (Gibco).

The human leukemia-derived monocytic cell line THP-1 is

the most widely used in vitromodel for primary investigations on

human macrophages (Lund et al., 2016). THP-1 cells (Merck)

were seeded at 100,000 cells per well in a 96-well plate and

cultured in RPMI 1640 medium (Gibco) supplemented with 10%

FBS and 1% PenStrep and in the presence of 40 ng/ml phorbol

12-myristate 13-acetate [PMA; Thermo Fisher (Kandel) GmbH,

Kandel, Germany]. After 48 h, the culture medium was replaced

with fresh medium without PMA and allowed to rest for 24 h

before treatment, as previously described (Lund et al., 2016).

Primary human epidermal keratinocytes were included as a

relevant cell system for skin. The keratinocytes (Ruwag, Bettlach,

Switzerland) of healthy, non-smoking, Caucasian donors aged

20–60 years old, were selected from a donor pool. The

keratinocytes were seeded at 17,500 cells per well in a 96-well

plate and cultured in KGM-Gold Keratinocyte Growth Medium

(Ruwag).

All the four cell systems presented above were seeded at a

total volume of 190 μL per well to allow for the addition of 10 μL
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of 20× anatabine, which was added 24 h after seeding, or the

addition of non-PMA media in the case of THP-1 cells.

The same anatabine formulation (WuXi Apptec, Shanghai,

China) consisting of racemic anatabine free base (hereafter

referred to as “anatabine”; MW: 160.22 g/mol) from a single

production batch (Batch B) was used across all experiments.

Anatabine concentrations of less than 400 μM were selected

to ensure that at least 80% cell viability was observed after 24 h of

exposure. Viability was assessed using CellTiterGlo (Promega,

Madison, WI, United States) by measuring the ATP content in

each treated sample and comparing them with those of relevant

controls, which were typically cells treated only with cell culture

medium.

2.2 Transcriptomics

To generate transcriptomics data, cells were exposed to

different concentrations of anatabine (0, 100, 200, 300, and

400 μM) for 6 h, and their transcriptome was analyzed using a

microarray-based technique.

In detail, all three cell lines were lysed using RLT buffer

(Qiagen, Hilden, Germany), and keratinocytes were lysed using

the Qiazol lysis reagent (Qiagen). RNA isolation was performed

with the RNeasy Micro Kit (Qiagen) on a Qiacube instrument

(Qiagen). RNA was quantified with Nanodrop 1000 (Thermo

Fisher Scientific, Waltham, MA, United States). The quality of

the total RNA, which was required to have an RNA integrity

number greater than 6.0, was assessed using 2100 Bioanalyzer

(Agilent Technologies, Santa Clara, CA, United States). Total

RNA (50 ng) was processed in the Tecan/Nugen Ovation RNA

Amplification system V2 kit (Tecan, Männedorf, Switzerland),

according to the manufacturer’s instructions, followed by cDNA

fragmentation and labeling using the Encore Biotine module

(Tecan). The Human Genome U133 Plus 2.0 microarray was

used for hybridization using a Thermo Fisher Oven 645.

Furthermore, washing was performed on Affymetrix

GeneChip™ Fluidics Stations 450Dx (protocol FS450-0004)

and scanning on a ThermoFisher GeneChip™ Scanner 3000 7G.

The Bioconductor affyPLM package in R version 1.64

(Bolstad et al., 2004) was used for quality control checks of all

chips. Following quality control procedures, differential gene

expression was analyzed using the Bioconductor limma

package in R version 3.44.3 (Ritchie et al., 2015). Pairwise

comparisons at the gene level, called systems response profiles

(SRP), were computed by comparing each concentration-

treatment with its respective vehicle control. Genes with a

false discovery rate (FDR) (p-value adjusted using the

Benjamini and Hochberg method) below 0.05 were considered

differentially expressed genes (Benjamini and Hochberg, 1995).

SRPs including all genes (~18,000) were further leveraged in

downstream p-value threshold-free gene set enrichment analysis

(GSEA), as described in Section 2.6.

