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Obesity is a leading worldwide health threat with ever-growing prevalence, it

promotes the incidence of various diseases, particularly cardiovascular disease,

metabolic syndrome, diabetes, hypertension, and certain cancers. Traditional

ChineseMedicine (TCM) has been used to control bodyweight and treat obesity

for thousands of years, Chinese medicinal herbs provide a rich natural source of

effective agents against obesity. However, some problems such as complex

active ingredients, poor quality control, and unclear therapeutic mechanisms

still need to be investigated and resolved. Prodrugs provide a path forward to

overcome TCM deficiencies such as absorption, distribution, metabolism,

excretion (ADME) properties, and toxicity. This article aimed to review the

possible prodrugs from various medicinal plants that demonstrate beneficial

effects on obesity and seek to offer insights on prodrug design as well as a

solution to the global obesity issues.
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Introduction

Obesity is epidemic disease with excess energy storage and fat accumulation. An

abnormally accumulated fat is positively associated with diabetes, cardiovascular diseases,

hyperlipidemia, hypertension, metabolic syndrome, fatty liver disease, a certain type of

cancer, depression, and anxiety (Fulton et al., 2022). The high prevalence of obesity is

imposing an enormous burden on people’s health. A number of studies have shown the

impact of obesity on infectious diseases such as coronavirus disease 2019 (COVID-19), it

might play a role in the progression of COVID-19 after infection (Pan et al., 2021), and

increased risk of hospitalization and severe illness from COVID-19 (Loos and Yeo, 2022).

Over the past decades, medical treatment of obesity mainly focuses on the following

mechanisms: 1) promoting energy expenditure; 2) lowering calorie absorption and 3)

reducing energy intake. Pharmacological management of obesity has an overlong history

populated with multiple prominent disappointments (Tak and Lee, 2021). Lifestyle
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management, lipid reduction, and weight loss surgery, which

measures to reduce or absorb food intake, as well as increase its

utilization are the main tools used to treat obesity today.

However, body weight increases and recovery is associated

with adverse drug reactions, surgery, and other problems,

without effective and safe therapies for obesity (Ghasemi and

Jeddi, 2017). Meanwhile, some Western medicines for obesity

have reported side effects such as gastrointestinal reactions,

cardiovascular complications, and negative moods. TCM has

developed over a long history, it accumulated extensive

pharmacological information and clinical experience to treat

obesity. The effectiveness and safety of TCM offer an

alternative therapy for this unsolved medical problem, e.g.,

traditional Chinese herbs and acupuncture (Sui et al., 2012).

According to the TCM theory of Health in “Huangdi Neijing,”

obesity has been indicated as spleen and kidney dysfunction,

deficiencies, damp heat, and blood stasis. TCM treats obesity

based on the restoration of an internal balance by eliminating

dampness and heat, invigorating the kidney and spleen,

activating blood circulation, and dispersing stagnated liver.

The underlying mechanisms involved in reducing oxidative

stress, anti-inflammation, and inhibiting lipid activity such as

production and accumulation, which enhance leptin sensitivity

and adiponectin (Cho et al., 2009).

Traditional Chinese medicine consists of complex ingredients

from plants, minerals and animals. The traditional Chinese herbs

were generally prescribed for treating illnesses according to the

overall symptoms and collective experience, but this lacks the strict

experimental proof to illustrate the features of clear-cut molecular

compositions, pharmacokinetic profile, and mechanism of action.

Addressing the tremendous challenge of some chemical complexity

of TCM and overcoming bottlenecks in the drug development from

herbal medicines requires the combination of modern technology,

and scientific thought, as well as the traditional theory (Chu et al.,

2020). Recently, many innovative technologies and methods are

being accomplished in the research of TCM such as computer-aided

drug design (CADD), cell membrane electrophysiology, gene

hybridization, gene chip, luminescence, and fluorescent probe,

DNA gel electrophoresis, and differential mRNA display

technology (Li et al., 2008). Thus, a combination of Chinese

medicinal herbs with modern scientific technology provides us to

have wide insights and guides the development of promising

powerful novel drugs. Several Chinese medicinal herbs are

possible candidates for obesity, but their compositions and

mechanisms are vague. It is important to incorporate herbal

medicines into standard Western drug development pipelines

and ultimately expand them as promising drugs or promising

alternatives in the management of obesity. This article focuses on

the concept of “Prodrug,” and describes a series of Chinese

medicinal herbs, e.g., “Curcumin,” “Ginsenoside,” “Celastrol,”

“Berberine,” “Artemisinin,” and “Capsaicin” as potential prodrugs

for anti-obesity, and the combination of prodrug as well as the

nanotechnology effect on obesity.

