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Glioma is the most prevalent malignancy in the central nervous system. The

impact of ion-induced cell death on malignant tumors’ development and

immune microenvironment has attracted broad attention in recent years.

Cuproptosis is a novel copper-dependent mechanism that could potentially

regulate tumor cell death by targeting mitochondria respiration. However, the

role of cuproptosis in gliomas remains unclear. In the present study, we

investigated the relationships between the expression of cuproptosis-related

genes (CRGs) and tumor characteristics, including prognosis and

microenvironment of glioma, by analyzing multiple public databases and our

cohort. Consensus clustering based on the expression of twelve CRGs stratified

the glioma patients into three subgroups with significantly different prognosis

and immune microenvironment landscapes. Reduced immune infiltration was

associated with the less aggressive CRG cluster. A prognostic CRGs risk

signature (CRGRS), based on eight critical CRGs, classified the patients into

low- and high-risk groups in the training set andwas endorsed by validation sets

frommultiple cohorts. The high-risk groupmanifested a shorter overall survival,

and further survival analysis demonstrated that the CRGRS was an independent

prognostic factor. The nomogram combining CRGRS and other

clinicopathological factors exhibited good accuracy in predicting the

prognosis of glioma patients. Moreover, analyses of tumor immune

microenvironment indicated that higher CRGRS was correlated with

increased immune cell infiltration but diminished immune function. Gliomas

in the high-risk group exhibited higher expression of multiple immune

checkpoints, including PD-1 and PD-L1, and a better predicted therapy

response to immune checkpoint inhibitors. In conclusion, our study

elucidated the connections between CRGs expression and the

aggressiveness of gliomas, and the application of CRGRS derived a new

robust model for prognosis evaluation of glioma patients. The correlations

between the profiles of CRGs expression and immune tumor
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microenvironment illuminated prospects and potential indications of

immunotherapy for glioma.
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Introduction

Glioma is the most common malignant tumor in the central

nervous system (CNS) and accounts for approximately 80% of all

malignant CNS tumors (Ostrom et al., 2021). Surgery with

adjuvant radiotherapy and chemotherapy comprises the

current standard treatment regime (Stupp et al., 2005).

Despite thorough therapy procedure, the overall survival (OS)

for many glioma patients is still poor (Weller et al., 2021),

especially glioblastoma, which is extremely malignant and

manifests a median OS of fewer than 2 years (Chinot et al.,

2014; Gilbert et al., 2014; Stupp et al., 2015). Hence, many studies

experimented with novel therapies for glioblastoma, aiming to

improve patient survival. Immunotherapy was proved effective

in many other tumors (Zhang and Zhang, 2020). For example,

immune-checkpoint inhibitors (ICIs) have demonstrated

positive efficacy in treating melanoma (Larkin et al., 2015),

non-small-cell lung cancer (NSCLC) (Reck et al., 2016), and

cervical cancer (Tewari et al., 2022). In the CNS, the ICIs could

prolong patient OS in metastatic melanoma (Tawbi et al., 2018)

and NSCLC (Hendriks et al., 2019), indicating that ICIs can

deliver robust anti-tumor effect in the immune

microenvironment of CNS. Neoadjuvant ICIs were proved to

modify the tumor immune microenvironment and immune

response in glioblastoma (Cloughesy et al., 2019; Schalper

et al., 2019). Nevertheless, several phase III trials of ICIs in

patients with glioblastoma eventually achieved insignificant

results (Reardon et al., 2020; Lim et al., 2022; Omuro et al.,

2022). These failures suggested that further research is needed to

understand the tumor microenvironment (TME) and immune

landscape of gliomas and their influence on the effect of

immunotherapy in glioma (Ott et al., 2021).

Cuproptosis, a newly discovered regulated cell death (RCD)

type, was defined as copper-induced cell death (Tsvetkov et al.,

2022). Copper has been recognized as a cofactor for several

essential enzymes (Kim et al., 2008). Moreover, intracellular

copper concentrations are regulated by a couple of active

homeostatic mechanisms to prevent excessive accumulation of

intracellular copper (Rae et al., 1999; Lutsenko, 2010). In lung

cancer and breast cancer cells, copper could induce cell death by

targeting the lipoylated tricarboxylic acid cycle. With the

assistance of whole-genome CRISPR-Cas9 positive selection

screen technology, seven genes were confirmed to be

associated with resistance to cuproptosis (FDX1, LIAS, LIPT1,

DLD, DLAT, PDHA1, and PDHB), and three genes were linked

with the sensibility to cuproptosis (MTF1, GLS, and CDKN2A).

Additionally, SLC31A1 (CTR1) and ATP7A/B, which encode the

copper importer and exporter, showed a tight correlation with

sensitivity to copper concentration (Tsvetkov et al., 2022).

Interestingly, a previous in vivo PET study found enhanced

localization of copper isotype tracer in the hypoxic areas of

gliomas, coinciding with increased CTR1 expression (Pérès

et al., 2019). Meanwhile, it is speculated that deprivation of

copper by tumor cells from TME may impair copper-

dependent SOD enzymes in immune cells, and convert

tumor-associated macrophages (TAMs) into pro-tumoral

M2 phenotype (Serra et al., 2020). Nonetheless, the role of

cuproptosis in the development of gliomas and their TME

was not well elucidated.

