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DNA is a hereditary material that plays an essential role in micro-organisms and

almost all other organisms. Meanwhile, proteins are a vital composition and

principal undertaker of microbe movement. Therefore, studying the bindings

between DNA and proteins is of high significance from the micro-biological

point of view. In addition, the binding affinity prediction is beneficial for the

study of drug design. However, existing experimental methods to identifying

DNA-protein bindings are extremely expensive and time consuming. To solve

this problem, many deep learning methods (including graph neural networks)

have been developed to predict DNA-protein interactions. Our work possesses

the same motivation and we put the latest Neural Bellman-Ford neural

networks (NBFnets) into use to build pair representations of DNA and

protein to predict the existence of DNA-protein binding (DPB). NBFnet is a

graph neural network model that uses the Bellman-Ford algorithms to get pair

representations and has been proven to have a state-of-the-art performance

when used to solve the link prediction problem. After building the pair

representations, we designed a feed-forward neural network structure and

got a 2-D vector output as a predicted value of positive or negative samples. We

conducted our experiments on 100 datasets from ENCODE datasets. Our

experiments indicate that the performance of DPB-NBFnet is competitive

when compared with the baseline models. We have also executed

parameter tuning with different architectures to explore the structure of our

framework.
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1 Introduction

DNA is a hereditary material that plays an essential role in human metabolism and

almost all organisms. Meanwhile, proteins are a vital composition and principal

undertaker of microbe movement. Therefore, studying the interactions between DNA

and proteins is highly significant from the biological point of view because the influence of

DNA-binding proteins on a large number of biological processes is conclusive, especially

in gene transcription and regulation. However, traditional experimental methods to detect
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DNA-protein binding (DPB), such as CHIP-seq or new methods

such as ProNA 2020 (Qiu et al., 2020), are extremely expensive

and time consuming. To cut the cost, computational biologists

have used the deep learning architecture to predict the binary

label of sequence-based data, which indicates the relationship of

sequences. These learning tasks often have large amount of

training examples, which allow scientists to adapt them to

deep learning structures, especially graph neural networks

(GNNs), without experiencing the over-fitting problem.

Many deep learning architectures have been used to predict

DNA-protein binding (Dong et al., 2022). For example,

DeepRAM (Trabelsi et al., 2019) first obtained the sequence

representation by word2vec embedding, and then used

convolutional layers and recurrent layers to process the data.

DeepBind built a Long-Short-Term-Memory (LTSM) and

Convolutional Neural Network (CNN) structure to model the

sequence data (Alipanahi et al., 2015). Hierarchical Attention

Networks (HANs) are another kind of architecture that is based

on the natural language processing method for document

classification (Yu et al., 2019). Trabelsi et al. (2019)

demonstrated a comprehensive evaluation of deep learning

architectures, including CNN (Zeiler and Fergus, 2014) and

Recurrent Neural Networks (RNNs; Medsker and Jain, 2001),

to predict DNA/RNA binding specificities.

Computational biologists have recently built GNNs to

predict DNA- or RNA-protein interactions. For example, Guo

et al. (2021) developed a method called DNA-GCN, which

utilized a graph CNN architecture to first build a large graph

containing the neighborhood information and then turn this

problem into a node classification task. In another example, Shen

et al. (2021) developed a method called NPI-GNN (which is

composed of GraphSAGE, top-k pooling, and global pooling

layers) to predict non-coding RNA (ncRNA)-protein

interactions. Other work related with predicting molecular

interactions has also built a knowledge graph and then

utilized a GNN model (Song et al., 2022; Zeng et al., 2022).

Despite these studies, there is still a gap in the research of

predicting DNA-protein binding with GNNs. In general,

predicting DNA-protein binding could be regarded as a link

prediction problem on a graph. In this graph, we regard different

DNA and proteins as vertices with different attributes. After

building the graph, we transfer predicting DNA and protein

binding into predicting the edge existence of different vertices,

which is a link prediction problem in a homogeneous graph.