2.3 Data-independent acquisition mass
spectrometry

Samples for DIA were prepared using the PreOmics iST kit

(PreOmics GmbH, Planegg/Martinsried, Germany), according to

the manufacturer’s protocol. Briefly, 100 µL of PreOmics lyse buffer

was added to the cells, and themix was incubated at 90°C for 10 min

and sonicated for 30 s with a sonifier (Branson, Danbury, CT,

United States) at 10% amplitude. Protein concentration was

determined using the Pierce 660 nm protein assay (Pierce

Biotechnology Inc., Rockford, IL, United States), according to the

manufacturer’s protocol. The samples were normalized to 0.5 μg/μL,

and 40 µg of each sample was further processed with the PreOmics

iST kit with a 3-h long trypsin digestion. Peptides were purified on

the cartridge, dried overnight on a vacuum concentrator (Martin

Christ, Osterode, Germany), and resuspended in 50 µL of LC

Solution (Biognosys AG, Schlieren, Switzerland). iRT reference

peptides (1 μL; Biognosys AG) were added to 19 µL of the

processed samples, which were analyzed with Easy 1000 nanoLC

(Thermo Fisher Scientific) connected online to a Q-Exactive mass

spectrometer (Thermo Fisher Scientific). Two microliters of the

peptide mixture were separated on a 0.75 × 500 mm, 1.7 μm

C18 column (Thermo Fisher Scientific) using solvent A (1%

acetonitrile/99% water/0.1 formic acid) over 115 min with a

gradient of 5%–35% solvent B (95% acetonitrile/5% water/

0.1 formic acid) at 200 nL/min.

Data were acquired on the Q-Exactive system in the DIA

mode: MS1 scan at a 140 k resolution was followed by 23 custom

MS/MSm/zwindows at a 35 k resolution, as previously described

(Bruderer et al., 2017) with slight modifications. Data were

processed with Spectronaut Pulsar (v. 13.8.190930.43655;

Biognosys AG) using the DirectDIA feature.

SRPs were computed by comparing samples at each

concentration with their respective vehicle control, as

described in Section 2.2.

2.4 Phosphoproteomics

Cells were exposed to 100, 200, 300, and 400 μMof anatabine for

15min, 24min, 6 h, and 24 h. For each time point, the cells were

placed on ice, washed with phosphate-buffered saline, and lysed with

the addition of lysis buffer (Protavio Ltd, Cambridge,

United Kingdom). The obtained lysed samples were frozen at

–80°C. Just before the phosphoproteomic measurement, the

samples were quickly thawed and centrifuged for 20 min at 2700 g

to remove cellular debris. The xMAP assays were performed using a

custom-made 18-plex phosphoprotein detection kit (Protavio Ltd),

according to the kit instructions, and a Luminex FLEXMAP 3D

instrument (Luminex, Austin, TX, United States).

Data were acquired and pre-processed as described

previously (Michailidou et al., 2015). SRPs were computed as

described in Section 2.2.
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2.5 NRF2 reporter gene assay

An HEK-293-based NRF2/ARE luciferase reporter cell line

(Signosis, Santa Clara, CA, United States) was used to evaluate

NRF2 activation. The cell line was stably transfected with pTA-

ARE-luciferase reporter vector, which contains four repeats of

the antioxidant response binding site, a minimal promoter

upstream of the firefly luciferase coding region, along with a

hygromycin expression vector. Following a 24-h stimulation of

the NRF2 reporter cells with various treatment conditions,

luminescence was measured using a FLUOstar Omega plate

reader (BMG LABTECH, Ortenberg, Germany). Dimethyl

fumarate (Alfa Aesar and Sigma) and sulforaphane, two

NRF2 activators, were used as positive controls for the assay.

SRPs were computed as described in Section 2.2.

2.6 Linear model and GSEA

Linear model analysis was used to identify genes whose

expression changed linearly with an increase in anatabine

concentration (0, 100, 200, 300, and 400 μM). The linear

model analysis was conducted using the transcriptomics data

acquired either from each cell system separately (gene expression

~ β0 + β1*anatabine_concentration + ε) or all cell systems

combined (gene expression ~ β0 + β1*anatabine_concentration
+ β2*cell_systems + ε) to identify cell system-specific and cell

system-independent genes (“core genes”), respectively. Genes

with β1 coefficient-associated FDR <0.05 were considered to

have a linear change in their expression with increasing

concentrations of anatabine. The limma package (version

3.38.3) in R (version 3.5.1) was used for the analysis.

Leveraging these results, GSEA was performed to support

biological interpretation (Subramanian et al., 2005). Genes were

ranked in decreasing order based on their respective β1
coefficient-associated t-statistics. The “C2-CP” (Canonical

Pathways) and “C3-TFT” (Transcription Factor Targets)

MSigDB (version 7.1) gene set collections were used as

sources of a priori biological knowledge (Liberzon et al.,

2015). Gene sets with normalized enrichment score (NES)-

associated FDR <0.05 were considered to be significantly

enriched.

2.7 L1000 LINCS transcriptomic signature
comparison

To investigate the mode of action of anatabine, gene

expression profiles obtained in response to anatabine were

compared with those obtained in response to a plethora of

perturbagens corresponding mostly to chemical/drug

compounds (Messinis et al., 2021). These profiles are part of

the publicly available level 5 LINCS L1000 dataset (GEO

accession number GSE92742), consisting of

473,647 differential gene expression signatures (profiles),

created using various concentrations of 28,927 unique

perturbagens for treating multiple cell systems. Each LINCS

L1000 gene expression “signature” corresponds to the

measurement of 978 genes. Genes from anatabine expression

profiles generated using oligonucleotide microarray were

matched with those from the L1000 dataset, resulting in

938 genes in common that were used for further comparison

analysis.