In our present study, multiple cohorts, including TCGA,

CGGA, REMBRANDT, and our own patient cohort, were

utilized to investigate the impact of cuproptosis-related gene

expression on the characteristics of gliomas. We constructed a

cuproptosis-related gene (CRG) signature to evaluate the clinical

implications of CRG expression. Besides, we also evaluated and

clarified the correlations between the CRG signature and the

landscape of the glioma immune microenvironment.

Materials and methods

Data collection and preprocessing

RNA-seq data and clinical information of glioma patients

were obtained from public databases and the REMBRANDT

database. We downloaded fragments per kilobase million

(FPKM) data of 662 primary gliomas from the Cancer

Genome Atlas (TCGA, of which 655 had survival data).

FPKM data of 226 primary gliomas, as well as the array data

of 369 gliomas from the REMBRANDT (Gusev et al., 2018)

cohort, were downloaded from the Chinese Glioma Genome

Atlas (CGGA) curation (Zhao et al., 2021) (http://www.cgga.org.

cn/). Genes expressed at a too low level (maximum FPKM <0.1)
were excluded from the analysis.

Our cohort contained 77 primary glioma patients enrolled at

West China Hospital (WCH). mRNA-sequencing data of their

glioma tumor tissue obtained during craniotomy were quantified

using STAR and normalized into FPKM. The survival data of

these patients were acquired through telephone interviews every

3–6 months. Overall survival (OS) was defined as the period from

surgery to death or the end of the last interview (censored value).

Among all cohorts, patients with age <18 were excluded.
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Available clinicopathological information of all the four cohorts

was shown in Table 1.

Unsupervised clustering analysis using
CRGs

Twelve cuproptosis-related genes (CRGs), including LIAS,

LIPT1, PDHB, GLS, PDHA1, ATP7B, CDKN2A, MTF1, FDX1,

SLC31A1, DLAT, and DLD, were defined according to previous

literature (Tsvetkov et al., 2022). Consensus clustering analysis

was conducted to depict different cuproptosis patterns in glioma

based on the expression level of CRGs using the R package

“ConsensusClusterPlus” with 100 iterations (Wilkerson and

Hayes, 2010). The cluster number was determined based on

the cumulative distribution function (CDF) curve of the

consensus index and the sample size. Through this process,

we tried to expand the sample size of each cluster and keep a

smoothly escalating CDF. To visualize the transcriptomic

distinctions among all the clusters, we conducted the

t-Distributed Stochastic Neighbor Embedding (tSNE) analysis

with the expression of CRGs. After exploration of the CRG

expression clusters, we then trained a naïve Bayes model

using the CRG expression and cluster labels in the TCGA

TABLE 1 Clinicopathological characteristics of adult primary glioma patients in TCGA, CCGA, REMBRANDT, and WCH cohort.

Characteristics TCGA (N = 662) CGGA (N = 226) REMBRANDT (N = 369) WCH (N = 77)

Age mean(range) 46 (18–89) 52 (22–87) 52 (22–87) 46 (19–77)

Gender

Female 282 (42.6%) 87 (38.5%) 118 (32.0%) 30 (39.0%)

Male 380 (57.4%) 139 (61.5%) 196 (53.1%) 47 (77.0%)

NA 0 0 55 (14.9%) 0

Histology

Astrocytoma 341 (51.5%) 82 (36.3%) 133 (36.0%) 22 (28.6%)

Oligodendroglioma 167 (25.2%) 60 (26.6%) 59 (16.0%) 21 (27.3%)

Glioblastoma 154 (23.3%) 84 (37.2%) 177 (48.0%) 34 (44.2%)

Grade

G2 214 (32.3%) 94 (41.6%) 88 (23.8%) 29 (37.7%)

G3 237 (35.8%) 48 (21.2%) 66 (17.9%) 14 (18.2%)

G4 154 (23.3%) 84 (37.2%) 177 (48.0%) 34 (44.2%)

NA 57 (8.6%) 0 38 (10.3%) 0

IDH status

Mutant 421 (63.6%) 115 (50.9%) NA 42 (54.5%)

WT 236 (35.6%) 110 (48.7%) NA 35 (45.5%)

NA 5 (0.8%) 1 (0.4%) NA 0

1p19q Codeletion

Codel 167 (25.2%) 54 (23.9%) 24 (6.5%) 19 (24.7%)

Non-codel 488 (73.7%) 169 (74.8%) 148 (40.1%) 43 (55.8%)

NA 7 (1.1%) 3 (1.3%) 197 (53.4%) 15 (19.5%)

TERT promoter status

Mutant 340 (51.4%) NA NA 30 (39.0%)

WT 156 (23.6%) NA NA 23 (29.9%)

NA 166 (25.1%) NA NA 24 (31.2%)

MGMT promoter status

Methylated 472 (71.3%) 97 (42.9%) NA 35 (45.5%)

Unmethylated 157 (23.7%) 115 (50.9%) NA 13 (16.9%)

NA 33 (5.0%) 14 (6.2%) NA 29 (37.7%)

ATRX status

Mutant 192 (29.0%) NA NA 22 (28.6%)

WT 459 (69.3%) NA NA 53 (68.8%)

NA 11 (1.7%) NA NA 2 (2.6%)

Abbreviation: TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital; IDH, isocitrate dehydrogenase; TERT, telomerase reverse

transcriptase; MGMT, O6-methylguanine-DNA, methyltransferase; ATRX, alpha-thalassemia x-linked intellectual disability syndrome; WT, wild type; NA, not available.
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dataset and subsequently stratified samples in the other three

cohorts.