Prodrug

Adrien Albert first announced the definition of “prodrug” in

1951 (Albert, 1958). The prodrug is inactive or less than the fully

active form and converted into active compounds (drugs)

through the metabolic pathways by enzymes such as

hydrolases or other chemical actions within the human body.

This undergoes a series of biochemical transformations to exert

its pharmacological functions for targeting diseases (Cho and

Yoon, 2018). In general, prodrugs are modified from parent

molecule and selectively take effects in the target tissues,

subsequently improving pharmaceutical (PH),

pharmacokinetic (PK), and pharmacodynamics (PD) effects,

as well as preventing undesirable side effects (Abet et al.,

2017). The prodrug process more focuses on optimizing the

ADMET (absorption, distribution, metabolism excretion, and

toxicity) properties of potential herbal ingredients, and

eventually increasing their efficiency and safety. These attach

the poor water-soluble compound to a phosphate ester to

increase its aqueous solubility (Raimund et al., 2011). In the

presence of esterase, lipophilicity and membrane permeability of

most prodrugs are increased, through esterase bioconversion,

releasing rate of the prodrug is fostered (Perez et al., 2013).

Prodrugs exist in two types, carrier-bound and bioprecursors

(Wermuth, 2008). Carrier-bound prodrugs consist of an active

ingredient (drug) and a non-toxic carrier or promoiety via a

covalent bond. The active ingredients are released from TCM

through the action of enzymatic or non-enzymatic for covalent

bond breaking (Shah et al., 2017). The carrier-linkers such as

amides, esters, carbamates, phosphates, oximes, carbonates,

N-Mannich, and imine are the main groups of prodrugs

(Gandhi et al., 2019). Bioprecursors are the parent drug

obtained by enzymatic transformation or biotransformation,

via hydration, reduction, and oxidation (Shah et al., 2017).

One TCM prodrug example is “Resveratrol” for anti-obesity

that can exist in the carrier-bound and bioprecursors,

respectively. It is an active ingredient from TCM which is

linked with the amino acid carbamate (Figure 1). The

N-monosubstituted carbamate ester (-OC(O)NHR) as a

carrier bound reacted to the OH group, preventing the

FIGURE 1
Chemical structure of Resveratrol.
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binding of natural amino acids, e.g., Leu, Ile, Phe, Thr (Figure 2)

and improving their molecular physicochemical properties, that

significantly enhanced the absorption and stability of resveratrol

in the bloodstream (Mattarei et al., 2015).

Trans-Resveratrol is the isotope of resveratrol, which is

formed via the reduction by the human gut bacteria. That

improved the bioavailability of resveratrol via

biotransformation and confirmed dihydroresveratrol,

lunularin, and 3,4-dihydroxy-stulbene as prodrugs of

resveratrol metabolism (Figure 3) (Kokil and Rewatkar, 2010;

Bode et al., 2013; Zawilska et al., 2013).

Most Chinese herbal medicines are poor aqueous solubility,

low bioavailability and stability, and non-target specificity,

limiting their clinical applications. The above resveratrol

prodrug examples indicated that prodrug improved solubility,

absorption as well as stability of active ingredients. On the other

hand, it might enable tissue-selective delivery and in situ

activation (Testa, 2009). Thus, Chinese medicinal herbs are a

FIGURE 2
Chemical structures of amino acid substituted prodrugs.

FIGURE 3
Example of gut microbiota biotransformation of trans-resveratrol.

Frontiers in Pharmacology frontiersin.org03

Law et al. 10.3389/fphar.2022.1016004

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1016004


promising source and suitable for the research and development

of prodrugs to treat obesity or other metabolic diseases.

Chinese medicinal herbs

Many traditional medicinal herbs and their ingredients have

been tested and practiced over the years, such as Curcumin¸

Ginsenoside, Celastrol, Berberine, Artemisinin, and Capsaicin.

These are natural Chinese herb-based therapeutics for obesity.

Curcumin, an essential active ingredient in traditional

Chinese turmeric (Curcuma longa), possessed multiple

pharmacological effects including antioxidant, anti-

inflammatory, antiviral, antimicrobial, and antitumor

functions (Koboziev et al., 2020; Law et al., 2022; Nurcahyanti

et al., 2022). The physiological and pharmacological properties

depend on the curcumin metabolites, e.g., Dihydrocurcumin

(DHC), Tetrahydrocurcumin (THC), Hexahydrocurcumin

(HDC), and Octahydrocurcumin (OHC). These curcumin

metabolites act as prodrugs to interact with the human

metabolic pathways, existing in Phase I and Phase II.