Spearman correlation was used to compare L1000 and genes

from expression signatures of anatabine-treated systems. The

ranking of genes for anatabine expression signature was based on

their respective β1 coefficient-associated t-statistics computed

using a linear model combining all cell systems. Among the

L1000 perturbations, there were several cases where the same

compound was used in different experimental conditions. In

those cases, the comparison with the highest Spearman

correlation coefficient was retained. We ran 100 random

transcriptomic signatures against all L1000 signatures in

parallel, calculated the significance of the hypothesis that

anatabine’s Spearman correlation coefficient values are in the

same range as those of the random signatures’, and discarded any

observation with a p-value greater than 0.001.

2.8 Chemical similarity fingerprints and
descriptors

To compare the chemical similarity among compounds, the

compounds were encoded using several chemical similarity

fingerprints and descriptors. The chemical similarity was

compared using the DataWarrior software (Sander et al.,

2015). DataWarrior was used to calculate the chemical

similarity descriptors “Fragment Fingerprints” (FragFP),

“Pathway Fingerprints” (PathFp), “OrgFunctions,” “Spheres

Fingerprints” (SphereFp), “SkeletonSpheres” (SkelSpheres),

and “Flexophore.”

FragFP (Durant et al., 2002) is a substructure fragment

dictionary-based binary fingerprint similar to MDL Keys (Xue

and Bajorath, 2000), which contains 512 predefined structure

fragments. The FragFP descriptor contains 1 bit for each

fragment in the dictionary. A bit is set to 1 if the

corresponding fragment is present in the molecule at least

one time.

PathFp (O’Boyle et al., 2011) encodes any linear fragment of

up to seven atoms into a hashed binary fingerprint of size

512 bits. All possible “paths” of seven or less atoms in the

molecule are encoded. A text string that encodes atomic

numbers and bond orders is generated from the path in a

normalized way. From this text string, a hash value is

generated that is used to set the corresponding bit of the

fingerprint to 1.
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SphereFp (Bremser, 1978) encodes circular spheres of atoms

and bonds into a hashed binary fingerprint of size 512 bits.

Fragments of increasing size are generated by including

1–5 n layers of atom neighbors for every atom in the

molecule. A canonical representation of these circular

fragments is obtained considering their aromaticity but not

their stereo configurations. A hash code is then generated,

which is used to set the respective bit of the fingerprint.

SkelSpheres (Boss et al., 2017) is similar to SphereFp but also

encodes stereochemistry. Additionally, it counts duplicate

fragments, encodes heteroatom depleted skeletons, and has twice

the resolution leading to fewer hash collisions (bit size: 1024).

OrgFunctions (Sander et al., 2015) encodes the functional

groups in the molecule and the steric or electronic features of the

neighborhood of the functional groups. It encodes 1024 core

functions that overlap in some cases. Molecules that contain the

same functional groups are considered similar irrespective of the

possible presence of carbon skeletons.

Flexophore (von Korff et al., 2008) encodes 3D-

pharmacophore features of the molecules. This descriptor can

be used to check if two compounds have a similar protein binding

mode. A high Flexophore similarity of two molecules indicates

that a significant fraction of conformers of both molecules is

similar with regard to shape, size, flexibility, and pharmacophore

features. In addition to a 3D-pharmacophore model, the

Flexophore descriptor matches entire conformer sets rather

than comparing individual conformers.

2.9 Three-dimensional pharmacophore
model

Three-dimensional pharmacophore models of subsets of the

15 compounds were built using the Molecular Operating

Environment (MOE) software (2019.01; Chemical Computing

Group ULC, Montreal, Canada). The pharmacophores were built

using the “Pharmacophore Elucidation” tool in MOE. First, a

complete conformational search of each individual compound was

performed, and similar conformers were removed. The compounds

of interest were then aligned, and the best alignment was selected for

implementation of the most relevant pharmacophore features of the

selected compounds. The alignment was performed giving emphasis

to aromatic, donor, and acceptor atoms. The pharmacophore

features were generated using the default list of possible features

and the default radius of each feature. Finally, from this set of

suggested features, the “Pharmacophore consensus” tool was used

to select the most relevant pharmacophore features.

2.10 Network analysis

Transcriptomics data were used to infer a network model

representative of mechanisms of action of anatabine. As a first

step, transcriptomics data corresponding to the outcomes of the

linear model including all anatabine concentrations and

combined cell systems were reverse-engineered to predict

potential active transcription factors using the DoRothEA

algorithm (Garcia-Alonso et al., 2019). The top 10 most

actively predicted transcription factors were selected for

further network construction. Ten is an arbitrarily selected

number, so as to obtain a resulting network that does not

have too many nodes and therefore is possible to visualize.