Construction and validation of
cuproptosis-related gene risk signature

To investigate the correlation between CRG expression and

glioma prognosis, we constructed a CRGs risk signature

evaluation system. The TCGA dataset was first split into the

training and test sets at a ratio of 6:4, while those from the other

three datasets were held out as validation sets. In the training set,

the CRGs were screened using least absolute shrinkage and

selection operator (LASSO) Cox regression analysis. The genes

whose coefficient was not 0 at the lambdas minimum C-index in

100 random repetitions of LASSO Cox regression were identified

as critical CRGs in glioma, and the risk signature was constructed

based on the expression of these critical CRGs. The cuproptosis-

related genes risk signature (CRGRS) was calculated using the

following formula:

CRGsRisk Signature � ∑
i�1
(βi*Expi)

In this formula, β and Exp stand for the coefficients and

expression levels of each critical CRGs, respectively. All patients

were allocated to high-risk or low-risk groups according to the

optimal CRGRS cut-off value determined by ‘surv_cutpoint’ in

the R package “survminer” with group proportion ≥0.1.
Furthermore, we illustrated the receiver operating

characteristic (ROC) curve in validation sets of 1/2/3-years

survival and calculated the area under the ROC curve (AUC)

using the R package “timeROC”.

Somatic mutation and copy number
variation analysis

To analyze different patterns of somatic mutations and copy

number variations (CNVs) between consensus clusters and

CRGRS-related risk groups, we obtained somatic mutations

and CNVs data of patients in the TCGA cohort from the

cBioPortal database (https://www.cbioportal.org). The most

frequent gene mutations were visualized using the R package

“maftools”. The Genomic Identification of Significant Targets in

Cancer (GISTIC) score was used to evaluate the CNV levels.

Functional enrichment analysis and tumor
microenvironment immune landscape
evaluation

To elucidate the differences of enrichment between different

consensus clusters and CRGRS risk groups, over-representation

and gene set enrichment analysis (GSEA) was used to assess

differentially expressed genes (DEG) with Gene Ontology (GO)

enrichment with the R package “clusterProfiler”. DEGs between

groups were identified using R package ‘limma’ and were defined

as those with adjusted p-value < 0.05 and |log2FC| > 0.5. The R

package “GSVA” was used to transfer the logFPKM matrix to

pathway expression matrix, and “limma” was used to identify the

differentially expressed pathways among the clusters. The

website CIBERSORTx (https://cibersortx.stanford.edu/) was

used to calculate the absolute infiltration fraction of immune

cells in glioma. Moreover, we utilized the Estimation of Stromal

and Immune cells in Malignant Tumor tissues using Expression

data (ESTIMATE) to estimate the infiltration of immune and

stromal cells tumor microenvironment (Yoshihara et al., 2013).

For tumor purity, we used the results published by D. Aran et al.,

which included tumor purity computed by the ESTIMATE

algorithm and the consensus purity estimation (CPE)

approach (Aran et al., 2015). In silico analysis of T cell

exclusion, dysfunction in the TME, and prediction of ICI

response were conducted using the TIDE suite (tide.dfci.

harvard.edu) (Jiang et al., 2018).

Prognostic factor analysis and nomogram
construction

CRGRS and other potential prognostic factors, including the

tumor grade, age, radiotherapy, chemotherapy, gender, KPS, 1p/

19q codeletion, and IDH mutation, were included in the

univariate Cox regression analysis. Subsequently, the factors

confirmed as prognostic factors in univariate analysis (p <
0.05) were assessed in multivariate Cox regression analysis.

Those factors, confirmed potential independent prognostic

factors, were united to construct a nomogram with the R package

‘rms’. Finally, the calibration curves and receiver operating

characteristic (ROC) curves were used to evaluate the

efficiency of the nomogram for predicting the prognosis of

glioma patients.

Statistical Analysis

The bioinformatic analyses were completed in the R software

(version 3.6.1). For continuous variables, the Wilcoxon rank sum

test was used to determine the difference between two groups,

and Kruskal–Wallis one-way analysis of variance followed by

post hocWilcoxon tests was conducted for three or more groups.

For those categorical variables, the chi-square test was used to

determine the difference in proportions. The R package

‘survminer’ was used to perform Kaplan-Meier (KM) analysis.

The differences between KM curves were determined using the

log-rank test. Cox regression analysis was conducted using the

coxph function in R package “survival” and LASSO-Cox
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FIGURE 1
Consensus clustering of gliomas based on CRG expression. (A)CRG expression tSNE of the consensus clusters. (B) Kaplan-Meier Curve of the
consensus clusters (p < 0.0001). (C)Heatmap of the expression level of 12 CRGs in the consensus clusters. (D) The expression level of FDX1, SLC31A1,
PDHA1, and ATP7B between the consensus clusters.
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regression was performed using R package ‘glmnet’. To ensure

the robustness of correlation analysis, we removed the outliers

using iterative Grubbs test before fitting linear regression to

scatter plots.

Ethical approval and consent to
participate

Tumor samples and clinical data collection and use were

performed in strict accordance with ethics regulations and

approved by the institutional review board of West China

Hospital (No. 2018.569) based on local ethics regulations and

the 1964 Helsinki declaration and its later amendments. The

patients signed written consent for tumor tissue collection and

processing.