We now wonder if we could combine the advanced

methodology for link prediction problem with our real

biological data. In our work, we propose a novel GNN

method, which is called DPB-NBFnet and is based on Neural

Bellman-Ford neural networks (NBFnets) (Zhu et al., 2021). The

NBFnet is a novel GNN architecture that was developed by Zhu

for the link prediction problem, which unified the link prediction

methods in both heterogeneous and homogeneous graphs.

NBFnet includes three neural functions—IND (INDICATOR),

MES (MESSAGE), and AGG (AGGREGATE) functions—and it

has been proved to have a state-of-the-art performance when

compared to other methods for the link prediction problem,

including GraIL (Teru et al., 2020). We evaluated our model on

the 100 chosen datasets from ENCODE. Compared with other

GNN models for the link prediction problem, the final accuracy

and time consumption of our DNA-NBFnet framework for

prediction of DNA-protein binding have been shown to be

superior. We believe that our work could make some

contributions to the study of DNA-protein binding and will

also inspire other computational biological models.

2 Related work

2.1 Homogeneous and heterogeneous
graphs

Given the real sequence data of DNA and protein, we first

obtain a graph in which each vertex represents a DNA or a

protein, and each edge represents an interaction or binding

between DNAs and proteins. In this way, we could keep the

topological structure of initial data (Cai et al., 2020b). Generally,

a graph (West et al., 2001) is denoted as an ordered triplet

(V, E,R). This triplet is composed of a nonempty set V
representing vertices, a set E representing edges, and R
representing the relation types. Moreover, we use N (u) to

denote the set of neighborhood nodes of node u, E(u) to

denote the set of edges whose endpoint is u. If there are

various kinds of nodes or edges, then this graph is categorized

as a heterogeneous graph, which is represented as (V, E,R),
otherwise it is categorized a homogeneous graph (V, E). In our

study, we build a homogeneous graph where we initialize DNA

and protein as the same kind of vertices but with different labels

in actual node representations. After building our graph, we turn

predicting the DNA-protein binding into a link prediction

problem between these nodes. Our goal is to predict the edge

existence between different vertices of this graph.

2.2 Different methods for link prediction
problems

There are currently three methods to solve this link

prediction problem in our graph, which are path-based

methods, embedding methods, and GNNs (Liu et al., 2022a;

Liu et al., 2022b; Peng et al., 2022). Among these methods, GNNs

are a growing family of methods and have shown the most

advanced performance. GNN models are a set of representation

learning functions. The highlight of GNNs is that they have the

ability to encode topological structures of graphs (Cai et al.,

2020a; Wu et al., 2020a; Fu et al., 2020). There are several kinds of

GNNs for DNA-protein link prediction problem. DNA Graph
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Convolution Networks (DNA-GCN) encapsulate each node’s

hidden representation by aggregating the feature information

from its neighbors (Guo et al., 2021). DNA Graph Attention

Networks (DNA-GANs) adopt attention mechanism to

aggregating feature information and concatenate the outputs

of multiple models (Xiao et al., 2017). However, these

methods require the information of global graph and can only

be used in transductive learning. Variational Graph Auto-

encoders (VGAE) learns a graph embedding to get node

embeddings for all nodes, and then aggregates the embeddings

of the source and target nodes as their link representation (Kipf

and Welling, 2016). These frameworks encode node

representations by different GNN models and decode edges as

functions over node pairs. SEAL is another mainstream

framework, which has an end-to-end structure that encodes

the enclosing subgraphs of each node explicitly. However,

these structures require a subgraph to be created for each

node, resulting in a high cost for large graphs, especially in

DNA-protein binding graphs. In comparison with these

methods, our DNA-NBFnet encapsulates the paths between

two vertices at a relatively low cost.