As a second step, the CARNIVAL algorithm (Liu et al., 2019)

was used to build a network leading to the 10 predicted

transcription factors and starting by a hypothesized

perturbation, which was anatabine in our case. CARNIVAL

requires a prior knowledge network, on which the

experimental data will be fitted. Two publicly prior knowledge

networks were used: OmniPath and Reactome Functional

Interactions (FI). OmniPath (Turei et al., 2016) contains

164,710 interactions, whereas Reactome FI (Wu et al., 2010)

consists of 259,151 interactions. Both networks have been

assembled utilizing numerous resources and are updated

regularly. We used the latest versions available for both

(version 2.0.0 of OmniPath R package, and the 2020 version

of Reactome FI).

The CARNIVAL algorithm generates an integer linear

programming problem based on the provided prior

knowledge network and the predicted transcription factors

and then solves it with the solver IBM ILOG CPLEX. The

solution includes the predicted network topology along with a

value for every node of the network ranging from 0 to 100,

which corresponds to the node’s predicted level of activation.

The network topology was visualized using Cytoscape version

3.8.2 (Shannon et al., 2003).

3 Results

3.1 Gene expression responses to
anatabine treatment are characterized by
the perturbation of processes associated
with cellular redox balance

HEK-293 cells, SH-SY5Y cells, PMA-differentiated THP-1

cells, and primary human keratinocytes were treated with various

concentrations of anatabine or vehicle control for 6 h. At the end

of the treatment, cell lysates were collected and processed to

generate transcriptomic profiles.

A principal component analysis enabled us to investigate the

sources of variability in the data (Figure 1A). Principal

components (PC) 1 and PC2 explained 19.6% and 17.4% of

the variability, respectively, highlighting the combined effects of

cell type (prominent effect) and anatabine concentrations.

A linear modeling analysis enabled us to identify genes whose

expression changed linearly with increasing concentrations of
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anatabine, for each individual cell system or all cell systems

combined (Figures 1B,C). Figure 1B illustrates, as an example, the

linear relationship between anatabine concentrations and

changes in the expression of the gene heme oxygenase 1

(HMOX1) for each of the tested cell systems. The slope of

each depicted linear regression line portrays the modification

FIGURE 1
Concentration-dependent effect of anatabine on gene expression in various cell systems. (A) The two first dimensions of a PCA across the four
anatabine concentrations and the four tested cell systems. The bar plot depicts the percentage of variance explained by each principal component. (B)
HMOX1 expression data across the tested anatabine concentrations and cell systems. The slope of each depicted linear model is the value that denotes
modifications in the corresponding gene expressionwith increasing anatabine concentration. (C) The 30most significantly expressed genes based
on the “all systems” profile (left column), which captures anatabine’s effect across all tested cell systems and concentrations. The other four columns
correspond to the data for each cell system individually. Genes are ranked by median log2 fold change in each row. (D) The profiles of panel C are
subjected to GSEA, and the 30 most significantly enriched gene sets based on the “all systems” profile enrichment are presented here. Gene sets are
ranked by median enrichment score in each row. PCA, principal component analysis; GSEA, gene set enrichment analysis;HMOX1, heme oxygenase 1.

Frontiers in Pharmacology frontiersin.org06

Messinis et al. 10.3389/fphar.2022.1011184

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1011184


in corresponding gene expression per unit of anatabine

concentration. Figure 1C shows the top 30 most significantly

expressed genes.

To contextualize the processes and pathways represented

by these genes, we conducted a GSEA using various gene set

collections, namely “C2-CP” and “C3-TFT”. Figure 1D

depicts the 30 most significantly enriched gene sets

resulting from the GSEA using the gene list generated

from comparing all cell systems together. The most

significant positively enriched gene set pertains to the

nuclear factor-erythroid 2 p45-related factor 2 (NRF2),

while the next three are related to the transcription factor

heat shock factor 1 (HSF1).

3.2 Intracellular protein responses to
anatabine and their comparison to the
gene expression data indicate potential
NRF2 pathway activation

To obtain a more systematic view of anatabine’s activity, we

investigated intracellular protein perturbations caused by

anatabine, on the PMA-differentiated THP-1 cell system,

employing DIA mass spectrometry proteomics.

Figure 2A displays a heatmap of significantly abundant

proteins for different concentrations of anatabine. Figure 2B

shows the abundance of each protein along with its

corresponding gene expression. We observe that the protein

abundance of the four most significantly upregulated proteins,

HMOX1, glutamate-cysteine ligase modifier subunit (GCLM),

thioredoxin reductase 1 (TXNRD1), and NAD(P)H quinone

dehydrogenase 1 (NQO1), correlated with the corresponding

gene expression changes (Pearson correlation coefficients: 0.97,

0.92, 0.96, and 0.95, respectively).

