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Schisantherin A (STA) is a traditional Chinese medicine extracted from the plant

Schisandra chinensis, which has a wide range of anti-inflammatory, antioxidant,

and other pharmacological effects. This study investigates the anti-

hepatocellular carcinoma effects of STA and the underlying mechanisms.

STA significantly inhibits the proliferation and migration of Hep3B and

HCCLM3 cells in vitro in a concentration-dependent manner. RNA-

sequencing showed that 77 genes are upregulated and 136 genes are

downregulated in STA-treated cells compared with untreated cells. KEGG

pathway analysis showed significant enrichment in galactose metabolism as

well as in fructose and mannose metabolism. Further gas chromatography-

mass spectrometric analysis (GC-MS) confirmed this, indicating that STA

significantly inhibits the glucose metabolism pathway of Hep3B cells. Tumor

xenograft in nude mice showed that STA has a significant inhibitory effect on

tumor growth in vivo. In conclusion, our results indicate that STA can inhibit cell

proliferation by regulating glucose metabolism, with subsequent anti-tumor

effects, and has the potential to be a candidate drug for the treatment of liver

cancer.
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1 Introduction

Liver cancer is an aggressive malignancy with very high

morbidity and mortality (Foerster et al., 2022; Lu et al., 2022).

The latest data from the Chinese National Cancer Center

indicated that the incidence of liver cancer in China ranks

fifth, and the mortality rate ranks second (Sung et al., 2021).

Primary liver cancer involves three different pathological types

of tumors, namely hepatocellular carcinoma (HCC),

intrahepatic bile duct carcinoma, and mixed carcinoma.

HCC accounts for more than 85%–90% of cases, with a high

degree of malignancy, and is prone to recurrence and metastasis

(Pan et al., 2021; Khatib et al., 2022). Traditional chemotherapy

as a common treatment option can lead to cure and life

prolongation for patients with HCC, yet the prognosis for

most patients is dire or poor (Fu et al., 2022; Han et al.,

2022). Therefore, the quest for potent new drugs for the

treatment of HCC is paramount.

Cancer, including HCC, has recently been reconsidered as a

metabolic disease, involving changes in the way energy is

produced and utilized (Seyfried et al., 2014; Liao et al., 2022).

Excessive proliferation of cancer cells requires a large amount of

energy and nutrients, resulting in metabolic changes. Studies by

Warburg and colleagues in the 1920s showed that tumor cells

preferred increasing their energy supply by glycolysis, rather than

mitochondrial oxidative phosphorylation (OXPHOS), even

under oxygen-rich conditions (Koppenol et al., 2011). This

metabolic reprogramming is what distinguishes malignant

tumors from normal tissue and is known as the Warburg

effect or aerobic glycolysis (Sun et al., 2022). Glycolysis

produces ATP very fast, 100 times faster than OXPHOS

(Locasale and Cantley, 2010). Tumor cells use glycolysis to

accelerate energy acquisition through metabolic

reprogramming to support the rapid proliferation of tumor

cells (Yang et al., 2022).

Glucose metabolism in HCC cells is characterized by

increased glucose uptake and accelerated glycolysis (Li et al.,

2017). The acceleration of glycolysis in HCC depends on a

number of key rate-limiting enzymes. The first step in glycolysis

is the transport of glucose into cells through glucose

transporters (GLUTs). Compared with normal hepatocytes,

the expression and activity of GLUTs are upregulated in

HCC cells (Xia et al., 2020). Wang et al. found that the

highly expressed proto-oncogene MYC in HCC could

accelerate glycolysis in HCC cells through the regulation of

lactic dehydrogenase A (LDHA), thereby promoting the

progression of HCC (Wang et al., 2022a). Zhang et al.