2.3 Path formulation for DNA-protein
binding prediction

The goal of link prediction is to predict the existence of a

relationship r between two vertices u and v. For DNA-protein

binding, the vertices could be proteins or DNA and the

relationship is their binding. To capture the paths between

two nodes, we regard it as a message passing process, and its

power for link prediction has been proven by previous work. For

example, PageCon considers different edge features without node

difference in the graph and then passes relational messages

among edges iteratively to aggregate neighborhood

information (Wang et al., 2021). For a given entity pair u and

v, PageCon models neighborhood topology including relational

context and relational paths, and combines them for link

prediction. In another example, MPNN learns representations

on graph data by a message passing algorithm and executes an

aggregation procedure to compute a function of their entire input

graph (Gilmer et al., 2020). Based on these inspirations, our

method combines the message passing heuristics and Bellman-

Ford algorithm to efficiently solve the link prediction problem.

In our case, we only consider one kind of relation (i.e., if a

DNA-protein binding exists). This requires a pair representation

h (u, v) to be learned. Inspired by the message passing methods,

this algorithm should pass relational messages among edges

iteratively and finally aggregate neighborhood information.

This pair representation should capture the local topological

structure between the nodes u and v. Traditional methods, such

as the Katz index (Katz, 1953) and PageRank (Page et al., 1999),

encode such structure by counting various kinds of random

walks from u to v. Based on this intuition, the pair representation

h (u, v) is formulated as a generalized sum of path representations

between these two nodes, with ⊕ being a summation calculator.

Each path representation is formulated as a generalized product

of edge representations in the path between them with the

multiplication operator ⊗.

h u, v( ) � h P1( ) ⊕ h P2( ) ⊕/⊕ h P|Puv |( ) ≔ ⊕Puv

i�1
h Pi( ) (1)

h Pi � e1, e2, . . . , e|Pi |( )( ) � w e1( ) ⊗ w e2( ) ⊗/⊗ w e|Pi |( ) ≔ ⊗|Pi |

j�1
w ej( )

(2)

where Puv represents the set of paths from u to v, h(Pi), (i �
1, 2, . . . , P|Puv|) represents the numbered path representation

from u to v, and each path Pi is composed of several edges

e1, e2, . . . , e|Pi | w (ej) denotes the representation of j-th edge ej on

the path h (Pi). In our formulation, there are two operators, a

multiplication operator ⊗ and a summation operator ⊕. We need

⊕ to be commutative, but ⊗ not because it is defined to compute

the exact order of the product.

The path formulation could be interpreted explicitly as

follows. We first search all possible paths from u to v. We

then compute the path representations by multiplication

(Equation 2). Finally, we aggregate the path representations as

the final pair representation (Equation 1). This path formulation

is able to model several traditional link prediction methods,

including PageRank and Katz index, which has been proven

(Zhu et al., 2021).

2.4 Generalized Bellman-Ford algorithm

As shown in Equations 1, 2, the number of paths increases

exponentially as the length of the path grows. Therefore, the

computational cost grows drastically. Here, a flexible solution is

provided using the generalized Bellman-Ford algorithm.

Assuming that the multiplication operator ⊗ and summation

operator ⊗ satisfy the semi-ring system (Rowen, 2012), with

multiplication identity {1}○ and summation identity {0}○
respectively, we have the following algorithm, which is called

the generalized Bellman-Ford algorithm.

h 0( ) u, v( ) ← 1 u�v( ) (3)

h t( ) u, v( ) ← ⊕
x,v( )∈ε v( )

h t−1( ) u, x( ) ⊗ w x, v( )( ) ⊕ h 0( ) u, v( ) (4)

where 1(u=v) is an indicator function. We define it to be equal to {1}○
if u = v and {0}○ in other cases.w (x, v) is the representation for edge

e = (x, v). Equation 3 is also called the boundary condition and

Equation 4 is called the Bellman-Ford iteration. It has been proven

that this algorithm can solve the traditional algorithm, including

graph distance, Katz index, widest path and most reliable path

algorithms, personalized PageRank with different multiplication,

and summation operators (Zhu et al., 2021).
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In summary, this algorithm is able to obtain a pair

representation h (u, v) for a given node u and all v ∈ V. This
method reduces the computational costs by the distributive

property of multiplication over summation. Because u and r

are fixed, we can abbreviate h(t)(u, v) as h(t)v . Finally, we get a

source-specific pair representation h(t)v .

3 Methodology

3.1 Data representations

We collected 100 datasets from ENCODE datasets.

