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Objective: The aim of this study was to identify the important factors affecting

cyclosporine (CsA) blood concentration and estimate CsA concentration using

seven different machine learning (ML) algorithms. We also assessed the

predictability of established ML models and previously built population

pharmacokinetic (popPK) model. Finally, the most suitable ML model and

popPK model to guide precision dosing were determined.

Methods: In total, 3,407 whole-blood trough and peak concentrations of CsA

were obtained from 183 patients who underwent initial renal transplantation.

These samples were divided into model-building and evaluation sets. The

model-building set was analyzed using seven different ML algorithms. The

effects of potential covariates were evaluated using the least absolute shrinkage

and selection operator algorithms. A separate evaluation set was used to assess

the ability of all models to predict CsA blood concentration. R squared (R2)

scores, median prediction error (MDPE), median absolute prediction error

(MAPE), and the percentages of PE within 20% (F20) and 30% (F30) were

calculated to assess the predictive performance of these models. In addition,

previously built popPK model was included for comparison.

Results: Sixteen variables were selected as important covariates. Among ML

models, the predictive performance of nonlinear-based ML models was

superior to that of linear regression (MDPE: 3.27%, MAPE: 34.21%, F20:

30.63%, F30: 45.03%, R
2 score: 0.68). The ML model built with the artificial

neural network algorithm was considered the most suitable (MDPE: −0.039%,

MAPE: 25.60%, F20: 39.35%, F30: 56.46%, R
2 score: 0.75). Its performance was

superior to that of the previously built popPK model (MDPE: 5.26%, MAPE:

29.22%, F20: 33.94%, F30: 51.22%, R
2 score: 0.68). Furthermore, the application

of the most suitable model and the popPK model in clinic showed that most

dose regimen recommendations were reasonable.

Conclusion: The performance of these ML models indicate that a nonlinear

relationship for covariates may help to improve model predictability. These
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results might facilitate the application of ML models in clinic, especially for

patients with unstable status or during initial dose optimization.
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1 Introduction

Cyclosporine (CsA) is a potent calcineurin inhibitor widely

used to prevent allograft rejection in solid organ transplantation

(Fahr, 1993; Meier-Kriesche et al., 2006). Given its narrow

therapeutic index and large inter- and intra-individual

pharmacokinetic/pharmacodynamic (PK/PD) variabilities,

conducting routine therapeutic drug monitoring (TDM) is

essential to optimize CsA dosage regimens and minimize

adverse effects (Shaw et al., 1987).

Currently, the pre-dose (C0) and 2 h post-dose

concentrations (C2) of CsA are conventionally monitored

during clinical follow-up. Population PK (popPK) models

combined with maximum a posteriori Bayesian estimators

(MAP-BE) are used to establish a dose titration guide, which

is more precise than the prescription depending only on the

personal experiences of physicians (Asberg et al., 2010). With the

advances in computer technology, precision dosing based on

pharmacogenetics and PK/PD models has been suggested to

improve patient care (Mizuno et al., 2020).

Based on the compartmental model theory, popPK models

can describe the drug PK behavior of individuals by applying

statistical mixed effect methods with PK parameters (Sheiner

et al., 1977; Sheiner and Beal, 1980). In a previous study, we

attempted to identify factors that explain the variability of the

CsA PK properties and characterize the time-varying clearance

(CL/F) by comprehensively analyzing the CsA PK process using

popPK modeling (Mao et al., 2021). Although more theoretical

mechanisms were considered to improve model transferability,

describing the drug in vivo process was challenging in patients

with unstable conditions. In addition, in the context of the

rapidly changing clinical status and inflammatory state of

renal transplant recipients, the assumptions of the structural

model may be inaccurate or overly simplistic.