Results

Consensus clustering analysis of CRG
expression discovered three distinct
glioma subgroups

To understand the expression patterns CRGs in gliomas,

we conducted an unsupervised consensus clustering analysis

of the TCGA glioma samples with the expression of the twelve

CRGs. By evaluating the CDF and cluster size according to the

principles described in Materials and Methods, we could

classify them into four consensus clusters. However, the

survival analysis demonstrated that two clusters

(cluster1 and 2) showed highly similar CRG expression

patterns and patient outcomes (Supplementary Figure S1).

In the meantime, these two clusters were essential subsets

from cluster 1 if the dataset was divided into three consensus

clusters. Therefore, we merged these two clusters, eventually

classifying the gliomas into three consensus clusters and

verifying their distinction in CRG expression patterns with

tSNE analysis (Figure 1A).

Survival analysis demonstrated that the survival outcome

of cluster 3 is significantly poorer than other clusters

(Figure 1B), and cluster 1 had the longest overall survival

(OS) with a 5-years survival ratio of over 60%. We next

stratified gliomas in the other three cohorts with a naïve

Bayes model trained using the TCGA dataset and found

that cluster1 remained the gliomas with the best prognosis

while the other two clusters had significantly worse survival

outcomes (Supplementary Figure S2A). The expression level

of 12 CRGs in the three clusters was depicted with a heatmap

(Figure 1C). The differences among the three clusters

suggested that FDX1 and SLC31A1 were associated with

the more aggressive cluster3 (Figure 1D). PDHA1 and

ATP7B were higher in less aggressive cluster1. The

differences in the expression level of the other eight CRGs

were given in Supplementary Figure S2B. Furthermore,

representative immunohistochemical (IHC) staining for

SLC31A1 and ATP7B in high- and low-grade glioma from

the Human Protein Atlas (Pontén et al., 2008) (https://www.

proteinatlas.org/) was utilized to validate the results

(Supplementary Figures S2C, S2D). The results of IHC

revealed that the expression level of SLC31A1 in high-grade

glioma was significantly higher than in low-grade glioma, and

ATP7B was lower in high-grade glioma, which was in line with

the results from sequencing.

Analyses of the clinical and pathological features among the

three clusters revealed several noticeable trends. The patients

with cluster 1 tumors, which presented with the best prognosis,

had the smallest age at tumor diagnosis (Figure 2A). The sex

ratios showed no significant difference between the three clusters

(Figure 2B). Besides, the WHO grade 4 gliomas accounted for

44.1% of all tumors in cluster 3, which indicated cluster 3 gliomas

had the highest WHO grade among all the three clusters, and this

result was consistent with the results of survival analysis

(Figure 2C). Isocitrate dehydrogenase (IDH) mutant, which

emerged as an essential positive prognostic factor for gliomas,

was detected in most (87.0%) patients of cluster 1 (Figure 2D).

Moreover, the incidence of 1p/19q codeletion, recognized as

“golden standard” for diagnosis of oligodendroglioma, was

apparently more prevalent in cluster 1 compared to other

clusters. Both alpha-thalassemia x-linked intellectual disability

syndrome (ATRX) gene mutation and MGMT promoter

methylation occurred less frequently in cluster 3 than in other

clusters (Figures 2F,G). The highest incidence of telomerase

reverse transcriptase (TERT) promoter mutation, a vital factor

for both diagnosis and prognosis, was also observed in cluster 3

(Figure 2H).

The GSVA analysis of the three clusters found distinctive

pathway alternations. A number of pathways, including

calcium signaling, pyruvate metabolism, neuroactive ligand

receptor interaction, and GnRH signaling pathway, were

significantly upregulated in cluster 1 compared to cluster

2 and 3. On the contrary, other pathways, including

antigen processing and presentation, cytosolic DNA sensing

pathway, and primary immunodeficiency, were more over-

activated in cluster 2 and 3 than in cluster 1 (Figure 3A).

Additionally, the REACTOME pathway gene sets were also

utilized in enrichment analysis to explore the different

pathway patterns of the three clusters (Figure 3B). The

cytokine receptor interaction (normalized enrichment score

(NES) = 2.908, adjusted p-value = 0.008), and graft versus host

(NES = 3.128, adjusted p-value = 0.008) were ranked in the top

five gene sets of the KEGG in the comparison between cluster

1 and 2 using GSEA (Figure 3C). Simultaneously, other top

5 enriched gene sets enriched in the DEGs between cluster

1 and 2, or cluster 1 and 3 in KEGG and REACTOME datasets

were illustrated (Figures 3C–F).
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FIGURE 2
Clinicopathological features of the consensus clusters. Differences between consensus clusters in (A) age at diagnosis, (B) gender, (C) WHO
grade, (D) IDH status, (E)1p19q codeletion, (F) ATRX status, (G)MGMT promoter methylation, and (H) TERT promoter mutation. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001.
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FIGURE 3
Functional analysis of the transcriptome of the consensus clusters. (A) Top 20 differentially expressed KEGG gene sets. (B) Top 20 differentially
expressed REACTOME gene sets. (C) Top five pathways with the highest normalized enrichment score in the KEGG gene sets between cluster1 and
cluster2, (D) between cluster1 and cluster3. (E) Top five pathwayswith the highest NES in the REACTOME gene sets between cluster1 and cluster2, (F)
between cluster1 and cluster 3.
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Gene mutations and copy number
variations in the three CRG clusters

Analyses of the alternation rate of frequent mutations in

glioma, including IDH1, TP53, ATRX, CIC, EGFR, PTEN,

PIK3CA, and NF1, depicted the various patterns of genetic

alternations among the three clusters (Figure 4A).