Based on the observation that these four proteins are

NRF2 target genes (Tonelli et al., 2018), we hypothesized that

the NRF2 pathway might be involved in anatabine’s mechanism

of action.

3.3 Anatabine—but no other tobacco
alkaloid—causes NRF2 activation

To test our hypothesis, we used an HEK-293 NRF2/ARE

luciferase reporter cell line that assesses whether

NRF2 translocates to the cell nucleus and binds to its

response element upon treatment with the compound. Along

with anatabine, we tested the tobacco alkaloids anabasine,

FIGURE 2
Effect of anatabine on intracellular proteomics. (A) Protein abundance upon anatabine treatment of PMA-differentiated THP-1 cells. The
proteins shown are the ones significantly expressed (FDR < 0.05). (B) Comparison of gene expression and protein abundance upon anatabine
treatment. Different anatabine concentrations are color-coded. Only significantly expressed proteins (FDR <0.05) and their corresponding genes are
plotted. FDR, false discovery rate.
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cotinine, nornicotine, and nicotine (to investigate the possibility

of a shared effect among tobacco alkaloids) and the NRF2-

activating compounds sulforaphane and dimethyl fumarate (to

serve as the assay’s positive controls).

The results show a concentration-dependent NRF2 activation,

which reached statistical significance (p < 0.05) at 250 μM of

anatabine treatment (Figure 3). Interestingly, anabasine, cotinine,

nornicotine, and nicotine did not activate NRF2, demonstrating that

NRF2 activation is a unique characteristic of anatabine among the

tested tobacco alkaloids.

3.4 Anatabine elicits similar response to
natural oxidative stress response inducers,
regardless of compound structure

To better understand how anatabine activates NRF2 and the

molecules that may act as its functional partners, we leveraged

the LINCS L1000 dataset that consists of 473,647 differential

gene expression signatures (Subramanian et al., 2017),

originating from cell systems treated under various conditions

with 28,927 different perturbagens, such as chemical compounds,

recombinant proteins, or small interfering RNAs. Upon

comparing each of those signatures with anatabine’s gene

expression profile, we could rank the LINCS perturbagens

based on their similarity to anatabine’s profile.

Of the top 15 compounds with gene expression signatures most

similar to those of anatabine (Table 1), six have not yet been

referenced in the literature, while two other compounds were

mentioned in only four studies. The remaining seven compounds

are natural compounds that have been shown to induce oxidative

stress response. Among them, four compounds have already been

identified as NRF2 activators (piperlongumine, withaferin-A,

cucurbitacin-I, and parthenolide).

We observed common structural elements, such as elements

of hydropyridine, piperidine, and quinoline, among the

15 compounds. To examine if the structural elements were

responsible for the observed similarities in the gene expression

induced by these compounds and anatabine, we employed six

different chemical similarity fingerprints and descriptors using

the DataWarrior software (Sander et al., 2015). Each compound

fingerprint was compared to the corresponding fingerprint of

anatabine, and the Tanimoto distances of the structural

comparison are presented as a heatmap in Figure 4A.

The correlation between gene expression similarity scores

and the chemical similarity fingerprints was examined but not

found significant. Compound GP-42 exhibited the highest

overall Tanimoto distance when compared with anatabine.

FIGURE 3
NRF2/ARE luciferase assay of effects of anatabine and other tobacco alkaloids NRF2 activation measured in NRF2 reporter cells after 24 h of
stimulation of sulforaphane, dimethyl fumarate, anatabine, anabasine, cotinine, nornicotine, and nicotine. The corresponding cell viability is plotted
on the right axis and depicted with a green line.
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Therefore, we visualized the common pharmacophore features of

GP-42 and anatabine. A 3D pharmacophore model for GP-42

was generated (Figure 4B). Anatabine was fitted in the

pharmacophore model, having one aromatic feature, one

hydrophobic feature, and two acceptor features in common

with GP-42, demonstrating that anatabine and GP-42 could

share a similar mode of binding to some degree.

3.5 Anatabine treatment results in the
activation of MAPK signaling

We performed network analysis to extract further insights

from the transcriptomics data, leveraging the Reactome and

Omnipath biological networks (Wu et al., 2010; Turei et al.,

2016), the DoRothEA enrichment algorithm (Garcia-Alonso

et al., 2019), and the CARNIVAL optimization algorithm (Liu

et al., 2019). The resulting networks indicate potential functional

partners of anatabine.

The network analysis revealed p38 MAPK as a central node

in the signaling network (Figure 5A). Interestingly, p38 MAPK

was predicted to be either positively or negatively regulated

depending on the prior knowledge network used in the

analysis (Reactome or Omnipath, respectively), even though it

was centrally located in both networks. We also observed the

presence of dual-specificity phosphatases (DUSP) upstream of

the MAPK signaling in both networks. NRF2 was inferred to be

activated in both the networks.