Contrary to PK-based approaches, which aims to describe the

physiological phenomena involved in the drug in vivo process

and its variability between individuals, machine learning (ML)

models are accuracy-centered, data-driven approaches that

eliminate the need for mechanistic assumptions (Badillo et al.,

2020). A traditional ML algorithm can be something as simple as

linear regression. They use a variety of statistical techniques to

interpret the existing data without having to be programmed

explicitly. Moreover, artificial neural network (ANN) is a

specialized subset of ML algorithms, which describes

algorithms that analyze data with a logical structure similar to

how a human would draw conclusions. Inspired by the biological

neural network of the human brain, ANN uses a layered structure

of algorithms to learn a set of complex relationships between the

variables, leading to a learning process that is far more capable

than that of traditional ML algorithms (Popescu et al., 2009).

As ML models can capture the complex relationships

between variables and analyze high-dimensional data in

clinical practice, these have been used in clinical

pharmacology in recent years. For example, Woillard et al.

used ML models to estimate the glomerular filtration rate of

intensive care unit patients, based on sparse iohexol PK data

(Woillard et al., 2021c). This approach was also used to predict

the exposure of tacrolimus (Woillard et al., 2021b) and

mycophenolic acid (Woillard et al., 2021a). Moreover, Tang

et al. combined popPK and ML models to improve the

prediction of individual clearance of renally cleared drugs in

neonates (Tang et al., 2021).

According to our previous study, the incorporation of

nonlinear kinetics during the modeling process can improve

the predictive performance of popPK models for CsA in adult

renal transplant recipients (Mao et al., 2020). Furthermore,

rather than defining a structural model to describe the

observed data, ML models use algorithmic modeling of

multiple variables linked by complex interactions to obtain

nonlinear relationships that predict clinical outcomes with

high accuracy (Badillo et al., 2020; Gautier et al., 2021). In

pharmacokinetics, these methods can estimate clearance

through characteristics of the patient, such as demographic

characteristics, pathophysiological indexes, disease status, and

associated medications.

In this study, we aimed to identify the important covariates of

the CsA concentration based on retrospective data and estimate

the CsA concentration using multiple ML models. We compared

the predictions obtained in this study with those of the previously

developed popPK model (Mao et al., 2021). Then, the most

suitable ML and popPK models were applied to guide

personalized medicine.

2 Materials and methods

2.1 Study group and data collection

We recruited 183 renal transplant patients (122 males and

61 females) at Huashan Hospital. Patients were administered

combined immunosuppressive therapy, including a CsA

microemulsion (Neoral; Novartis Pharma Schweiz AG,
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Emberbach, Germany), mycophenolate mofetil (MMF; CellCept;

Roche Pharma Ltd., Shanghai, China), and steroids. The detailed

therapeutic regimens are described in Supplementary Text S1.

The inclusion criteria were as follows: patients 1)

aged ≥18 years, 2) who had received their first allograft renal

transplantation and 3) who had received a CsA-based triple

immunosuppressive regimen. The exclusion criteria were as

follows: those who 1) received the conventional, oral

formulation of CsA, 2) underwent dialysis treatment, and 3)

had missing covariate data required for analyses.

The study protocols were approved by the Ethics Committee

of Huashan Hospital and conducted in accordance with the

Declaration of Helsinki. All patients provided written

informed consent and agreed to the anonymous use of their

samples in this study.

We retrospectively collected PK samples of CsA C0 and C2

from the enrolled patients during follow-up TDM. All

samples were stored at −20°C for CsA concentration

determination, biochemical assay, and pharmacogenetic

tests. Details regarding to the determination of CsA

concentration and genotyping are presented in

Supplementary Text S2 and S3 respectively.

2.2 Machine learning model development

Seven ML models including six traditional models and an

ANN model were applied to describe the relationship between

variables and CsA concentration.

Our study comprised the following steps:

Step 1: Covariate selection was performed using the least

absolute shrinkage and selection operator (LASSO).

Step 2: Seven ML algorithms were used to construct the

prediction models.

Step 3: The predictability of the ML models and that of the

previously built popPK model were evaluated.

Step 4: The most suitable ML model and the previously built

popPK model were used to guide precision dosing.

The flowchart of these procedures is shown in Figure 1.