Additionally, the 12 showed very low alternation rates, which

rule out bias during expression analysis caused by gene

alternations (Figure 4A). Besides, analysis of the top

20 frequently mutated genes in the three clusters revealed

distinct mutational patterns between the three clusters,

especially for cluster3, which was characterized by a less

frequent mutation in the IDH genes but more frequent EGFR

mutations (Figures 4B–D).

The analysis of copy number variations (CNVs) provided a

differential karyotype landscape of each cluster (Figure 4E). The

gain of chromosome 7 and the loss of chromosome 10 (+7/−10),

FIGURE 4
Genetic mutations and copy number variations of the three clusters. (A) Gene alternations of 12 CRGs and top 8 frequently mutated genes. (B)
Top 20 mutated genes in cluster1, (C) in cluster 2, (D) in cluster 3. (E) Heatmap of copy number variations of the three clusters.
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FIGURE 5
Differences in immune features of tumor microenvironment between the clusters. (A) Boxplot of the estimated fraction of 22 immune cells in
tumors. (B) Stromal, immune, and ESTIMATE scores of the consensus clusters. (C) Tumor purity is calculated by the ESTIMATE and CPE algorithms.
(D) T cell dysfunction and exclusion score of the consensus clusters. (E) Percentage of predicted responder to immune checkpoint inhibitor therapy
in each consensus cluster. (F) The expression level of 33 immunotherapy-related genes in each consensus cluster. *p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001, post hoc Wilcoxon test results were shown if p < 0.05 in Kruskal–Wallis test.
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FIGURE 6
Expression signature of cuproptosis-related genes and its relationship with prognosis. (A) Average of coefficients of 7 critical CRGs in the LASSO
Cox regression at each lambda value. (B) The relationship between the consensus clusters and two CRGRS risk groups. (C) K-M curve of the TCGA
test set, cut off = 0.19. (D) K-M curve of the CGGA cohort, cut off = 0.39. (E) K-M curve of the REMBRANDT cohort, cut off = -9.64. (F) K-M curve of
theWCH cohort, cut off = -0.056. (G)Univariate and (H)Multivariate Cox regression analysis of potential prognostic factors in overall survival of
glioma.
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a novel diagnostic marker of glioma associated with poor

prognosis, were observed in most patients in cluster 3. On the

contrary, the incidence of +7/−10 was remarkably lower in the

subgroup with the best survival outcome, cluster 1.

Differential immune characteristics of
tumor microenvironment between the
three CRG clusters

Based on the three consensus clusters, we further

conducted immune analyses to evaluate the relationships

between cuproptosis and the immune microenvironment in

glioma. The CIBERSORTx algorithm was utilized to predict

the infiltration fraction of 22 immune cells in TME. In the

estimation of CIBERSORTx, several immune cells, including

CD8+ T cells, neutrophils, macrophages (M0, M1, and M2),

and resting NK cells, were poorly recruited in cluster 1,

whereas plasma cells were enriched in cluster 1

(Figure 5A). Additionally, the results of the ESTIMATE

indicated that the stromal score, immune score, and

ESTIMATE score were significantly lower in cluster

1 compared to other clusters (Figure 5B). Furthermore, the

tumor purity decreased from cluster 1 to 3, opposite to

immune scores (Figure 5C). These findings suggested that a

higher tumor purity and lower immune scores may correlate

positively with lower tumor aggressiveness.

Furthermore, we utilized the TIDE suite to explore the

T cell dysfunction and exclusion scores (Figure 5D). Analysis

of response to ICIs revealed that cluster 2 and 3 might show

higher predicted response rates. Finally, to investigate the

expression levels of multiple crucial genes in TME,

differences in the expression of immune-related genes

were analyzed between the three clusters. We found that

several immunotherapy-related genes, including CD274

(PD-L1), CD276 (B7-H3), CD279 (PD-1), and CTLA4,

were highly expressed in cluster 3 compared to other

clusters (Figure 5F).

Construction and validation of the
cuproptosis-related genes risk signature
and correlation with clinicopathological
features

To identify the genes for CRG risk signature (CRGRS)

construction, we utilized the LASSO-Cox regression to filter

the 12 CRGs with the training set data. Eventually, eight

CRGs, MTF1, PDHB, FDX1, SLC31A1, PDHA1, ATP7B,

LIAS, and DLD, were determined essential for constructing

risk signature (Figure 6A). The formula for calculating the

CRGRS was as follows:

0.152*SLC31A1 + 0.092*FDX1 + 0.024*PDHA1 + 0.013*DLD

− 0.016*PDHB − 0.093*MTF1 − 0.147*LIAS − 1.198*ATP7B

Next, we used the “surv_cutpoint” algorithm to find the

optimal CRGRS cut-off and allocated the patients from each

dataset into CRGRS low and high-risk subgroups. In the

CRGRS risk grouping, most gliomas in cluster 1 were

allocated to CRGRS low-risk group. Most of those in

cluster 3 were allocated to the high-risk group (Figure 6B).

The Kaplan-Meier survival curves confirmed that the patients

with gliomas in the high-risk group had significantly poorer

overall survival than the low-risk group in all four validation

cohorts (Figures 6C–F).