(2018) found that hypoxic stress in HCC cells can promote

the binding of YAP to HIF-1α in the nucleus, maintain the

stability of HIF-1α, and activate pyruvate kinase M2 (PKM2)

transcription to accelerate glycolysis. In addition, as upstream

targets of PKM2, AKT, CAMKβ, and GTPBP4 can also affect

the proliferation and glycolysis of HCC cells by regulating

PKM2 (Ye et al., 2019; Sheng et al., 2020; Zhou et al., 2022).

Similar to oncogenic molecules, Akt can also promote

metabolic reprogramming by increasing GLUTs expression

(Hu et al., 2019). These studies highlight the role of glucose

metabolism in the development and progression of HCC,

making glucose metabolism a potential target for the

treatment of this disease.

Evidence has indicated that many traditional Chinese herbal

medicines (TCM) exhibit potential anti-cancer effects (Liu et al.,

2019; Fan et al., 2020; Li et al., 2022a). However, the underlying

molecular mechanisms and targets remain unclear. Thus, to

improve their development as new anticancer drugs, the

pharmacological effects of TCM preparations must be

thoroughly assessed (Chen and Ye, 2022). Schisantherin A

(STA) is a TCM extracted from the plant Schisandra

chinensis, which has a wide range of pharmacological

properties, including anti-inflammatory and anti-oxidant

effects (Gong and Wang, 2018; Gui et al., 2020; Wang et al.,

2021). STA has also been used in the treatment of cancer by

inducing cell apoptosis and inhibiting cell proliferation. Wang

et al. (2020) reported that STA could induce apoptosis and cell

cycle arrest via the production of reactive oxygen species and

activation of JNK signaling with Nrf2 inhibition in gastric cancer

cells. However, the anti-HCC effect of STA or its molecular

mechanisms were not examined. Thus, an accurate

understanding of the biological functions and mechanisms of

STA can provide new insights for the treatment of HCC.

This study assessed the anti-tumor effects of STA against

liver cancer as well as the underlying mechanisms. The

significant inhibitory effect of STA on the migration and

proliferation of HCC cells was observed. Further, glucose

metabolism inhibition was shown to be involved in STA-

induced anti-proliferation and migration. In addition, a

subcutaneous tumor model in nude mice confirmed that STA

significantly inhibited the growth of solid tumors. Thus, STA

may be a new drug for the treatment of liver cancer.

2 Materials and methods

2.1 Cell culture

Human hepatoma cell lines, including highly metastatic

HCCLM3 and low-metastatic Hep3B, were obtained from

Liver Cancer Institute, Zhongshan Hospital, Fudan University

(Shanghai, China). The cells were cultured in DMEM (GIBCO,

United States) containing 10% fetal bovine serum (FBS, Gibco,

United States) and 100 U/mL penicillin/streptomycin (GIBCO,

United States), and maintained at 37°C with 5% CO2. STA

(purity ≥ 98%; MedChemexpress, New Jersey, United States)

was dissolved in dimethyl sulfoxide (DMSO; Solarbio, Beijing,

China) to obtain a 20-mM stock solution that was then diluted

with DMEM.

Frontiers in Pharmacology frontiersin.org02

Feng et al. 10.3389/fphar.2022.1019486

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1019486


2.2 Cell viability analysis

For cytotoxicity assays, 5,000 cells per well were seeded in

triplicate in 96-well plates and incubated at 37°C and 5% CO2

for 24 h. Cells were treated with different doses of STA for 48 h as

required. Cell viability was measured with a cell counting kit (CCK-

8; Dojindo, Japan) according to the manufacturer’s instructions.

CCK-8 reagent (10 μl) was mixed with cells and incubated for 1 h.

The final absorbance at 450 nm was assessed in each well using a

MultiSkan GO micropore meter (Thermo, United States).