2.2.1 Data preparation and covariate selection
The patients were divided into training and evaluation sets, as

described in our previous study (Mao et al., 2021). The samples

collected were used for model construction and evaluation. For

each CsA concentration, the two latest CsA doses before

measurement were identified as the major predictors.

Furthermore, 57 other variables (e.g., demographics,

pathophysiological characteristics, concomitant medications,

and pharmacogenomic information) were identified as

covariates. An integrated abbreviation list of all variables and

their corresponding explanations is provided in Supplementary

Table S1.

After data separation, the training set included 127 patients

with complete data of all variables, whereas the evaluation set had

missing genetic information from 16 of 56 patients. The missing

data were imputed using the genotype with the highest frequency

among the remaining subjects. Numerical variables were scaled

FIGURE 1
The flowchart of study procedures.
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to 0–1. Covariate selection was conducted using LASSO

(Alhamzawi and Ali, 2018).

LASSO was used to obtain the predictor subset that

minimized the prediction error (PE) for the variables. LASSO

applied a constraint on the model parameters by using a

generalized linear model via penalized maximum likelihood,

shrinking the regression coefficients of some variables toward

zero. Variables with regression coefficients equal to zero were

excluded from the model. The R software package glmnet was

used for the LASSO analysis, and the model was evaluated using a

10-fold cross-validation procedure (Friedman et al., 2022).

Specifically, the training data were split into 10 independent

folds of approximately equal size. The models were trained using

nine folds of the data and then tested using the remaining fold;

this procedure was repeated for each of the 10 training and

testing fold combinations.

2.2.2 Six traditional machine learning modeling
Along with the selected variables, six traditional ML

algorithms, including linear regression (LR), support vector

regression (SVR), random forest (RF), XGBoost, LightGBM,

and CatBoost were used for model building (Mahabub, 2019).

These ML models were implemented using the “scikit-learn”

(sklearn) module in Python 3.6 (Pedregosa et al., 2011). Similarly,

a 10-fold cross-validation procedure was performed for the

parameter tuning and performance evaluation of each method

in the training set. Root mean square error (RMSE) was used to

select the best parameter combinations. The model built with the

fine-tuned parameters was used as the final model for each

method.

2.2.3 Artificial neural network modeling
A multilayer perceptron (MLP) is a fully connected class of

feedforward ANN. It consists of at least three layers of nodes: an

input layer, a hidden layer, and an output layer (Popescu et al.,

2009). The input layer receives the input signal to be processed.

The required task, such as prediction or classification, is

performed by the output layer. An arbitrary number of

hidden layers that are placed in between the input and output

layers are the true computational engine.

In this study, anMLP neural network model, which consisted

of an input layer, two hidden layers, and an output layer, was

constructed for CsA concentration prediction using the “keras”

module in Python 3.6 (Gulli A, 2017). To obtain the best

generalization performance, we induced a dropout layer

behind each hidden layer and applied an early stop strategy to

stop model learning before overfitting.

The patients in the training set were randomly divided into

model building (including 70% of the patient samples) and

model validation (including the remaining 30% of the patient

samples) sets. The hyper-parameters, including the number of

neurons in the hidden layer, activation function, dropout rate,

and batch sizes, the values of which were used to control the

learning process, were fine-tuned using the model building set

and evaluated using the model validation set.

The mean squared error was used as the loss function metric,

and Adam was used as the optimizer. The model with the highest

R2 value in the model validation set was selected as the most

suitable model. Using all samples in the training set, the

associated combination of hyper-parameters was used to

construct the final model.

2.3 Model evaluation

Each model of different algorithms was validated using

samples from an independent evaluation dataset. The

coefficient of determination R2 scores, prediction-based PE

(Eq. 1), median prediction error (MDPE), and median

absolute prediction error (MAPE) were used to compare the

accuracy and precision of model predictive performance (Sheiner

and Beal, 1981). R2 is the squared correlation between predicted

and observed CsA concentrations, with higher values indicating

better predictability. The model with the highest R2 values and

the lowest MDPE and MAPE values was considered the most

suitable model.