To further evaluate the significance of the CRGRS in the

clinical context, we first assessed its prognostic value using

univariate followed by multivariate Cox analysis. The

univariate Cox regression demonstrated that tumor grade,

patient age, radiotherapy, chemotherapy, 1p19q codeletion,

IDH mutation, and CRGRS emerged as significant univariate

prognostic factors (Figure 6G). Further multivariate analysis

proved that CRGRS was an independent prognostic factor (p =

0.024, HR: 1.42) after counterweighing the effects of other

factors (Figure 6H). To demonstrate the added value of

constructing the CRGRS, we also performed multivariate

Cox regression analysis on each CRG with the prognostic

clinicopathological factors, and found that none of the

individual CRG were independent prognostic factor for

glioma patients (Supplementary Table S1).

In addition to the prognostic value, we also investigated

the clinical implications of CRGRS by studying its association

with other clinicopathological features. Between male and

female groups, CRGRS was of no significant difference

(Figure 7A). Furthermore, higher grade, IDH-wild type,

non-1p19q codeletion, ATRX-wild type, MGMT

unmethylated, TERT mutant, and glioblastoma were

correlated with a higher CRGRS (Figures 7B–H). The

heatmap combining CRGRS, clinicopathological features,

and eight essential CRGs was used to illustrate their

relationships (Figure 7I).

Prediction of patient outcome with a
CRGRS-based nomogram

We first conducted ROC analyses to evaluate the

performance of CRGRS alone in predicting patient survival

at 1, 2, and 3 years. In the TCGA validation set, the AUCs of

CRGRS were 0.787, 0.868, and 0.842 at 1, 2, and 3 years

(Figure 8A), and similar performance was achieved in the

other three validation cohorts (Figures 8B–D). We next

integrate the CRGRS with other potential independent

prognostic factors (p < 0.1) in the multivariate Cox
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FIGURE 7
Relationship between clinicopathological features and theCRGRS. The differences in CRGRSwith respect to (A) gender, (B)WHOgrade, (C) IDH
status, (D) 1p19q codeletion, (E) ATRX status, (F) MGMT promoter methylation, (G) TERT promoter mutation, (H) Histology diagnosis. (I) Heatmap
sorted by CRGRS, elucidated clinicopathological features and expression of 7 critical CRGs in the TCGA cohort. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001.
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regression analysis to construct a nomogram for personalized

survival prediction based on the comprehensive clinical

information for each patient. Finally, five factors, including

IDH status, radiotherapy, grade, 1p19q codeletion, and

CRGRS, were involved in nomogram construction (Figures

8E,G). The corrected C-index of the integrated nomogram was

0.818 for the TCGA cohort and 0.763 for the CGGA cohort.

Moreover, the 1-, 2-, and 3-years calibration curves for the

nomogram endorsed the accuracy of the survival time

prediction (Figures 8F,H).

FIGURE 8
Prognostic value of CRGRS and construction of a CRGRS-based nomogram. ROC curves andmatched AUC of 1-, 2-, and 3-years survival in (A)
TCGA validation set, (B) CGGA cohort, (C) REMBRANDT cohort, and (D) WCH cohort. (E) Nomogram of 1-, 2-, 3-years survival of glioma patients
based on (E) TCGA cohort, (G) CGGA cohort. Calibration plots of the nomogram based on (F) TCGA cohort and (H) CGGA cohort.
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FIGURE 9
Differences in immune features of tumor microenvironment between two CRGRS risk groups. (A) Boxplot of the estimated fraction of
22 immune cells in tumors. (B) Stromal, immune, and ESTIMATE scores of the two risk groups. (C) Tumor purity of the two risk groups based on the
ESTIMATE and CPE algorithms. (D) Analyses of correlations of CRGRS with the stromal, immune, ESTIMATE score, and tumor purity. (E) T cell
dysfunction and exclusion score of two risk groups. (F) Percentage of predicted responders to immune checkpoint inhibitors therapy in each
risk group. (G) The expression level of 33 immunotherapy-related genes in two risk groups. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Analyses of functional enrichment,
genetic alternations, and immune
characteristics of tumor
microenvironment based on CRGRS risk
groups

Based on the CRGRS, we conduct analyses of functional

enrichment, gene mutations, CNVs, and immune characteristics

to explore the differences between low and high-risk groups.

GSEA of DEGs between the two risk groups discovered that cell

cycle and cytokine receptor interaction were among the list of top

5 enriched KEGG gene sets (Supplementary Figure S3A), and

hemostasis and innate/adaptive immune system were ranked

within the top 5 of REACTOME gene sets (Supplementary Figure

S3B). The GSVA analysis identified multiple gene sets

differentially expressed between the risk groups, such as DNA

replication, glutathione metabolism, transports of nucleotide

sugars, and meiotic recombination. (Supplementary Figures

3C–F). Moreover, the analysis of genetic alterations found

very few alternations in the eight critical CRGs involved in

CRGRS construction (Supplementary Figure S4A). The top

20 mutated genes in the high-risk group included TP53,

PTEN, EGFR, and NF1 (Supplementary Figure S4C), while

those of the low-risk group were apparently different

(Supplementary Figure S4B). Results of the CNVs analysis

found an enormously higher incidence of +7/-

10 chromosomes in the high-risk group (Supplementary

Figure S4D).