2.3 5-Ethynyl-2′-deoxyuridine assay

Based on the results of the cell viability analysis, three groups

of cells (DMSO, 10 μM, 30 μM, and 50 μM) were seeded in 96-

well plates at 5,000 cells/well for 48 h with 1.5 μM cisplatin

(CDDP) administered as a positive control. HCC cells were

then incubated with 50 μM 5-ethynyl-2′-deoxyuridine reagent

(EdU; RiboBio, Guangzhou, China) for 2 h for EdU

incorporation during DNA synthesis. Cells were then stained

with Apollo fluorescent dye for 1 h and 0.25% Triton X-100 was

added to each well. Finally, the samples were stained with

Hoechst 33,342. Fluorescence images were captured under a

fluorescence microscope (Olympus, Tokyo, Japan). The EdU

assay was performed three times using five biological replicates.

2.4 Western blotting

Proteins were analyzed by western blotting according to

standard methods. Proteins were extracted from cells using

RIPA buffer (Beyotime, China) containing a mixture of

protease and phosphatase inhibitors and quantified using an

Enhanced BCA Protein Assay Kit (Beyotime, China). Protein

samples (30 μg/lane) were loaded onto 10% separating gel and

blotted onto a PVDF membrane (Millipore, Billerica, MA,

United States). After blocking with 5% skimmed milk powder

for 1 h, the membranes were incubated overnight with the

following primary antibodies at 4°C: anti-CDK1(Zen-

BioScience, China), anti-survivin (Zen-BioScience, China), anti-

MMP2 (Zen-BioScience, China) and anti-GAPDH (Zen-

BioScience, China). Membranes were then washed and

incubated with HRP-linked secondary antibody for 1 h at 37°C.

Finally, the samples from three independent experiments were

detected using the ECL reagent (Thermo Fisher, United States).

2.5 Clone formation assay

Clone formation was evaluated onHep3B andHCCLM3 cells

in response to STA treatment (DMSO 10 μM, 30 μM, and

50 μM). Cells in the logarithmic growth phase were seeded at

500 cells/well in six-well plates and cultured at 37°C and 5% CO2

for 5 days. After treatment with fresh media containing different

concentrations of STA for 5 days, the cells were fixed with 4%

paraformaldehyde (PFA) at 4°C overnight. Finally, after staining

with 0.1% crystal violet, cell colonies were photographed and

counted.

2.6 Wound healing assay

Hep3B and HCCLM3 cells were seeded in six-well plates and

allowed to grow to ~70% density. A sterile 200-μl pipette tip was

then used to scratch the surface, fresh medium containing

different concentrations of STA (DMSO 10 μM, 30 μM, and

50 μM) was replaced, and the cells were cultured for 48 h.

After fixing with 4% PFA, photographs were taken after

staining with crystal violet to estimate the area occupied by

migrating cells.

2.7 RNA sequencing and data analysia

Following treatment with STA for 48 h, total RNA was

extracted from Hep3B and HCCLM3 cells using TRIzol

reagent (Invitgen, Thermo Scientific, United States). Partially

isolated RNA samples were submitted to BGI Co., Ltd.,

(Shenzhen, China) for transcriptome sequencing and

BGISEQ-500 analysis.

2.8 Metabolite extraction and gas
chromatography-mass spectrometric
analysis

Hep3B cells were cultured in a 10-cm petri dish and treated

with 50 μM STA for 48 h. The cells were washed twice with

PBS solution and then peeled off by cell scraping. After

centrifugation, the supernatant was removed, and the

precipitated cells were collected and flash-frozen in liquid

nitrogen for 15 min. Metabolites were extracted from equal

amounts of STA-treated or untreated Hep3B cells (about 1 ×

107 cells) by the previously mentioned method (Qu et al.,

2022). The Trace1300 gas chromatography-mass spectrometry

analysis system (Thermo Scientific) was used for

metabolomics analysis in conjunction with the TCM

Chromatographic Fingerprint Computer-Aided Similarity

Assessment System (2012 edition) and SIMCA software

(Umetrics, Sweden). An Agilent DB-5MS chromatographic

column was used with an injection volume of 1 μl. The ion

source of mass spectrometry was electrospray ionization (ESI),

using the positive ion mode. The inlet temperature was 280°C.