PE (%) � (PRED − OBS
OBS

) × 100 (1)

The percentages of PE within 20% (F20) and 30% (F30)

were used as the combination index of both accuracy and

precision. Furthermore, the prediction performance of the

ML models was compared with that of the previously

developed popPK model in the same evaluation dataset

(Mao et al., 2021).

The predictive performance of a candidate model was

considered satisfactory given the following values: MDPE ≤ ±

15%, MAPE ≤30%, F20 > 35%, and F30 > 50% (Mao et al., 2018).

Among all models, the one associated with the best prediction

performance was selected as the most suitable ML model. The

scatter plots of the predicted versus reference CsA concentrations

and the distribution plots of percentage prediction errors were

drawn for visualization.

2.4 Model application

The most suitable ML model and the previously built popPK

model were used to guide precision dosing, and the dose

regimens suggested by these two models were compared.

Patients in the evaluation dataset with information on the

early stages of transplantation were used for dosage

adjustments. For each patient, we selected the first sample

from postoperative day (POD) 10–15, based on our

hypothesis that the concentrations of these samples were at

steady state.
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The most suitable ML and popPK models were used to

optimize the initial dose of these patients. Target C0 values of

200–350 ng ml−1 and target C2 values of 1000–1500 ng ml−1

were suggested for the first month of CsA treatment (Shi and

Yuan, 2016). For the ML model, a series of CsA dosages was

input into the model to fit the upper and lower limits of

recommended target C0 and C2, respectively. Then, the lower

and upper limits of CsA dosage were recommended for each

patient. Using the popPK model, we conducted Monte Carlo

simulations as previously published (Mao et al., 2021). Time-

concentration profiles were simulated based on

1000 hypothetical individuals. The C0/C2 value of the CsA

doses was simulated from 50 mg q12h to 300 mg q12 h for

each patient. The median and the 25th to 75th percentiles of a

steady-state C0/C2 value were calculated, and the optimal

dosing regimen was selected according to the target

concentration. Finally, the rationality of the suggested dose

regimens was assessed.

3 Results

3.1 Patients

Detailed demographics and clinical statistics are

presented in Table 1. In total, 183 renal transplantation

recipients were recruited for this study. Furthermore,

3,407 whole-blood CsA measurements were available, with

1,621 C0 and 1,786 C2. Concentrations below the lower

quantification limit were not included in the analysis.

TABLE 1 Patients demographics used to develop and evaluate models.

Characteristics Model development dataset Model evaluation dataset

Number
or median (Range)

Number
or median (Range)

No. of patients (Male/Female)a 127 (81/46) 56 (41/15)

No. of Samples (C0/C2)
b 2261 (1081/1180) 1146 (541/605)

Age (years) 41 (19–60) 41 (18–58)

Height (cm) 168.0 (150.0–188.0) 170.0 (150.0–186.0)

Weight (kg) 60.0 (40.0–95.0) 61.0 (39.4–90.0)

Fat-free mass (kg) 46.4 (28.9–66.2) 50.3 (28.7–67.1)

Post-operation days 472 (1–5998) 111.5 (2–3942)

CsA daily dose (mg day−1) 275 (50–575) 250.0 (50–600)

Prednisolone dose (mg day−1) 20.0 (0–80) 7.5 (0–80)

C0 (ng ml−1) 157.9 (22.6–974.6) 123.6 (25.4–587.4)

C2 (ng ml−1) 805.2 (108.8–2572.8) 703.0 (34.6–2109.0)

Hematocrit (%) 31.1 (10.5–60.5) 34.7 (15.6–57.0)

Blood platelet (×109 L−1) 174 (31–514) 192 (37–523)

Total Bilirubin (μmol L−1) 10.5 (1.0–168.9) 10.8 (1.7–48.3)

Alanine aminotransferase (U L−1) 32.1 (4.0–420.0) 19.0 (3.0–374.0)

Aspartate transferase (U L−1) 23.8 (5.0–383.0) 18.0 (1.0–279.0)

r-Glutamyl transpeptidase (U L−1) 20 (1–509) 20 (2–775)