ENCODE is an encyclopedia of DNA datasets, which

contains about 503,038 datasets in total. From an

economical and practical view, we randomly chose

100 datasets among them. Each dataset is related to one

specific DNA-binding protein like regulation factor or

transcription factor. For each protein, amino acids are

divided into seven groups. The datasets contain both

positive and negative samples, among which the positive

ones were DNA sequences that were experimentally

verified and confirmed to bind to this protein. The

negative samples were generated by corrupting one of the

entities of these positive samples. After collecting the

datasets, we get the graph data representation using large

matrix M, where M contains the vertex information,

topological information and true label li (being positive or

negative) for the i-th sample.

3.2 Neural parametrization

Given the source node u and the number of setup layers T,

the neural Bellman-Ford networks output the pair representation

h (u, v). We parameterize the generalized Bellman-Ford

algorithm with three neural functions—which are called IND

function, MES function and AGG function here—and we get the

following NBFnet algorithm:

By substituting the neural functions IND, MES, AGG for

normal functions in Equations 3, 4, we get the final formulas of

NBFnet:

h 0( ) u, v( ) ← IND u, v( ) (5)
h t( ) u, v( ) ← AGG MES h t−1( )

x ,w x, v( )( )∣∣∣∣ x, v( ) ∈ E v( ){ } ⋃ h 0( )
v{ }( )
(6)

In general, NBFnet could be regarded as a kind of GNN structure

for learning pair representations. These neural functions

(i.e., IND, MES, AGG functions) remain to be learned.

3.3 SortPooling

After obtaining the pair representations h (u, v) (given the

head entity u) via our NBFnet, we process the data with a feed-

forward neural network f (·). This network is first is built by a

leaky rectified linear unit (ReLU) layer and then a SortPooling

layer. The SortPooling layer, unlike simple global pooling layers

(ZhangM. et al., 2018), is able to cut down the size of the graph in

a flexible and smart manner and effectively extract features. In

this pooling layer, the input is sorted byWL colors and it imposes

the output as consistent ordering graph vertices. Assuming that

the input of these layers ~h(u, v) is an N × d dimensional matrix,

the output of the SortPooling layer is a K × d dimensional matrix.

Here, K is a self-defined integer. SortPooling layer output the

most refined k vertices by WL colors (Shervashidze et al., 2011;

Wu et al., 2021b,a).

3.4 AlphaMEX: Global pooling

Unlike using a normal global pooling layer using the average

function or maximum function to replace the whole layer,

AlphaMEX is an end-to-end global pooling operator where a

nonlinear log-mean-exp function is set up to more effectively

process features (Zhang B. et al., 2018; Wu et al., 2020b; Qi et al.,

2022). In DPB-NBFnet, we use the AlphaMEX to cut down the

size of the graph because the whole network structure contains

more layers. The AlphaMEX introduces a parameter α, whose

function formula is designed as follows:

AlphaMEXα hi{ } ≔ 1

log α
1−α( ) log 1

n
∑n
i�1

α

1 − α
( )hi⎛⎝ ⎞⎠ (7)

where hi denotes input matrix and n denotes the numbers of hi. α

is limited from 0 to 1, which is a trainable parameter.

Together with NBFnet, the leaky ReLU and Sortpooling layer are

consecutively composed of one feature extracting module. In our

framework, we set up three feature extracting modules sharing this

structure. We then process the data with three global pooling layers,

here we implement AlphaMEX, which is a better global pooling
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operator for convolutional neural networks. The additive module

then sums up the results of the AlphaMEXpooling layers. Finally, the

output of the additive module is presented to a network of fully

connected layers. The outcome of the last FC layer is processed by a

softmax function. We then take the logarithmic value as the final

predicted result.

Eventually, we get a 2-D vector (p+(i), p−(i)) that indicates the

probability of the positive sample and negative sample,

respectively. The overall workflow of DPB-NBFnet framework

is illustrated in Figure 1.