“Reductase” is an enzyme in the phase I human metabolic

pathway for the reduction of double bonds from curcumin,

which converts it into di, tetra, hexa, and octahydrocurcumin.

“Glucuronide” or “Sulfate” is a carrier bound in phase II human

metabolic pathway conjugated to curcumin producing

hydrogenated metabolites (Figure 4) (Ireson et al., 2002). The

structure of curcumin derivatives contains two phenolic hydroxyl

groups, it is easy to form hydrogen or ionic bonds and dissociate

into negatively charged phenolic ions in the water, altering some

protein functions in the human body (Wink, 2015). Curcumin

metabolites may suppress the NF-κB in adipose tissue, and

regulate the level of TNF-a, IL-6, monocyte chemotactic

protein (MCP-1), plasminogen activator inhibitor type-1

(PAI-1), and increasing adiponectin expression to ameliorate

the obesity risk factors (Bradford, 2013; Soleimani et al., 2018;

Wink, 2022).

Obesity has corresponded to insulin resistance and diabetes

(Bastard et al., 2006). NF-E2-related factor 2 (NRF2)-Kelch-like

ECH-associated protein 1 (KEAP1) pathway and endoplasmic

reticulum (ER) stress are the two important factors in the

primary adipocytes causing the risk of obesity (Wang et al.,

2016); while curcumin and its metabolites are the signaling

modulators to improve the lipolysis and insulin resistance for

preventing obesity (Ye et al., 2017).

Sterol regulatory element-binding protein 1C (SREBP-1C),

peroxisome proliferator-activated receptor gamma (PPARγ),
fatty acid synthase (FAS), and fatty acid-binding protein 4

(FABP4) are the lipogenic proteins that inhibited by the THC.

It ameliorates free fatty acid-induced hepatic steatosis and

regulates the secretion of insulin, as well as significantly

decreased lipid accumulation that leads to non-alcoholic fatty

liver disease (NAFLD). As the phosphorylation of an insulin

receptor substrate 1 (IRS-1)/phosphoinositide 3-kinase (PI3K)/

Akt and downstream signaling pathways, forkhead box protein

O1 (FOXO1), and glycogen synthase kinase 3β (GSK3β) are

FIGURE 4
Chemical structures of curcumin and its derivative through the “reductase” metabolism.
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modulated by THC to decrease the risk of obesity (Chen et al.,

2018).

DHC manages glucose uptake, reduces the risk of obesity,

and prevents diabetes because it regulates the levels of sterol

regulatory element binding protein-1C (SREBP-1C), patatin-like

phospholipase domain containing 3 (PNPLA3), and peroxisome

proliferator-activated receptor-α (PPARα) in the mRNA and

proteins It decreases the level of triglycerides (TG) when the

phosphatidylinositol-3-kinase (PI3K) and phosphorylated

serine-threonine protein kinase (pAKT) increases to improve

lipid accumulation, oxidative stress, and insulin resistance (Yu

et al., 2018).

Besides, DHC and THC can alleviate adiposity and suppress

inflammatory responses as well as improve insulin sensitivity in

white adipose tissue, which are regulated through the FNDC5/

p38 mitogen-activated protein kinase (p38 MAPK) or

extracellular signaling-related kinase (ERK) signaling

pathways. These increase oxygen consumption and

thermogenesis, also the respiratory exchange ratio within the

body for reducing the risk of obesity (Zou et al., 2021).

The THC is also a potential agent to attenuate in a fatty food

or streptozotocin causing adiposity, steatosis, and hyperglycemia.

It is a novel therapeutic use for type 2 diabetes since it is

improving insulin signaling, glucose utilization, and lipid

metabolism through the AdipoR1/R2-APPL1-mediated

pathway, which upregulated via the uncoupling protein 1

(UCP-1) in adipose tissue and elevated adiponectin levels in

the circulation of liver and skeletal muscle (Tsai et al., 2021).

In 2019, Muangnoi et al. (2019) reported a prodrug for

curcumin linked with diethyl succinate ester. “Curcumin

diethyl succinate” (Figure 5) enhanced curcumin’s anti-

proliferative effect on HepG2 cells via apoptotic induction.

Recent study showed caspase induction and Bcl-2 inhibition

for altering insulin signaling in human adipose tissue to prevent

obesity.

Phumsuay et al. (2020) also identified another curcumin ester

prodrug, which was linked with diglutaric acid. The “Curcumin

diglutaric acid” (Figure 6) was an anti-inflammatory agent for the

edema model. The levels of pro-inflammatory cytokine

expression such as NO, IL-6, TNF-α, iNOS, and COX-2

expression were reduced. Curcumin diglutaric acid was a pro-

and anti-inflammatory mediator secreted by adipose tissue

subsequently lower systemic inflammation and the risk of

metabolic diseases via the suppression of MAPK (ERK1/2,

JNK, and p38) activity (Jayarathne et al., 2017; Phumsuay

et al., 2020).