Albumin (g L−1) 36.2 (20.0–52.0) 37.4 (22.0–51.0)

Total protein (g L−1) 63.2 (41.0–88.0) 67.0 (46.0–88.0)

Urea nitrogen (mmol L−1) 8.7 (2–54.1) 7.9 (2.9–44.8)

Serum creatinine (μmol L−1) 134.3 (14.0–1088.0) 107.0 (48.0–776.0)

Creatinine clearance (ml min−1)c 62.5 (6.2–360.7) 67.1 (6.2–182.6)

Concomitant medicationsa

Felodipine 74 23

Nifedipine 46 18

Perdipine 8 7

C0, pre-dose concentration; C2, 2-h post-dose concentration.
aData are expressed as number of patients.
bData are expressed as number of samples.
cCalculated following the Cockcroft-Gault formula: CLcr = [(140-Age (year)) ×WT (kg)]/(0.818×Scr (μmol L−1)) × (0.85 for female).
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All observed genotypic distributions of CYP3A4*1G,

CYP3A5*3, and ABCB1 genetic polymorphisms were in

accordance with the Hardy-Weinberg equilibrium

(Supplementary Table S2). Only haplotypes with frequencies

and patient proportions ≥8% were analyzed (Supplementary

Table S3).

3.2 Covariate selection

Sixteen variables with non-zero coefficients and minimal

prediction errors were selected using LASSO as the most

important covariates (Supplementary Table S4), which were

subsequently used for model construction with seven different

ML algorithms: sampling time (C0 or C2), the two latest CsA

doses before each sampling time, height, POD, white blood cell

(WBC), hematocrit (HCT), blood platelet (PLT), total bilirubin

(TBIL), r-glutamyl transpeptidase (rGT), urea nitrogen (UN),

creatinine (CR), creatinine clearance rate (CLCR), acyclovir

(ACI) use, norvasc (NOR) use, and MDR1 haplotypes CGC.

Out of 16 covariates selected by LASSO, only three covariates

(POD, HCT, and MDR1 haplotype CGC) were consistent with

those of the previously built popPK model based on the same

dataset (Mao et al., 2021).

3.3 Model construction and evaluation

The best-tuned parameters for six traditional ML models

(i.e., LR, SVR, RF, XGBoost, LightGBM, and CatBoost) and the

hyper-parameters selected for the ANN model are presented in

Supplementary Table S5. The prediction performance of all

models in the evaluation dataset is presented in Table 2. The

previously developed popPK model was also included for

comparison (Mao et al., 2021). The predicted CsA

concentrations vs. observed concentrations for each method,

along with the R2 scores of all models, are presented in Figure 2.

All ML models besides linear regression were developed

based on nonlinear methods. The predictive performance of

nonlinear-based ML models met the aforementioned criteria

(i.e., MDPE ≤ ± 15%, MAPE ≤30%, F20 > 35% and F30 >
50%), except the linear regression model, which had an

MDPE of 3.27%, MAPE of 34.21%, F20 of 30.63%, and F30 of

45.03%. This indicated that considering the nonlinear

relationship of patient covariates may help improve model

predictability.

With R2 as the assessment metrics, the popPK model was

slightly superior to the linear regression model but was

inferior to other ML models. The percentages of samples

with prediction errors within 10%, 30%, and 50% are shown

in Figure 3. Among these models, the highest percentages

were consistently achieved with the ANN model. Here, the

predicted CsA concentrations within the prediction errors of

10%, 30%, and 50% were 20.24%, 56.46%, and 77.31%,

respectively. In both accuracy and precision, the ANN

model was considered the most suitable ML model with an

MDPE of -0.039%, MAPE of 25.60%, F20 of 39.35%, F30 of

56.46%, and R2 score of 0.75.