The control group was treated with DMSO; eight samples were

collected for each group.
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FIGURE 1
STA inhibits the survival of HCC cells. (A)Cell viability of Hep3B andHCCLM3 cells treatedwith STA at indicate concentrationwas determined by
CCK8 method, DMSO was used as control. (B) The morphology of Hep3B and HCCLM3 cells treating with STA in different concentration for 48 h.
(C–E) EdU-positive Hep3B and HCCLM3 cells after treating with STA for 48 h. Scale bar = 100 μm. Data shown are means ± SD; n = 3. *p < 0.05,
significantly from control group.
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2.9 Animal studies

Female nude mice (n = 24) obtained from the Laboratory

Animal Center of Chongqing Medical University were used for

animal experiments. For subcutaneous xenograft experiments,

2 × 106 Hep3B cells in the logarithmic growth phase were

injected into the armpit of nude mice. After 12 days, the mice

were randomly divided into a control group, a positive control

group (CDDP, 5 mg/kg, i.p., once in 2 days), a low

concentration group (STA, 10 mg/kg i.p., once in 2 days),

and a high concentration group (STA, 20 mg/kg i.p., once

in 2 days), with six mice in each group. Intraperitoneal

injections were performed every 2 days, and the longest

axes (L) and vertical axes (R) of the tumor were measured.

The tumor volume (V) was calculated according to V = (π/6) ×
L × R2. Sixteen days later, the tumor was excised for weighing

and histological analysis.

2.10 Histological analysis

For hematoxylin and eosin (H&E) staining, all grafts were fixed in 4%

PFA overnight. After dehydration, the samples were embedded in paraffin,

sectioned,andstainedwithH&E.For immunohistochemistrydetection,PFA-

fixed tissues were immunostained for Ki67 protein using standard

immunohistochemical procedures according to the manufacturers’

instructions and incubated overnight. After washing three times with PBS,

the cells were incubated with secondary antibody at 37°C for 30min and

stained with DAB (3,3′-diaminobenzidine); Ki67-positive cells were brown.

2.11 Statistical analysis

Data were expressed as mean ± SEM of at least three

independent experiments. Two-tailed Student t-tests were used to

calculate the p values; p< 0.05was considered statistically significant.

FIGURE 2
STA inhibits Hep3B and HCCLM3 cell proliferation. (A–C) Clone formation of Hep3B and HCCLM3 cells treated with STA at 10 μM, 30 μM, and
50 μM. (D–F) The representative bands of CDK1 and survivin in Hep3B and HCCLM3 cells treated with STA at 10 μM, 30 μM, and 50 μM for 48 h.
GAPDH was used as an internal control. Data shown are means ± SD; n = 3. *p < 0.05, significantly from control group.

Frontiers in Pharmacology frontiersin.org05

Feng et al. 10.3389/fphar.2022.1019486

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1019486


3 Results

3.1 STA inhibits the survival of HCC cells

To determine the effect of STA on cell viability, Hep3B and

HCCLM3 cells were treated with different concentrations of STA

for 48 h and detected by CCK-8 assay. STA decreased the

viability of Hep3B and HCCLM3 cells in a dose-dependent

manner (Figures 1A,B); at 30 μM and 50 μM, STA

significantly inhibited the viability of Hep3B and

HCCLM3 cells, whereas at 100 μM, most cells had died.

Furthermore, the number of exfoliated cells increased and the

cell size shrank with the increase in STA concentration

(Figure 1C). Therefore, concentrations of 10 μM, 30 μM, and

50 μM STA were selected for subsequent experiments.

3.2 STA inhibits Hep3B and HCCLM3 cell
proliferation and migration

The EdU and clone formation assays were used to evaluate

the effect of STA on cell proliferation. EdU showed that,

compared with the control group, DNA synthesis and the

EdU positivity rate were significantly decreased in cells treated

with STA for 48 h in a dose-dependent manner (Figures 1D,E).