FIGURE 5
Chemical structure of curcumin diethyl disuccinate (CurDD).

FIGURE 6
Chemical structure of curcumin diglutaric acid.

FIGURE 7
Chemical structure of curcumin D-gluronide.
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Khadka et al. (2021) also synthesized a prodrug of curcumin

with monoglucuronide (CMG) (Figure 7), altering the gut

microbiota and immune responses to treat obesity. As low

fecal microbial diversity is associated with increased total fat

and dyslipidemia, higher low-grade inflammation, and

homeostasis, thus CMG administration could affect both the

overall gut microbiome compositions and the abundance of

individual bacteria in feces, ileal contents, and the ileal

mucosa (Davis, 2016; Yoo et al., 2021).

Ginseng (Panax ginseng) has been widely used to improve

human health. Asian countries are the most common but it is

also used in the United States and Europe. Ginsenosides are

the active ingredients, which involve a series of tetracyclic

triterpenoid saponins. They are classified into oleanane type

and dammarane type (17 carbons in a four-ring structure)

according to their structural difference. Protopanaxadiol

(PPD), and protopanaxatriol (PPT) groups are the

prodrugs of ginsenosides from dammarane type. Similarly,

an oleanane (Ro) type is sorted in the oleanolic acid group

and ocotillol type pseudoginsenoside (Figure 8). Ra1, Ra2,

Rb1, Rb2, Rc, Rd, Rg3, Rk1, Rg5, and Rh2, are the examples of

PPD-type ginsenosides, etc., compound K (CK), and PPD,

whereas PPT-type ginsenosides consist of Re, Rg1, Rg2, Rf,

Rh1, and PPT, etc. (Shi et al., 2019). Among those chemical

ingredients, the contents of Rb1, Rb2, Rc, Rd, Re, Rf, and

Rg1 contribute more than 90% to ginsenosides (Fan et al.,

2020).

Ginsenosides possess anti-inflammatory, anti-stress,

anticancer, anti-oxidative, and anti-aging activities for

preventing obesity, hyperlipidemia, hyperglycemia, and

hepatic steatosis (Yan et al., 2018). Ginsenoside Rb2 is a novel

AMP-activated protein kinase (AMPK) activator that reduces

body weight, improves insulin sensitivity, and induces energy

expenditure in diet-induced obese (DIO) rats. As ginsenosides

target the central nervous system (CNS), which regulates leptin

sensitivity in the cerebral cortex to prevent obesity and decreases

the risk of central inflammation in the hypothalamus (Jeon et al.,

2021).

Ginsenosides are distinctive triterpenoid dammarane

saponins with very low solubility for oral administration of

their slow absorption, extensive microbial deglycosylation,

biliary excretion, and degradation of acidic ingredients such

as Rg1 and Rb1 (Liu et al., 2009; Liu et al., 2010). Almost all

ginsenoside dammarane is instability in the gastrointestinal

tract. That is readily degraded or metabolized to secondary

glycosides, aglycones, and other metabolites by gastric acid and/

FIGURE 8
Chemical structures of (A) protopanaxadiol (PPD), (B) protopanaxatriol (PPT), (C) oleanane group (Ro), and (D) ocotillol type pseudoginsenoside.
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or the intestinal microflora. The bioavailability of ginsenosides

are improved to improve the absorption by increasing water

solubility, biofilm permeability, and stability in the

gastrointestinal tract. The larger molecular size of

ginsenosides with lower membrane permeability of the

dammarane skeleton, and the sugar fractions have

hydrophilic properties that promote the dissolution of

ginsenosides. However, many ginsenosides have been

reported as aglycones and lack sugars, thus showing low

water solubility. On the other hand, ginsenoside is readily

degraded by gastric acid hydrolysis via C-20 sugar radical

epimerization and glycosyl elimination (Yang et al., 2011;

Cheung and Law, 2022).

Celastrol (Figure 9) belongs to the “Celastraceae” family. It is

extracted from the root of Tripterygium wilfordii (Venkatesha

and Moudgil, 2016) containing natural triterpene with anti-

inflammatory, antioxidant, and anti-cancer activities (Straub,

2017). Since obesity and diabetes are also associated with an

excessive inflammatory response (Liu et al., 2015), celastrol acts

as a leptin sensitizer in the pharmacological treatment of obesity.

It could block food intake, reduce energy expenditure, and lead to

a weight gain of about 45% in hyperleptinemia diet-induced

(DIO) obese mice. It also regulates the leptin sensitivity in either

leptin-deficient (ob/ob) or leptin receptor-deficient (db/db)

mouse models (Li et al., 2018).