3.4 Model application

Twenty-eight patients from the evaluation dataset were

selected for dosage adjustment. In C0, subtherapeutic and

supratherapeutic CsA concentrations were observed in 53.6%

and 3.6% of patients, respectively. In C2, subtherapeutic and

supratherapeutic CsA concentrations were observed in 67.9%

and 3.6% of patients, respectively. The median POD of these

TDM values was 11, indicating the need for an initial dose design.

The results of the dosing regimen optimization conducted

using the most suitable ML and popPK models are shown in

Supplementary Table S6 and Supplementary Table S7. Most dose

regimens suggested by the two models were reasonable, except

for patients #192, #201, #812, and #909, whose concentrations

were below the target ranges. Although the doses suggested by

the ML model and popPK model were higher than the actual

dosage. They were inconsistent with each other. The doses

suggested by the ML model were higher than those suggested

by the popPK model. However, for patient #169, whose

concentrations were in the target ranges, a lower dose

proposal was suggested by the ML model than by the popPK

model and the actual dosage.

A comparison of the actual CsA dose, which was used based

on the personal experiences of physicians, and optimal daily

doses of CsA recommended by the most suitable ML and popPK

models is shown in part in Figure 4, and the complete

comparison for all patients is presented in Supplementary

Figure S1.

TABLE 2 Predictive performance of seven ML models and previously
built popPK model in the evaluation dataset.

Methods MDPE MAPE F20 F30 R2

LR 3.27 34.21 30.63 45.03 0.68

SVR 3.59 26.83 38.92 54.19 0.73

Random Forest 9.56 27.56 37.00 53.66 0.74

XGBoost 2.90 27.43 35.43 54.28 0.74

LightGBM 4.64 25.99 38.05 55.15 0.74

CatBoost 7.96 26.09 39.79 56.20 0.75

ANN -0.039 25.60 39.35 56.46 0.75

popPK 5.26 29.22 33.94 51.22 0.68

ANN, artificial neural network; F20, F30, the percentages of prediction error within 20%

and 30%, respectively; LR, linear regression; MAPE, median absolute prediction error;

MDPE, median prediction error; popPK, population pharmacokinetic model; R2, the

squared correlation between the predicted and observed concentrations; SVR, support

vector regression.
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FIGURE 2
Scatter plots showing the reference and predicted cyclosporine concentrations from the evaluation dataset for ML and popPKmodels. Red line
represents the reference line. ANN, artificial neural network; ML, machine learning; popPK, population pharmacokinetic model; R2, the squared
correlation between the predicted and observed concentrations; LR, linear regression; SVR, support vector regression.

FIGURE 3
Bar plot showing the percentages of prediction error within 10%, 30%, and 50% for ML and popPK models. ANN, artificial neural network; ML,
machine learning; popPK, population pharmacokinetic model; LR, linear regression; SVR, support vector regression.
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4 Discussion

In this study, we systematically established seven ML models

to predict blood trough and peak concentrations from CsA daily

dose and other important variables selected using the LASSO

algorithm. Thirteen out of 16 covariates compared to those of the

previously built popPK model were newly identified.

LASSO is usually employed to get a quick idea of which covariates

are important for predicting the outcome variable. It is unsuitable when

the number of variables is greater than the number of observations and

when many variables are correlated (Laura Freijeiro-González, 2022).

The datasetwe collected had a large number of observations, withmostly

independent variables and a few collinear variables, which generally

eliminates the limitation of LASSO. One advantage of LASSO is that it

quickly incorporates a reduced set of variables, which are interpretable

and reduce the complexity for the next step of model building.

Among these important covariates, the MDR1 haplotype CGC

is the only genetic factor. Allelic variations in exons 12 (1236C>T),
21 (2677G>T/A), and 26 (3435C>T) of the MDR1 gene are

associated with altered P-glycoprotein (P-gp) function (Kim,

2002), which contributes to the bioavailability of P-gp substrates,

such as CsA (Zhang et al., 2008; Mao et al., 2021). Therefore, the

MDR1 haplotype was thought to be associated with CsA blood

concentration. Based on our previous study, the CL/F of non-CGC

haplotype carriers is 14.4% lower than that of CGC haplotype

carriers 3 months after renal transplantation (Mao et al., 2021).