3.5 Loss function

For the i-th DNA-protein pair, if there is a binding in this

pair, then we denote it as a positive sample, and otherwise

negative. We aim to minimize the negative logarithmic

likelihood of positive and negative pairs. Hence, we design

and use such a loss function in our model:

L � −1
k
∑k
i�1

lip+ i( ) + 1 − li( )p− i( )[ ] (8)

where k is the number of samples in the dataset, and li the binary

label of the i-th sample.

3.6 Time complexity

DPB-NBFnet has a relative low time complexity compared

with other GNN frameworks. We will discuss its time complexity

roughly. Assuming that our model needs to infer the likelihood of

a dataset containing |V| samples with d dimensions, where V is

the set of all uncertain positive and negative samples, we need to

implement the algorithm (Equations 5, 6) once to get the

predictions. The time complexity here is O(|E|d). After this, a
constant K is settled for Equations 5, 6 to converge. So far, it has a

time complexity O(|E|d + |V|d2). In summary, for each sample,

the average time complexity is O(|E|dV + |d2).

FIGURE 1
The framework of DPB-NBFnet is composed of three feature processing modules, each of which contains NBFnet, leaky ReLU (set leak as 0.2),
and SortPooling. Consecutively, the framework contains three global pooling layers, one additionmodule, and FC layers (fully connected layers) with
256,64,2 neurons. A homogeneous graph is first input to the feature extracting module. The output is then processed by the following two feature
extractingmodules. The output of three feature extractingmodules is then read by three AlphaMEX global pooling layers, whose outputs are put
together by the addition module. The outcome of the addition module is then read by three FC layers with 256, 64, and 2 neurons, respectively. We
then use a softmax function then a logarithmic function to give the final predicted value p+(i) and p−(i) to classify the positive and negative samples,
respectively.
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3.7 Measurements and evaluation

In our work, we utilize the average precision (AP), the

average recall (AR), the average accuracy (AC), the Matthew’s

correlation coefficient (MCC; Chicco and Jurman, 2020), and the

area under the receiver operating characteristic curve (AUROC;

Hosmer et al., 2013) to measure the performance of our DPB-

NBFnet modules. These statistics are defined as follows:

PR � TrP

TrP + FaP
(9)

RE � TrP

TrP + FaN
(10)

AC � TrP + TrN

TrP + TrN + FaP + FaN
(11)

MCC � TrP · TrNFaP · FaN���������������������������������������������
TrP + FaP( ) TrP + FaN( ) FaN + FaP( ) TrN + FaN( )√

(12)
Where TrP, TrN, FaP, FaN denotes the number of true positive

samples, true negative samples, false positive samples, and false

negative samples, respectively. The AUROC is calculated by its

geometric meaning by Python, namely the area under the ROC

curve (Wu et al., 2021c; Su et al., 2022).

4 Experiment

4.1 Experiment setup

We collected 100 datasets from ENCODE datasets. Each of

these datasets corresponds to a specific DNA-binding protein like

transcription factor or regulation factor. The positive samples are

DNA sequences that were experimentally confirmed to bind to

this protein, and the negative samples were generated by

corrupting one of the entities of these positive samples.

After preparing the data, we implement the DPB-NBFnet by

Python, with the main packages PyTorch 1.10.0 and PyTorch-

Geometric (PyG) 2.0.4. PyG is a library for implementing GNN

TABLE 1 Performance comparison of different methods on ENCODE datasets.

Methods PRa (%) REb (%) ACc (%) MCCd AUROCe (%)

Katz index 81.2 72.5 81.0 74.9% 75.7

node2vec 83.4 76.6 87.2 89.6% 89.1

VGAE 91.0 90.0 92.0 86.8% 94.7

DRUM 91.7 90.5 93.7 83.9%s 96.9

SEAL 91.5 91.3 91.4 82.71% 97.5

DPB-NBFnet 93.7 92.6 97.2 89.1% 98.2

aPR stands for precision (Equation 9).
bRE stands for recall (Equation 10).
cAC stands for accuracy (Equation 11).
dMCC stands for Matthew correlation coefficient (Equation 12).
eAUROC stands for area under the receiver operating characteristic curve (Hosmer et al., 2013).