Other derivatives of celastrol such as (A) triptolide, (B)

triptonide, and (C) wilforlide are also used as prodrugs for

obesity (Figure 10) (Venkatesha and Moudgil, 2016). (A)

Triptolide is an inflammatory mediator that inhibits the

activation of the AMPK/mTOR signaling pathway to

reduce the secretion of chemokine, monocyte chemotactic

protein-1 (MCP-1) in Kupffer cells (KCs), Ma-CM, or 3T3-

L1 to ameliorate obesity-induced inflammatory diseases (Li

and Liu, 2021). (B) Triptonide without any toxic effect, but it

may suppress the level of astrocyte-elevated gene-1 (AEG-1)

(Fu et al., 2020). This regulates nuclear receptors to control

FIGURE 9
Chemical structure of celastrol.

FIGURE 10
Chemical structures of (A) triptolide, (B) triptonide, and (C) wilforlide.
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lipid metabolism and reduces the risk of high-fat as well as

high-cholesterol diets for obesity (Robertson et al., 2015). (C)

Wilforlide improves rheumatoid arthritis progression,

which inhibits M1 macrophage polarity and blocks Toll-

like receptor 4 (TLR4) through activation of the NF-κB
p65 pathway. It also deactivated the TLR4/NF-κB partially

mediated signaling pathway (Cao et al., 2022) and modulates

the obesity-induced inflammatory response (Rogero and

Calder, 2018).

Several prodrugs of triptolide have been reported including

omtriptolide, 5-hydroxytriptolide, and a disodium

phosphonooxymethyl (Figure 11). These are involving

carboxylic acid, amino acid esters, and a non-covalent

interaction for targeting the protein to suppress kinases, and

Hsp70 expression on the prevention of non-alcoholic fatty liver

disease (NAFLD) progression and disodium

phosphonooxymethyl reduce the activity of anti-inflammatory

for obesity (Di Naso et al., 2015; Patil et al., 2015).

Berberine (Figure 12), is the major active ingredient from

Coptis Chinensi. Berberine-containing medicinal plants have

been applied in TCM to treat parasitic intestinal infection,

bacterial diarrhea, and diabetes for a long time through the

suppression of fatty acid synthase, acyl-CoA synthase, acetyl-

CoA carboxylase, SREBP-1, C/EBPα, and PPARγ (Choi et al.,

2006; Hu and Davies, 2009). Berberine blocks food absorption,

reduces body gain, and visceral adipose weight by decreasing the

level of PPARγ in high-fat diet-induced obesity mice when the

level of GATA-binding proteins 3 increases and downregulates

the expression of PPARγ and PPARα. GATA-binding proteins

2 and 3 (GATA-2 and GATA-3) are modulated differentiation of

pre-adipocytes into mature adipocytes (Hu and Davies, 2010).

Besides, gut bacteria act an important role to regulate the fat

accumulation and its degradation metabolism, since berberine

has antibacterial or anti-obesity activity. Han et al. (2011)

reported that berberine lowered blood lipids and controls

glycemic levels including free fatty acids and cholesterol,

FIGURE 11
Chemical structures of (A) omtriptolide, (B) 5-hydroxytriptolide, and (C) disodium phosphonooxymethyl.

FIGURE 12
Chemical structure of berberine.
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which activated thermogenesis in adipocytes and increase energy

expenditure.

Despite the various therapeutic effects, berberine has not

been yet developed as a marketed drug product. Poor absorption,

fast metabolism, and wide tissue distribution lead to very low

bioavailability and limit its translation to clinical settings. Most of

the berberine is absorbed in the small intestine via oral

administration. There are several reasons which are

responsible for its low absorption and bioavailability. The

chemical structure of berberine is a hydrophilic compound,

which makes it difficult for it to cross the plasma membrane

of intestinal cells. An intestinal first-pass elimination is extensive,

around 50% of the berberine keep intact through the

gastrointestinal tract. Berberrubine, thalifendine,

demethyleneberberine, and jatrorrhizine are the four major

metabolites (Figure 13) after being metabolized by the

CYP450 isoenzyme (Li et al., 2011).

Meanwhile, berberine is the substrate, which is regurgitated

into the intestinal lumen by ATP-binding cassette (ABC)

transporters. The ABC transporters include multidrug

resistance-associated protein (MRP) and P-glycoprotein [P-gp,

also named multidrug resistance protein1 (MDR1)] (Shitan et al.,

2003).