We identified other important variables in addition to CGC.

The daily dose of CsA was positively associated with

FIGURE 4
Comparison of the actual and optimal daily doses of cyclosporine recommended by themost suitableMLmodel and popPKmodels. Yellow plot
indicates the concentration below the therapeutic windows; green plot indicates the concentration in the therapeutic windows. All doses are
recommended twice daily. ML, machine learning; popPK, population pharmacokinetic model.
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concentration, consistent with a previous study finding (Mao

et al., 2020). In population analysis, the function of daily dose

may primarily reflect the non-linearity of clearance, as seen in

CsA concentration (Cai et al., 2020; Huang et al., 2020; Mao et al.,

2020). In addition, the incorporation of the daily dose can

significantly improve the model predictability. However, the

depth of the relationship between CsA daily dose and

concentration cannot be explored in the ML model.

Several biomedical indices, including WBC, HCT, PLT,

TBIL, rGT, UN, CR, and CLCR, were also selected as

important covariates of CsA blood concentration. Specifically,

we reported that WBC, HCT, and PLT were positively correlated

with CsA blood concentration. The relationship between the

WBC count and CsA concentration has rarely been reported. For

renal transplant patients, an elevated WBC count indicates

potential infection or immune rejection. A higher dosage may

increase CsA blood concentration, resulting in over-

immunosuppression and subsequently infection.

Unlike WBC, the relationship between HCT and CsA

concentration is commonly observed. In our previous study, the

CL/F of CsA decreased significantly (52.6%) as HCT increased from

10.5% to 60.5% (Mao et al., 2021). Similarly, HCT was also selected

as significant covariate inversely associated with tacrolimus CL/F

(Woillard et al., 2011). A low HCT level may reduce the binding of

CsA to red blood cells, increasing the proportion of CsA in plasma.

Specifically, plasma CsA is easily metabolized, leading to a lower

CsA blood concentration.

Meanwhile, Suehiro et al. (2002) found that both CsA and

tacrolimus enhance platelet aggregation via the serotonin pathway.

According to another study, CsA potentiates a collagen-evoked

platelet procoagulant response (Tomasiak et al., 2007). Therefore,

the level of PLT may indicate the level of CsA blood concentration.

Additionally, TBIL and rGT levels, which reflect liver function, were

positively associated with CsA blood concentration. Caban et al.

observed that CsA could increase the levels of aspartate

aminotransferase, alanine transaminase, and bilirubin by

changing oxidative stress parameters and lipid peroxidation

products in liver supernatants (Korolczuk et al., 2016). Changes

in oxidative stress markers in parallel with mitochondrial damage

suggest that the mechanisms play a crucial role in CsA-induced

hepatotoxicity (Korolczuk et al., 2016). Poor liver function affects

CsA metabolism, leading to a higher concentration of CsA.

Height was rarely identified as an influencing factor for CsA

pharmacokinetics. However, it showed an inverse correlation with

the CsA concentration. Sam et al. identified height as a significant

influencing factor for the apparent volume of distribution in Asian

liver transplant patients taking tacrolimus (Sam et al., 2006). They

found that every meter of increase in height is associated with an

82.5% increase in Vd/F. Based on other ML study on tacrolimus,

height is also an important factor in the prediction model (Zheng

et al., 2021).

POD after renal transplantation was also an influencing

factor in CsA pharmacokinetics. Using the LASSO algorithm,

in this study, we found that POD was negatively associated with

CsA concentration. Likewise, Okada et al. and Mao et al. found

that an increase in CL/F, along with POD, decreases the

concentration of CsA (Okada et al., 2017; Mao et al., 2021).

As an immunosuppressive agent, CsA decreases the

incidence of acute rejection and increases long-term survival

after renal transplantation (Rodicio, 2000). Unfortunately, long-

term CsA treatment can lead to several serious side effects,

including systemic hypertension, permanent renal damage,

cardiovascular disease, and numerous metabolic abnormalities.