TABLE 1 Compounds in the LINCS L1000 dataset with the most similar transcriptomic response to anatabine.

Score Compound
name
(LINCS)

PubChem
CID

PubMed
papers
July 2022

Source Selected mechanism(s)
of action

Anatabine 11388 144 Natural alkaloid extracted from
various plants of the Solanaceae
family

Induces NRF2 activation

0.49 Piperlongumine 637858 362 Natural alkaloid extracted from long
pepper (Piper longum L.)

Induces NRF2 activation, through which its differential
response in normal and cancer cells is driven Lee et al. (2015)

0.46 NSC-3852 19103 4 Synthetic quinoline Induces oxidative response, which drives breast cancer cell
differentiation Martirosyan et al. (2006); histone deacetylase
inhibitor Martirosyan et al. (2004)

0.46 Thiostrepton 16129666 618 Natural antibiotic isolated from
various streptomycetes

Induces oxidative response, which drives melanoma cell
differentiation Qiao et al. (2012)

0.45 NSC-632839 6477762 4 Synthetic Apoptosome-independent caspase activation Aleo et al.
(2006); nonselective isopeptidase inhibitor Nicholson et al.
(2008); UCHL1 inhibitor Yan et al. (2018)

0.45 Withaferin-A 265237 698 Natural lactone extracted from
various plants of the Solanaceae
family

Induces NRF2 activation, which mediates its antitumor effects
Hahm et al. (2021)

0.44 Manumycin-A 73707404 261 Natural antibiotic isolated from
Streptomyces parvulus

Induces oxidative response and p38 MAPK phosphorylation
She et al. (2006); STAT3 inhibitor Dixit et al. (2009);
farnesyltransferase inhibitor Giudice et al. (2016)

0.43 CT-200783 73707405 0 Synthetic olefinic compound with
functional parent as cinnamic acid

No reports in the literature

0.43 GP-42 73707393 0 Synthetic olefinic compound with
functional parent as cinnamic acid

No reports in the literature

0.42 MD-II-038 51034963 0 Synthetic olefinic compound with
functional parent as cinnamic acid

No reports in the literature

0.41 BRD-K41172353 673329 0 Synthetic quinoline No reports in the literature

0.41 Cucurbitacin-I 73707401 146 Natural triterpenoid extracted from
cucurbitaceous plants

Induces NRF2 activation and STAT/NF-κB inhibition,
leading to protection from neuroinflammatory injury Park
et al. (2015)

0.41 BRD-K95352812 56643190 0 Synthetic No reports in the literature

0.40 SA-1447005 73707394 0 Synthetic olefinic compound with
functional parent as cinnamic acid

No reports in the literature

0.40 Radicicol 5311380 511 Natural antibiotic isolated from the
fungus Monosporium bonorden

Induces oxidative response and heat shock response through
HSP90 inhibition and dissociation of HSF1 Ryhanen et al.
(2008)

0.40 Parthenolide 7251185 973 Natural lactone extracted from the
feverfew plant

Induces NRF2 activation, through which it ameliorates
obesity Kim et al. (2019)
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To explore the potential involvement of p38 MAPK in

facilitating the effects of anatabine, we used multiplexed

phosphoproteomic assays. We then applied a linear model

approach to capture time- and concentration-dependent

phosphoproteomic changes across the four tested cell systems.

The phosphoproteomic results after application of the linear

model are presented in Figure 5B. The phosphoproteomic data

before application of the linear model are detailed in

Supplementary Figure S1B.

The phosphoproteomic results, summarized via the linear

model across time, concentrations, and cell systems tested,

revealed a systematic significant increase in the

phosphorylation levels of p53, p38 MAPK, ERK1, MEK1,

MARCKS, p90RSK, JNK, c-Jun, HSP27, PRAS40, and p70S6K.

Differences among cell systems, concentrations, and treatment

times are depicted in Figure 5B and Supplementary Figure S1A.

Anatabine treatment also caused a significant decrease in the

phosphorylation levels in some of the cell systems tested,

specifically, a concentration-dependent inhibition of

phosphorylated STAT3 and a time-dependent inhibition of

phosphorylated NF-κB (Supplementary Figure S1A).

4 Discussion

Over the last decade, anatabine has been shown to alleviate

inflammation in multiple disease models (Paris et al., 2013b; Ruiz

Castro et al., 2020; Xia et al., 2021). However, the molecular

mechanisms triggered by anatabine in a non-inflammatory state

are yet to be explored. Using a systems biology approach, we

investigated the impact of anatabine on various cell systems and

identified pathways and molecular networks that are perturbed.