CIBERSORTx estimation of the immune cell fractions

indicated different patterns of immune cell infiltration

between the two risk groups. The predicted fractions of

macrophages (M0, M1, M2), CD8+ T cells, regulatory T cells

(Tregs), resting NK cells, and neutrophils were significantly lower

in the low-risk group compared to the high-risk group

(Figure 9A). On the contrary, naïve B cells, plasma cells,

activated NK cells, and monocytes were more abundant in the

low-risk group (Figure 9A). Analyses of the immune scores

revealed that the low-risk group had a remarkably lower

stromal score, immune score, and ESTIMATE score

(Figure 9B), whereas the tumor purity of the low-risk group

was significantly higher than that of the high-risk group

(Figure 9C). The correlation analysis also proved that CRGRS

positively correlated with the stromal, immune, and ESTIMATE

scores but negatively correlated with the tumor purity

(Figure 9D). The estimated T cell dysfunction and exclusion

scores were higher in the high-risk group (Figure 9E). Prediction

of immunotherapy response using TIDE indicated that patients

with high-risk gliomas were more likely to benefit from ICIs

(Figure 9F). Most of the tumor immunity-related genes,

including PD-L1 (CD274), PD-1 (CD279), CTLA4, and B7H3

(CD276), were at a higher expression level in the high-risk

group. Most of the findings about the immune characteristics

of the tumor microenvironment could be validated in the CGGA,

REMBRANDT, and our WCH cohort (Supplementary

Figure S5).

Discussion

By estimation, there are 308 thousand new cases of Central

Nervous System (CNS) malignant tumors worldwide every year

(Sung et al., 2021), of which 80% are gliomas (Ostrom et al.,

2021). Despite persistent research efforts worldwide, the

treatment outcome of gliomas, especially glioblastomas,

remains unfavorable. Cancer immunotherapy, targeting

enhancing natural defenses to attack malignant cells, has been

confirmed to improve outcomes in multiple cancers (Eggermont

et al., 2018; Gandhi et al., 2018; Choueiri et al., 2021; Cortes et al.,

2022). Nevertheless, almost all immunotherapy attempts on

glioblastoma failed to improve overall survival (Weller et al.,

2017; Wakabayashi et al., 2018; Reardon et al., 2020; Lim et al.,

2022; Omuro et al., 2022). The immunologically quiescent

environment of CNS resulting from the blood-brain barrier

(BBB) could be a potential reason for the failures of

immunotherapy (Jackson et al., 2019). However, a newly-

discovered unique lymphatic pathway paralleling the dural

venous sinuses may provide a channel for the antigen-

presenting cells to egress from the brain (Louveau et al.,

2015), prime B and T lymphocytes, and then evoke robust

immune responses (Lim et al., 2018), which could explain

immune activities in brain abscesses and multiple sclerosis

(Waksman and Adams, 1955; Canessa et al., 1992). These

refreshed insights into the distinct immunological pathways in

CNS disease suggest that there is still an abundance of

opportunities and challenges for immunotherapy application

in gliomas.

Copper has been proved to be involved in cell proliferation

and death pathways (Ge et al., 2022). As an essential cofactor for

multiple enzymes, copper mediates several cell functions,

including antioxidant defense, synthesis of hormones, and

respiration of mitochondria (Solomon et al., 1996; Que et al.,

2008). A recent study characterized the cuproptosis pathway,

which defined a copper-dependent RCDmediated by the binding

of copper to lipoylated components of the Krebs cycle (Tsvetkov

et al., 2022). This novel form of RCDs became a potential target

for glioma treatment to overturn the failures of multiple novel

therapies caused by apoptosis resistance (Gong et al., 2019). To

understand if cuproptosis is involved in the pathophysiology of

gliomas and influence the immune characteristics of the glioma

microenvironment, we investigated the expression pattern of

cuproptosis-related genes (CRG) in gliomas and associated the

CRG expression signature with the clinical, molecular, and

immunological landscape of gliomas using publicly available

and in-house dataset.

In our present study, we first cluster the glioma patients into

three subgroups based on the different expression patterns of
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twelve cuproptosis-related genes. The patterns of

clinicopathological characteristics and survival outcomes are

diverse in these clusters. Several critical prognostic factors of

glioma, including IDH mutation, 1p/19q codeletion, and TERT

promoter mutation (Eckel-Passow et al., 2015), were found to be

tightly correlated with the expression pattern of CRGs and the

CRGRS. Of note, isocitrate dehydrogenase (IDH) was an

essential enzyme of the tricarboxylic acid (TCA) cycle, whose

mutations lead to aberrant tricarboxylic acid cycle and producing

oncometabolite D-2-Hydroxyglutarate (D-2HG) (Dang et al.,

2009; Bleeker et al., 2010). Since the cuproptosis mechanism is

known to interact with the TCA, it was no surprise to us that the

CRGRS was closely associated with the IDHmutation (Que et al.,

2008; Tsvetkov et al., 2022). Besides, the functional gene set

analysis results suggested that different expression patterns of

CRGs were involved in regulating the citrate cycle, confirming

the relationship between cuproptosis and the TCA cycle. The

incidence of different gene alterations differs widely among

clusters. For example, the epidermal growth factor receptor

(EGFR), which has been implicated in glioma development

(Eskilsson et al., 2018), is frequently amplified, mutated, and

overexpressed in malignant gliomas, especially glioblastoma

(Brennan et al., 2013). Multiple EGFR-targeted therapies have

succeeded in NSCLC (Mok et al., 2009; Ramalingam et al., 2020).