In 2020, Habtemariam (2020) discovered a prodrug of

berberine, 9O-Aryl berberine (Figure 14) for type-2 diabetes

and associated diseases. It suppresses gluconeogenesis and

lipid accumulation to prevent obesity through the inhibition

of hepatocyte nuclear factor-4α (HNF-4α) and the microRNA

miR122.

Artemisinin is derived from Artemisia annua (qinghao).

Artemether and dihydroartemisinin (Figure 15) are the

derivatives with anti-inflammatory properties, suitable for the

inflammation of chronic metabolism (Law et al., 2020), which are

implicated in their pathogenesis corresponding to obesity or

other metabolic disorders (Shen et al., 2020). The artemisinin

derivatives induce the accumulation of the browning of white

adipose tissue (WAT) within the body and also enhance the

brown adipose tissue (BAT) function to reduce the risk of obesity.

FIGURE 13
Chemical structures of (A) berberrubine, (B) thalifendine, (C) demethyleneberberine, and (D) jatrorrhizine.

FIGURE 14
Chemical structures of 9-O-Aryl berberine and its derivatives.
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PRDM16, PGC1a, and UCP1 are the brown genes upregulated by

artemether and dihydroartemisinin, through the activation of the

p38 MAPK/ATF2 axis and the deactivation of Akt/mTOR

pathway for browning of C3H10T1/2 cells (Lu et al., 2016).

In 2007, Chung MC et al. reported a prodrug of

dihydroartemisinin, “artesunate” through reduction and

esterification using diisobutylaluminum hydride (DIBAL)

and succinic anhydride (Figure 16). The prodrug with low

toxicity and substantially increased solubility in water (Chung

et al., 2007). The mechanism of artesunate for obesity included

blocking the NF-κB pathway, inhibiting iNOS expression, and

decreasing NO production (Jiang et al., 2020).

Zhang Y et al. also developed some prodrugs of artemisinin,

such as SM934 and Anhydrodehydroartemisin (ADRT)

(Figure 17). The SM934 ameliorated the experimental

autoimmune encephalomyelitis (EAE) relating to obesity

(Zhang et al., 2022a); whilst ADRT reduced the functions of

CNS and decreased the immunity of a peripheral system (Lv

et al., 2021). It inhibits adipogenesis and the implications for

obesity, as well as inflammation due to the induction of a pro-

inflammatory cytokine interleukin IL-17A, Th1/Th17, and IFN-γ
(Ahmed and Gaffen, 2010).

Additionally, an artemisinin prodrug via modification of

hydrocarbylene (Figure 18) with long-chain hydrocarbons was

reported. It was a lipase inhibitor in the stomach and pancreas for

reducing the absorption of dietary fats to manage obesity (Heck

et al., 2000).

Recently, Sugiarto SR et al. investigated the pharmacokinetic

properties of other prodrugs in artemisinin, which was the

combination of artemether-lumefantrine (Figure 19) therapy

for normal-weight, overweight, and obese male adults.

FIGURE 15
Chemical structures of (A) artemisinin, (B) artemether, and (C) dihydroartemisinin.

FIGURE 16
Chemical structure of artesunate.
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Artemether and lumefantrine were metabolized through the

hepatic CYP450 enzyme to produce protease inhibitors (PIs),

and non-nucleoside reverse transcriptase inhibitors (NNRTIs),

which suppressed the concentration of plasma to treat

overweight (Sugiarto et al., 2022).

Chili pepper belongs to the genus Capsicum, which is an

important spice widely consumed in various diets. It is used to

treat pains, asthma, coughs, sore throat, common cold, and

arthritis in TCM. Its unique components, including capsaicin

and capsaicinoids (Figure 20), contribute to the pungent scent

and heat sensation of hot chili pepper (Azlan et al., 2022).

Capsaicin (CAP) has many pharmacological benefits to

humans, such as pain-alleviating, anti-inflammation,

antioxidant, hypoglycemic, anticancer, antimicrobial, and anti-

obesity effects. This is a potential agent for obesity by inhibiting

fat accumulation and lipid oxidation, increasing the satiety of the

hypothalamus, and preventing appetite and fat consumption.

Glycerol-3-phosphate dehydrogenase (GDPH) and intracellular

triglyceride are decreased in 3T3-L1 adipocytes because CAP

inhibits the level of PPAR, C/EBP, and leptin. Besides, capsaicin

significantly lowers the serum level of glucose and lipid including

cholesterol and triglycerides inmice (Mahalak et al., 2022).Wang

et al. proposed that capsaicin could change the structure and

composition of gut microbiota to lower lipid absorption (Wang

et al., 2020).

In 2021, Higgins et al. (2021) reported a prodrug of trans-

form CAP, vocacapsaicin (trans-8-methyl-N-vanillyl-6-

nonenamide) (Figure 21). This was a phenolic compound

responsible for their characteristic taste and pungency. It was

a water-soluble compound that rapidly converted to capsaicin.