We systematically measured the changes occurring in gene

expression and intracellular protein abundance upon anatabine

FIGURE 4
Chemoinformatics. (A)Heatmap of Tanimoto distances resulting from the structural similarity comparison of the compounds (on the y-axis) to
anatabine. All the tested chemical similarity fingerprints are shown as different columns. ThemRNA column corresponds to the similarity in the gene
expression score and rank of compounds from Table 1. The heatmap rows and columns are ordered following hierarchical clustering on both axes.
(B) Pharmacophoremodel of GP-42. Top left: pharmacophore features of GP-42. Green features represent hydrophobic features, blue features
represent hydrogen bond acceptors, and orange features represent features that can be either aromatic or hydrophobic. Top right and bottom right:
pharmacophore model fitting for GP-42 and GP-42 together with anatabine, respectively.
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treatment. Abundance of the most significantly upregulated

proteins (HMOX1, GCLM, TXNRD1, and NQO1) correlated

with changes in their corresponding gene expression, which

varied linearly with increasing anatabine concentration. Since

these proteins are target genes of the NRF2 transcription factor,

and the gene expression enrichment results also pointed to

NRF2 pathway activation, we aimed to examine if anatabine

induces NRF2 activation.

NRF2 was discovered in 1994 (Moi et al., 1994) as an NF-E2-

like basic leucine zipper transcriptional activator. Since then,

NRF2 has been highlighted as a master regulator of

cytoprotective responses, orchestrating the expression of more

than 250 genes (Cuadrado et al., 2018). NRF2 regulates anti-

inflammatory gene expression and inhibits the progression of

inflammation (Ahmed et al., 2017). However, it is out of the

scope of the present study to prove if NRF2 activation is the only

mechanism by which anatabine delivers its anti-inflammatory

effects, or if there are other mechanisms that are involved and any

potential crosstalk between them.

There are several natural product-derived bioactive

compounds that are NRF2 activators (Kumar et al., 2014).

Our transcriptomics-based comparison of anatabine-

regulated genes with the gene expression signatures from

the LINCS database, revealed anatabine’s similarity to

multiple plant compounds that induce oxidative response,

most of which have been reported to activate NRF2 (Table 1).

In addition, NRF2 activation has been connected with NF-κB
signaling inhibition, a well-known effect of anatabine in

inflammation models (Paris et al., 2011). The anti-

inflammatory activity of NRF2 was initially thought to rely

only on crosstalk with NF-κB, until it was shown that it can

directly block LPS-induced transcription of the

proinflammatory genes IL-6 and IL-1β in macrophages

(Kobayashi et al., 2016). Indeed, NRF2 and NF-κB
pathways crosstalk through multiple and complicated

mechanisms, including a feedback loop where NF-κB can

activate NRF2 and NRF2 activation can attenuate NF-κB
signaling (Cuadrado et al., 2018). As an example,

sulforaphane, found in broccoli, can attenuate muscle

inflammation via NRF2-mediated inhibition of the NF-κB
signaling pathway (Sun et al., 2015).

Anatabine as well as the alkaloids nicotine, nornicotine,

and anabasine can activate α4β2 and α7 nicotinic

acetylcholine receptors (nAChR) (Alijevic et al., 2020; Xing

et al., 2020). The function of α7nAChR has been linked to the

anti-inflammatory mechanism of the phytochemical

genistein, which is an NRF2 activator (Guo et al., 2021).

However, we found that among the above-mentioned

alkaloids, and additionally cotinine, only anatabine is an

NRF2 activator, rendering the hypothesis that a nicotinic

FIGURE 5
Anatabine treatment results in the activation of MAPK signaling. (A) Networks predicting the effect of anatabine, leveraging the biological
knowledge networks Reactome and Omnipath. Red and blue nodes depict predicted upregulation and downregulation, respectively. Highlighted in
yellow are the network nodes corresponding to p38 MAPK. (B) Effect of anatabine on phosphoproteomics across all tested cell systems, treatment
times, and concentrations. The other four columns correspond to the data for each cell system separately. Phosphoproteins are ranked by
median log2 fold change in each row.
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receptor is actively involved in anatabine-mediated

NRF2 activation unlikely. This is particularly intriguing, as

the structure of nicotine is the most similar to anatabine than

any other compound according to PubChem’s compound

similarity search tool (https://pubchem.ncbi.nlm.nih.gov/

#query=CID11388%20structure&tab=similarity&fullsearch=

true). In fact, nicotine reportedly downregulates NRF2-related

activity (Naha et al., 2018; Li et al., 2019). Therefore, the

possible mechanisms used by anatabine to cause

NRF2 activation are still unclear and must be explored.

Most NRF2 activators, including sulforaphane and

dimethyl fumarate that were used in this study, are

electrophiles that can modify cysteine residues on Kelch-

like ECH-associated protein 1 (KEAP1) (Robledinos-Anton

et al., 2019), making the ubiquitylation of NRF2 for

proteasomal degradation impossible. Interestingly,

anatabine is a nucleophilic compound; therefore, it most

probably is unable to interact with KEAP1 in the way other

electrophilic compounds do.