Next, the effect of STA on the self-renewal ability of HCC cells

was observed by clone formation assay. The number and size of

clones in the STA-treated groups were significantly reduced

compared with the control group (Figures 2A,B). The

expression of proliferation-related proteins was further

examined by western blotting assay, which demonstrated that

the expression of CDK1 and survivin proteins was significantly

FIGURE 3
STA inhibits Hep3B and HCCLM3 cell migration. (A) Scratch assay was performed to determine migration of Hep3B and HCCLM3 cells treated
with STA at for 48 h. (B,C)Quantification of the scratch image was performed by calculating themigrated cell counts in (A). (D–F) The representative
bands of MMP2 in Hep3B and HCCLM3 cells treated with STA for 48 h. GAPDH was used as an internal control. Data shown are means ± SD; n = 3.
*p < 0.05, significantly from control group.
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decreased (Figures 2C–F). Therefore, STA effectively inhibited

the proliferation of HCC cells.

The cell scratch assay revealed that STA significantly inhibited

the migration of Hep3B and HCCLM3 cells (Figures 3A–C). After

48 h, cells in the control group almost completely filled the scratch

area, whereas the number of cells migrating to the scratch area was

significantly reduced with the increase in STA concentration.

Furthermore, STA treatment inhibited the expression of

MMP2, a migration-related protein (Figures 3D–F).

3.3 STA regulates differentially expressed
genes and pathway enrichment analysis

To investigate how STA regulates cell growth and

proliferation, transcriptome analyses on cells treated with

30 μM STA and DMSO were performed. The global gene

expression profile showed that STA regulated gene expression

in Hep3B cells. Compared with the control group, 77 genes were

upregulated and 136 genes were downregulated in the STA-treated

group. Thus, STA significantly inhibited the transcription of genes,

leading to the arrest of basic cell functions (Figure 4A).

Subsequently, KEGG pathway enrichment analysis of

differentially expressed genes showed that STA affected glucose

metabolism of HCC cells, specifically galactose metabolism and

fructose and pentose phosphate metabolism (Figure 4B). Gene

ontology functional annotation also showed that STAwas involved

in the regulation of metabolic processes (Figure 4C).

3.4 STA affects the glucose metabolism
pathway of Hep3B cells

Metabolic reprogramming is an important feature of

malignant tumors (Du et al., 2022; Liao et al., 2022). In

cancer, malignant tumor cells respond to a variety of

FIGURE 4
STA regulates the differentially expressed genes and pathway enrichment analysis in Hep3B cells. (A) Significant differentially expressed genes
were shown in volcano plot. FC (fold change) > 1 was accepted as positive differentially expressed genes, up for 77; down for 136. (B) KEGG pathway
enrichment analysis, a larger p-value (−Log10) shows a higher degree of enrichment. (C) GO annotations analysis of Hep3B cells treated with STA,
compared with control group.
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endogenous and exogenous cues to obtain metabolic adaptation,

promoting the growth of tumor cells (Faubert et al., 2020).

Previous KEGG pathway enrichment analyses showed that

STA treatment could regulate glucose metabolism in

Hep3B cells (Figure 4). Therefore, metabolomics was used for

further validation analyses. GC-MS was used to explore the effect

of STA on the production of primary metabolites in HCC cells.

Principal component analysis (PCA) showed that metabolites

induced by DMSO and STA (30 μM) were tightly clustered

(Figure 5A). The difference between DMSO and STA (30 μM)

was significant using OP-LSDA analysis to exclude non-

significant variables and to evaluate only statistically

significant signals (Figure 5B). STA treatment significantly

downregulated the production of D-glucose, lactate, L-alanine,

L-proline, and serine (Figure 5C). Furthermore, the differential

metabolites were mainly enriched in fructose and pentose

phosphate metabolism and glycolysis/gluconeogenesis

(Figure 5D), suggesting that the antitumor effects of STA are

mediated by the regulation of glucose metabolism.