The transient receptor potential vanilloid 1 (TRPV1)-agonist was

applied in the trigeminovascular system. CAP modulated the

fasting blood glucose and insulin concentrations as well as

decreased the levels of proinflammatory cytokines interleukin-

1β and interleukin-6 to treat high-fat, or high-sucrose (HFHS)

diet-induced obesity (Marics et al., 2017).

However, trans-CAP with high concentration inhibits gastric

acid production, causing gastric inflammation and damaging our

gastrointestinal mucosa. As a potent irritant, CAP with severe

FIGURE 17
Chemical structures of (A) SM934 and (B) ADRT.

FIGURE 18
Chemical structure of artemisinin linked with
hydrocarbylene.

FIGURE 19
Chemical structure of artemether-lumefantrine.

Frontiers in Pharmacology frontiersin.org11

Law et al. 10.3389/fphar.2022.1016004

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1016004


irritation, pain, and burning if exposed to the mucous

membranes. Capsaicin with low bioavailability and a short

half-life. It is rapidly metabolized in all tissues including the

liver, kidney, intestine, serum, and blood after oral

administration (Knotts et al., 2022).

Discussion

The prodrug is widely used in drug development because it is

bio-reversible, inactive drug derivatives, and non-toxic, which

can be converted into an active drug within the human body

(Markovic et al., 2020). Prodrugs have many potential benefits

with patient compliance, and more efficient absorption,

distribution, metabolism, and excretion (ADME) properties

that are suitable for lots of traditional Chinese medicines

(TCMs). Some active compounds of TCM are insoluble and

have lower absorption for the human body. Prodrugs of TCM

improve the stability, increase solubility, and bioavailability of

traditional Chinese medicines and reduce their toxicity, as well as

foster the targetability.

Currently, prodrugs are further developed through the

combination of “Nanotechnology.” Prodrugs with

nanotechnology have many advantages, e.g., greater

bioavailability, higher drug encapsulation, and loading

efficiency, as well as the control of drug release (Luo et al.,

2014; Lang et al., 2021; Zhang et al., 2021; Zhang et al., 2022b).

Growing evidence has shown that the combination of

nanotechnology and prodrug is more effective to treat obesity

than the usage of prodrugs alone. In general, prodrugs processing

with nanotechnology increase the drug solubility. It might fasten

or increase the absorption rate of the original drug in an organ,

which targeted the drug delivery to enhance the treatment

effective rate and decrease the side effects, as well as the drug

dose (Bahadori et al., 2019). These have been illustrated with the

following examples:

(i) Ahmed et al. (2021) reported that curcumin-loaded

chitosan/polyethylene glycol (PEG) blended poly lactic-

co-glycolic acid (PLGA) nanoparticles, which reduced the

body weight, body mass index (BMI), and Lee index. This

diminished the weights of the liver, heart, and visceral

adipose tissues. It also significantly reduced the weights

of the gonadal and subcutaneous adipose tissues. (ii) Kim

et al. (2018) discovered a diverse micro-/nano-sized delivery

system using emulsions, polymers, and vesicles for

improving bioavailability and maximizing the therapeutic

potential of ginsenosides. The ginsenoside was easily

absorbed by the human body as it was converted into

secondary saponins and aglycones via this nano-system

(Kim et al., 2018; Li et al., 2022), decreased body weight,

regulated the concentration of insulin, and reduced energy

expenditure to change the obese situations.

(iii) Liu et al. (2012) identified that celastrol linked with the

chitosan, O-carboxymethyl chitosan, or N-[(2-hydroxy-3-

N,N-dimethylhexadecyl ammonium)propyl] chitosan

chloride was effective to treat overweight and insulin

resistance in obesity, which decreased body mass,

regulated the plasma glucose, insulin and leptin

sensitivity, as well as an increased fecal lipid for

preventing obesity.

(iv) Och et al. (2020) applied lysergol, D-α-tocopheryl
polyethylene glycol 1000 succinate (TPGS), chitosan, and

sodium caprate as polymers to form an anhydrous reverse

micelle (ARM) delivery system of berberine nanoparticles

for enhancing the oral bioavailability and absorption. The

formulations of berberine increased the bioavailability of

FIGURE 20
Chemical structures of (A) capsaicin and (B) capsaicinoids.

FIGURE 21
Chemical structure of trans-CAP, vocacapsaicin (trans-8-
methyl-N-vanillyl-6-nonenamide).
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berberine compared to berberine alone. Berberine

nanoparticle was an anti-obesity and anti-sclerotic agent

by lowering the low-density lipoprotein (LDL) and

testosterone levels. It stimulated glycolysis, improved

insulin secretion, and inhibited gluconeogenesis and

adipogenesis to treat obesity.