However, the EGFR inhibitors failed to improve overall survival

in glioblastoma patients (Chinot et al., 2014; Gilbert et al., 2014;

Weller et al., 2017). The heterogeneity of EGFRs in glioma might

be an essential reason for the failure of anti-EGFR therapy in

glioma. Gene alternation analysis of different clusters shows that

the incidence of EGFR alternations variates largely. The cluster

with the best prognosis hardly harbors EGFR alternations.

Nevertheless, the rate surges to 23% in the most aggressive

cluster. For further validation, this incidence of CRGRS high-

risk group was 26%, remarkably higher than the low-risk group’s

4%. These results indicated that cuproptosis was tightly related to

EGFR status. Although the relationship between cuproptosis and

EGFR remained unclear, more studies in this field might provide

a novel direction for EGFR inhibitors’ application in glioma and

overturn previous failures.

The cooperation of copper importer SLC31A1 (CTR1) and

the copper exporter ATP7A and ATP7B is essential for

maintaining the intracellular copper concentration

(Lutsenko, 2010). After overexpressing the copper importer

SLC31A1, cells’ sensitivity to copper concentration surged

dramatically (Tsvetkov et al., 2022). Deleting the copper

exporter ATP7B would lead to intracellular copper

accumulation and cell death (Lutsenko, 2008; Muchenditsi

et al., 2021). Our result showed that the high expression level

of SLC31A1 and low expression of ATP7B were found in more

aggressive gliomas, which indicate high influx and low efflux

of copper, resulting in copper retention in these tumors.

FDX1 also reduces Cu2+ to Cu+ and contributes to

cuproptosis sensitivity by enhancing lipoylation of TCA

carbon entry regulators, including DLAT (Tsvetkov et al.,

2019; Tsvetkov et al., 2022), was also expressed at a higher

level in the high CRGRS group. Together, these results suggest

higher cuproptosis potential in the high CRGRS gliomas.

However, the conclusions on the phenotype of cuproptosis

should be interpreted cautiously, considering the complex

interactions between the altered metabolism program in

gliomas. For instance, malignant gliomas are known to

produce abundant glutathione (GSH), which could block

cuproptosis by chelating copper (Rocha et al., 2014;

Tsvetkov et al., 2022). Nevertheless, as suggested by our

results, the mechanism of cuproptosis appears to be an

attractive therapeutic target to exploit for malignant gliomas.

The immune analysis in the present study evaluated the

relationship between cuproptosis and the tumor immune

microenvironment in glioma. The CIBERSORTx analysis

estimated a more abundant infiltration of multiple immune

cells in the high-risk group. Notably, M2 macrophages, which

are recognized for a critical role in immunosuppressing and

tumor promotion (Noy and Pollard, 2014), are enriched in the

glioma of the high-risk group. Previous studies demonstrated

that malignant gliomas were significantly more capable of

recruiting blood-derived TAMs than low-grade glioma, but

the number of microglial-related TAMs shows no significance

between the two glioma subtypes (Müller et al., 2017). TAMs play

a crucial role in secreting chemokines to recruit Treg cells,

producing cytokines to suppress functions of T cells, and

upregulating immunosuppressive surface proteins (Curiel

et al., 2004; Colombo and Piconese, 2007; Yang and Zhang,

2017). The results of these studies corroborate the abundant

infiltration of Treg cells in the high-risk group found in the

present study.

In addition to the cellular crosstalk, TAMs often express

PD-L1 to inhibit phagocytosis and tumor immunity (Gordon

et al., 2017), which was a consensual target for ICIs to enhance

anti-tumor immunity (Cha et al., 2019). The overexpression of

CD274 (encoding PD-L1) was also confirmed in the high-risk

group. These results demonstrate the potential of CRGRS to

predict the immune characteristics of the tumor

microenvironment in glioma. Those gliomas in CRGRS

high-risk group would harbor more immune cell

infiltration, express more immunotherapy targets (including

PD-1, PD-L1, CTLA4, and B7H3), and therefore could

potentially present a better response to immunotherapy.

Glioma is often considered an immunologically cold tumor,

which is a fundamental reason for the failures of

immunotherapy. Only lesser than 3% of cells express PD-

L1 in glioblastoma (Nduom et al., 2016). Predicting immune

characteristics with CRGRS would help when choosing an

optimal immunotherapy strategy.

Our study comprehensively explored the relationship of

cuproptosis-related genes with the clinicopathological

features, prognosis, and immune characteristics of glioma.
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However, there are still several limitations to our study. First,

due to the usage of four independent datasets, the sequencing

protocols and data preprocessing procedure varied for each

dataset. Second, the data from the REMBRANDT cohort lacks

some essential markers, such as IDH mutation. Moreover,

although we thoroughly validated our results using multiple

independent validation datasets and an in-house dataset, the

findings of the present study and the mechanism for the

associations still require experimental validation and

exploration. Finally, the role of cuproptosis in glioma

represents a promising research target and needs to be

further elucidated by future studies.

Conclusion

In conclusion, based on the comprehensive analyses of four

datasets, we demonstrated that the expression of cuproptosis-

related genes was tightly correlated with clinicopathological

features, overall survival, and tumor immune

microenvironment of glioma. The novel cuproptosis-related

genes risk signature achieved favorable accuracy in predicting

prognosis in glioma patients. Furthermore, gliomas with high

CRGRS risk potentially harbored more abundant immune cell

infiltration and expressed immunotherapy targets at a higher

level. Hence, the CRGRS may be utilized to guide the application

of immunotherapy in glioma.
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