3.5 STA impairs growth of Hep3B cells in
vivo

To assess the antitumor effect of STA in vivo, Hep3B cells were

subcutaneously injected into the axilla of 6-week-old nude mice and

allowed to grow for 10 days. After 12 days of treatment, both STA and

CDDP significantly reduced tumor weight and volume compared

with the control group (Figures 6A–C). H&E staining of tumor

samples showed that the number of cells in the STA-treated groupwas

significantly lower than that in the control group. Furthermore, the

expression of Ki67 decreased significantly with the increase in STA

concentration (Figures 6D,E). Thus, STA had a significant inhibitory

effect on tumor growth in vivo.

4 Discussion

Globally, liver cancer is one of the most common fatal

malignancies and is the fifth most common malignancy in

FIGURE 5
STA affects the glucosemetabolism pathway of Hep3B cells. (A) The PCA score plot of Control and Drug group (30 μM), it represents samples in
the groups were closely cluster to one another. (B) The OPLS-DA score plot of Control and Drug group revealed the clustering of samples in the
training set. (C)Metabolites altered by STA treatment in Hep3B cells. n = 8 replicates per group. (D) Pathway enrichment of differential metabolites.
Mainly enriched in fructose and pentose phosphate metabolism and glycolysis/gluconeogenesis.
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China (Pan et al., 2022). Patients are commonly diagnosed at an

advanced stage, leading to poor prognosis (Chen et al., 2020).

Chemotherapy is the most accessible treatment option for

patients with liver cancer (Sacco et al., 2017); however, only

a small proportion of patients benefit from treatment, with

considerable resistance within 6 months after the start of the

treatment regimen (El-Serag et al., 2008). Furthermore, the

long-term use of chemotherapy drugs (e.g., sorafenib) leads to

toxicity and/or drug ineffectiveness (Colagrande et al., 2015;

Tang et al., 2020). Therefore, new treatment options are

urgently required for the treatment of liver cancer. Growing

evidence has indicated that active ingredients in Chinese herbal

medicines play a role in inhibiting mechanisms involved in the

development of cancer, with stimulating mechanisms

associated with disease prevention (Lam et al., 2022). These

compounds have been shown to exert anticancer (Zhao et al.,

2021), anti-inflammatory (Tao et al., 2022), and anti-oxidant

effects (Gu et al., 2022), andmay provide new treatment options

for cancer.

As amonomeric TCMcompound, STA retrieved form S. chinensis

(Turcz.) Baill has multiple pharmacological activities, including anti-

oxidant and anti-inflammatory activities, both in vivo and in vitro

(Szopa et al., 2018; Fu et al., 2021). STA has been reported to mitigate

liver injury induced by lipopolysaccharide, IL-1β, and cigarette smoke

extract (Jiang et al., 2015). Indeed, chronic inflammation (Thadathil

et al., 2022), smoking (Wen et al., 2022), and fatty liver disease

(Paternostro and Trauner, 2022) are the main causes of liver

cancer. Previous studies showed that STA can inhibit the

proliferation of human hepatic stellate cells, leading to the

speculation that STA might have an inhibitory effect on liver

cancer. Furthermore, STA has been shown to inhibit the

proliferation and migration of gastric cancer through the

production of reactive oxygen species and JNK signaling pathway

activation (Wang et al., 2020). Therefore, it was hypothesized that STA

would have antiproliferative effects on liver cancer cells and inhibit cell

clone formation and migration through inhibition of the related

molecular mechanisms.

Herein, STA significantly suppressed cell proliferation and

migration, and reduced the viability of liver cancer cells in vitro

and in vivo. STA displayed potent inhibitory effects on proliferation

by decreasing the expression of CDK1 and survivin. In addition, STA

inhibited cell migration through the downregulation of

FIGURE 6
STA impairs the growth of Hep3B cells in vivo. Twenty-four nude mice were randomly divided into negative control group, positive control
group (CDDP, 5 mg/kg, i.p., once two days), low-concentration treatment group (STA, 10 mg/kg, i.p., once two days) and high-concentration
treatment group (STA, 20 mg/kg, i.p., once two days). (A) Photograph of tumors from indicatedmice. (B) Tumor volume of indicatedmice. (C) Tumor
weight of indicated mice. (D)H&E staining and IHC of KI67 in indicated tumors. (E)Quantitative image analysis of KI67 in (D). Scale bar = 50 μm.
All data were analyzed using unpaired Student t-Tests and are shown as the means ± SD. *p < 0.05.
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MMP2 expression. Further transcriptome sequencing and KEGG