(v) Du et al. (2022) introduced a liposome-like nanosystem in

the self-assembly of dimeric artesunate

glycerophosphocholine conjugated to the antimalarial

drug dihydroartemisinin (DHA) for killing parasites.

Similarly, this liposome-like nanosystem of artemisinin

might induce the differentiation and decrease of

regulatory cells to minimize the number of adipose cells

in obesity.

(vi) Lu et al. (2017) developed capsaicin-loaded nanoemulsions

(C-NE) for enhancing the anti-obesity effect on gastric

mucosa to degrade the high-fat diet. It also alleviated

stomach inflammation to keep gastrointestinal

smoothness prevent the adipose cells’ accumulation and

reduce the risk of obesity.

Conclusion

Obesity is a global problem and promotes the incidence of

various diseases, particularly cardiovascular disease, metabolic

syndrome, diabetes, hypertension, osteoarthritis, and certain

cancers. The Chinese herbal medicines’ derivatives, such as

Curcumin¸ Ginsenoside, Celastrol, Berberine, Artemisinin,

and Capsaicin are suitable Chinese medicinal herb-based

therapeutics for Obesity. The above derivative as prodrugs are

the possible approach to improve their poor solubility,

absorption, and bioavailability. Up to the present, a

combination of prodrugs from Chinese medicinal herbs and

nanotechnology is the innovative strategy for treating obesity.

However, much more works need to be done, especially in the

clinical trial.
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Glossary

ADME: Absorption, Distribution, Metabolism, Excretion

ADRT: Anhydrodehydroartemisin

AEG-1: Astrocyte Elevated Gene-1

AMPK: AMP-activated protein kinase

ARM: Anhydrous reverse micelle

BAT: Brown adipose tissue

CADD: Computer-aided drug design

CMG: Curcumin bound with monoglucuronide

C-NE: Capsaicin-loaded nanoemulsions

CNS: Central nervous system

DHC: Dihydrocurcumin

DIO: Diet-induced obese

EAE: Experimental autoimmune encephalomyelitis

Eotaxin: Eotaxin-1/Eotaxin-2/Eotaxin-3

ER: Endoplasmic reticulum

ERK: Extracellular signal-related kinase (ERK)

FABP4: Fatty acid-binding protein 4

FAS: Fatty acid synthase

FOXO1: Forkhead box protein O1

GATA-2 & GATA-3: GATA binding protein 2 and 3

GDPH: Glycerol-3-phosphate dehydrogenase

GSK3β: Glycogen synthase kinase 3β
HDC: Hexahydrocurcumin

HNF-4α: Hepatocyte nuclear factor-4α
HSP90: Heat shock protein 90

IRS-1: Insulin receptor substrate 1

KC: Kupffer cells

LDL: Low-density lipoprotein

LPS: Lipopolysaccharides

MAPK: Mitogen-activated protein kinase

MCP-1: Monocyte Chemoattractant Protein-1

MS: Multiple sclerosis

NAFLD: Non-alcoholic fatty liver disease

NF-κB: Nuclear factor kappa-light-chain-enhancer of activated

B cells

NNRTIs: Non-nucleoside reverse transcriptase inhibitors

NRF2-KEAP1: NF-E2-related factor 2-Kelch-like ECH-

associated protein 1

OHC: Octahydrocurcumin

PAI-1: Plasminogen activator inhibitor-1

pAKT: Phosphorylated serine-threonine protein kinase

PD: Pharmacodynamics

PEG: Polyethylene glycol

PH: Pharmaceutical

PI3K: Phosphatidylinositol 3-kinase

PIs: Protease inhibitors

PK: Pharmacokinetic

abrPLGA: Poly lactic-co-glycolic acid

PNPLA3: Patatin-like phospholipase domain containing 3

PPARα: Peroxisome proliferator-activated receptor-α
PPARγ: Peroxisome proliferator-activated receptor gamma

PPD: Protopanaxadiol

PPT: Protopanaxatriol

Rantes: Regulated on activation, normal T cell expressed and

secreted

ROS: Reactive oxygen species

SREBP-1C: Sterol regulatory element-binding protein 1C

TCM: Traditional Chinese medicine

THC: Tetrahydrocurcumin

TLR4: Toll-like receptor 4 Beclin-1

TPGS: D-α-tocopheryl polyethylene glycol 1000 succinate

TRPV1: Transient receptor potential vanilloid 1

UCP-1: Uncoupling protein 1

WAT: White adipose tissue
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