Calcium channel blockers (CCBs) are considered the best

treatment for CsA-induced hypertension (Bernard et al.,

2014). Certain CCBs, such as amlodipine, diltiazem, felodipine

nicardipine, nifedipine, and verapamil, are relatively potent

cytochrome P450 3A4 enzyme (CYP3A4) inhibitors at

clinically relevant doses (Wang et al., 2016); these are

metabolized by CYP3A4. In turn, these inhibit CYP3A4,

which plays a key role in CsA metabolism (Bernard et al.,

2014). As such, the co-administration of CCBs and CsA may

increase CsA blood concentration. In our study, amlodipine, the

first oral CCB used, was positively associated with CsA

concentration. Bernard et al. (2014) found that blood trough

concentrations of dose-normalized CsA increase significantly in

patients treated with amlodipine, consistent with the results of

our study . The co-prescription of acyclovir and CsA was also

selected as a variable for increased CsA blood concentration.

Among the ML models, the ANN model exhibited the best

predictive performance. Without prior observations, the predictive

performance of the most suitable ML model was superior to that of

the popPK model. The replacement of the popPK model with the

ML model may depend on the model application scenario. ML

algorithms could learn the hidden patterns from data themselves

and do not require any prior knowledge. Therefore, for patients with

unstable status or during initial dose optimization, the ML model is

preferred (Woillard et al., 2021c). In addition, as ML models are

data-driven, increasing the input participant data can continually

optimize the parameters to improve accuracy and practicality.

Therefore, the ML model is suitable for big-data analysis

(observations >1000 and dimensions >50) without mechanistic

assumptions (Graaf, 2014; McComb et al., 2021). However, the

ML model works as a “black box,” and user-friendly interfaces

should be developed to facilitate clinical application.

Moreover, the goals and possibilities of the ML and popPK

models are different. No simulations were possible for the ML

model, whereas the popPK model can simulate a time-

concentration profile and estimate the probability of target

achievement. Besides, popPK model is more flexible in regard

to deviations in the sampling time. Specifically, the goal of theML

model is accuracy-centered, using the necessary variables. In

contrast, the goal of the popPKmodel is to describe physiological

phenomena and variability during the PK process. In addition,

the mathematics underlying eachmethod is different. To increase

model predictability and interpretability, a combination of ML
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and pharmacometrics models may be necessary (Koch et al.,

2020; Tang et al., 2021).

Among all patients recruited in this study, the percentages of

follow-up concentrations within the target CsA C0 and C2 were

46.2% and 39.0%, respectively. This result highlighted the need to

performmodel-informed precision dosing in clinical practice (Kluwe

et al., 2020). According to our results, the predictability and suggested

dose regimens of the ML and popPK models were comparable.

However, there is also some discrepancy between these twomethods.

The final prescription should be determined by the combination of

the predicted dosage and clinical information.

This study had limitations. First, we used a retrospective,

observational design. Therefore, the adherence of patients to

their prescribed dose regimens cannot be confirmed. Second,

the TDM data used were collected from one center. Therefore,

multicenter validation is necessary to confirm the model

predictability. Third, we applied covariates selection using a

linear association-based method, and then used those

covariates for nonlinear model construction. This procedure

might remove features that could have been of interest. Fourth,

the distribution of CsA concentrations was not equivalent.

Approximately only 15% of cases had a CsA concentration

above 1200 ng/ml, and ML algorithms have difficulty extracting

useful information from limited samples with high CsA

concentrations. The ML model should be used with caution

to predict concentrations higher than 1200 ng/ml. Finally, the

relationship between the dependent and independent variables

was extremely complicated in all statistical algorithms, and the

existence of gene-gene and gene-environment interactions

introduces more challenges for researchers (Hunter, 2005).

5 Conclusion

The predictability of theML and popPKmodels was comparable,

except for linear regression, indicating that considering the nonlinear

relationship of patient covariates may help to improve the model

predictability. These results could facilitate the application of ML

models in clinic, especially for patients with unstable status or during

initial dose optimization.
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