TABLE 2 AUROC results of different AGG and MES functions.

AGG\MES Sum (%) Mean (%) Max (%)

DistMult 85.8 89.3 90.7

TransE 89.2 74.7 93.6

RotatE 94.6 96.5 98.4

TABLE 3 Results of different AGG and MES functions with multiple measurements.

#layers T\Methods 2 (%) 3 (%) 4 (%) 5 (%) 6 (%) 7 (%) 8 (%)

PRa 71.2 77.2 80.1 81.5 85.8 96.1 96.3

REb 73.4 79.5 81.4 85.6 90.4 96.8 97.0

ACc 75.8 80.4 83.4 85.8 92.1 97.2 97.4

MCCd 73.3 82.1 85.4 86.6 91.4 96.9 97.1

AUROCe 72.6 81.4 86.4 91.3 94.4 97.6 97.6

aPR stands for precision (Equation 9).
bRE stands for recall (Equation 10).
cAC stands for accuracy (Equation 11).
dMCC stands for Matthew correlation coefficient (Equation 12).
eAUROC stands for area under the receiver operating characteristic curve (Hosmer et al., 2013).
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models on structured data. Given that our NBFnet can be regarded

as a GNN model, it is convenient for us to use this package.

4.2 Main results

Weevaluated theDNA-protein binding prediction performance

of our DPB-NBFnet framework on the 100 ENCODE datasets. We

used a four-fold cross-validation strategy. We compared DPB-

NBFnet model with other link prediction models, among which

we chose a traditional path-basedmethodKatz index, an embedding

method node2vec (Grover and Leskovec, 2016), and three GNN

models: VGAE (Kipf and Welling, 2016), DRUM (Sadeghian et al.,

2019), and SEAL (Zhang and Chen, 2018). Table 1 presents the final

prediction results. As can be seen in Table 1, our DPB-NBFnet

framework was able to achieve 93.7% precision, 92.6% recall, 95.2%

accuracy. Therefore, it has shown a state-of-the-art performance

compared with other methods for link prediction problems on

DNA-protein binding.

4.3 Exploration of the DPB-NBFnet
structure

4.3.1 Neural functions
In general, DPB-NBFnet benefits from advanced

embedding methods, such as DistMult (Yang et al., 2017),

RotatE (Sun et al., 2019) and TransE (Bordes et al., 2013).

Compared with explicit AGG functions (i.e., sum, max,

mean), combinations of advanced AGG and MES functions

achieve a better performance. Table 2 gives the results of

AUROC choosing different MES and AGG functions.

4.3.2 Number of GNN layers
As can be seen in Algorithm 1, parameter L is required as

an input, which represents the number of layers. Although

some studies have reported that the GNN model usually has a

better performance when the layers go deeper, we observed

that the DPB-NBFnet does not behave in this way. At first the

performance improves as more layers are included but it then

reaches saturation at about six layers. We predict that this

happen because paths no longer than six are enough for a link

prediction problem. The results of AUROC are listed in

Table 3.

5 Discussion and conclusion

5.1 Application

Predicting DNA-protein binding has a significant

meaning from the micro-biological point of view, but it is

extremely expensive to explore all kinds of DNA-binding

proteins via experimental methods. Our DPB-NBFnet

framework was able to achieve a prediction accuracy of

97.2%, which could be applied into predictions of DNA-

protein binding on real datasets. This provides biologists

with a cost-effective method to explore more DNA-binding

proteins and also study their actual functions in micro-

organisms.

5.2 Conclusion

In this work, we present a novel framework DPB-NBFnet,

which is a GNN model that predicts DNA-protein binding.

This framework uses NBFnet, SortPooling, and AlphaMEX,

which are all technologies from modern machine-learning

research. Our results show that DPB-NBFnet outperformed

baseline models. We also explore the influence of different

neural functions and number of layers on our DPB-NBFnet

structure. DPB-NBFnet can be considered to be a substitute

option to the existing link prediction methods on real

datasets. We also hope that this method could inspire

more computational biologists and could be put into use

in diverse kinds of tasks in the future.
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