Natural compounds can activate NRF2 through different

mechanisms, involving diverse molecular processes that we

have just started to understand. For example, we have found

that the natural lactone withaferin-A, extracted from various

plants of the Solanaceae family, has a transcriptomic profile

similar to that of anatabine. Withaferin-A increases

NRF2 levels through the PTEN/PI3K/AKT/GSK3β axis

(Palliyaguru et al., 2016; Liu et al., 2021).

Our phosphoproteomic studies revealed an increase in the

phosphorylation of a broad range of MAPK signaling

members, including p38 MAPK, ERK1, MEK1, and c-Jun

N-terminal kinase (JNK), across the cell systems tested.

Additionally, we report a significant increase in the

phosphorylation of c-Jun, which is the main cellular

substrate activated by JNK-mediated phosphorylation

(Yarza et al., 2015). All well-characterized categories of

MAPKs have been linked to NRF2 regulation but with

contradictory results reported (Sun et al., 2009).

Specifically, p38 MAPK has been reported to regulate

NRF2 both positively and negatively among different

groups (Liu et al., 2021). Interestingly, our network analysis

supports this finding as p38 MAPK was predicted to be either

inhibited or activated in different models; however, it was

always a central node of anatabine’s predicted network of

perturbations. Piperlongumine, a natural alkaloid extracted

from long pepper (Piper longum L.), was identified as the most

similar compound to anatabine, based on analysis of the

transcriptomic profiles of the 28,927 compounds. JNK

inhibition blocks the piperlongumine-induced

NRF2 translocation (Mohammad et al., 2019), suggesting

the involvement of MAPK signaling. Niacin, the compound

from which anatabine derives both its pyridine rings

(Kaminski et al., 2020), activates NRF2 and the p38 MAPK

signaling pathway (Wu et al., 2012).

In addition, we observed an increased phosphorylation of

p53. Reportedly, a non-esterified fatty acid that increased the

phosphorylation of ERK1 and p38 MAPK, also upregulated and

caused the translocation of p53 and NRF2, suggesting that its

mechanism of action was mediated by the NRF2/p53 signaling

pathway (Wang et al., 2020).

Several NRF2 activators have been reported to trigger many

of the above mechanisms at the same time, and it has been

suggested that these pleiotropic effects are one of the reasons that

drug development of NRF2 activators is moving slowly

(Robledinos-Anton et al., 2019). Beyond NRF2, our GSEA

also revealed transcriptional activation of HSF1, which may be

of interest for further experimental investigations, given that the

two transcription factors, NRF2 and HSF1, engage in crosstalk

for cytoprotection by promoting the reduced state (Dayalan

Naidu et al., 2015).

It also remains to be explored how anatabine activates

MAPK signaling. Our network analysis pointed to the

inhibition of several DUSPs, which are negative regulators

of MAPK signaling, that dephosphorylate p38, JNK, and ERK

in different settings (Ramkissoon et al., 2019). Further

experiments utilizing inhibitors would be necessary to

confirm that anatabine-mediated NRF2 activation depends

on any of these kinases, which is out of the scope of the current

study.

Regarding chemoinformatics, our analysis of compounds

with similar transcriptomic response to anatabine revealed

some common structural elements; however, the chemical

similarity fingerprints examined were not significantly

correlated to the gene expression similarity scores, potentially

showing that certain structural elements are not necessary for the

observed transcriptomic response.

Given the critical role of NRF2 in chronic diseases, there

has been an increasing interest from the pharmaceutical

industry in the discovery and clinical development of small

molecule NRF2 inducers (Cuadrado et al., 2019). A plethora

of NRF2 activators have been identified, and some of them are

under clinical development, especially those for chronic

diseases characterized by low-grade oxidative stress and

inflammation (Robledinos-Anton et al., 2019). More

established NRF2 activators have already been rigorously

researched. Sulforaphane has been used in at least

32 clinical studies to date, addressing chronic diseases such

as cancer, asthma, chronic kidney disease, and cystic fibrosis

(Cuadrado et al., 2018). The use of dimethyl fumarate in

patients with multiple sclerosis was propelled by positive

results obtained in a multiple sclerosis mouse model of

EAE, much like it has already been observed for anatabine

(Paris et al., 2013b). To date, dimethyl fumarate is the only

drug approved by the Food and Drug Administration and

European Medicines Agency and registered as an

NRF2 activator. Going one step further, analogs of

NRF2 activators are being developed for optimizing
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efficacy and better manage pleiotropic or off-target effects,

such as in the case of piperlongumine (Ji et al., 2021).

While there are certain areas to be explored in deciphering the

anti-inflammatory mechanisms of action of anatabine and other

NRF2 activators, we believe that anatabine constitutes an interesting

molecule for its therapeutic potential in NRF2-related diseases.
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