signaling pathway enrichment data showed that the metabolic

process in Hep3B cells treated with STA had changed. Growing

evidence suggests that metabolic disorder is a significant hallmark of

malignant tumors that controls key tumor biological processes such

as the proliferation, migration, and invasion of tumor cells (Dai et al.,

2022; Sun et al., 2022; Tan et al., 2022). Thus, by inhibiting the

metabolic pathways of tumor cells, the occurrence and development

of tumors could be prevented. Therefore, targeting tumormetabolism

is a promising therapeutic approach (Wang et al., 2022b;

DeBerardinis and Keshari, 2022; Reyes-Castellanos and Carrier,

2022). Metabonomic results indicated that STA treatment

decreased the production of D-glucose, lactate, L-alanine,

L-proline, and serine. Both lactate and serine have been reported

to be associated with the development and exacerbation of tumors

(Woo et al., 2016; Bogdanov et al., 2022). Herein, these differential

metabolites were mainly enriched in fructose and pentose phosphate

metabolism and glycolysis/gluconeogenesis. Our results suggest that

STA can inhibit glucose metabolism in Hep3B cells.

Studies have shown that glucose metabolism disorder is a

representative metabolic feature in HCC (Tsujimoto et al.,

2022). An increase in the degree of glycolysis in tumors

occurs to meet the energy demands of rapidly proliferating

tumor cells, and glycolysis can also produce intermediate

metabolites supporting the biosynthesis of nucleotides,

amino acids, and lipids, thus allowing the rapid proliferation

of tumor cells (Feng et al., 2020). Glucose metabolism is

coupled to cell cycle progression, and glucose metabolism

ensures adequate ATP and synthetic metabolites at different

stages of the cell cycle (Cheung et al., 2022). 6-Phosphofructo-

2-kinase (PFKFB3) can promote cell cycle progression through

CDK1-mediated phosphorylation of P27 (Yalcin et al., 2014). In

turn, the cell cycle is also involved in the regulation of glucose

metabolism. Tang et al. revealed that CDK2 can increase

glycolysis by inhibiting SIRT 5 in gastric cancer (Tang et al.,

2018). High expression of survivin can shut down

mitochondrial complex 1 activity, thereby switching

neuroblastoma cells from OXPHOS to glycolysis

(Hagenbuchner et al., 2016). Our western blotting results

also showed that the protein expression of CDK1 and

survivin was decreased in STA-treated HCC cells

(Figure 2D). In addition, enhanced glycolysis promotes the

conversion of pyruvate to lactate catalyzed by LDHA. Studies

have confirmed that LDHA levels in tissues and plasma are

significantly increased in patients with liver cancer, and

increased LDHA levels are significantly associated with poor

prognosis (Faloppi et al., 2016; Guo et al., 2019). Our results

showed that STA could reduce lactate production in

Hep3B cells (Figure 5C). Increased lactate production can

induce a more acidic tumor microenvironment, which is

conducive to tumor metastasis, angiogenesis, and

immunosuppression (Li et al., 2022b). Angiogenesis is

conducive to the delivery of oxygen and nutrients to tumor

tissues, and meets the needs of rapid proliferation of tumor cells

(Qi et al., 2022).

Furthermore, in vivo subcutaneous tumor-formation

experiments in nude mice confirmed that STA could

significantly inhibit the growth of solid tumors.

Immunohistochemistry showed that the anti-tumor effect of

STA was related to the inhibition of expression of Ki67, a

marker of tumor proliferation (Figure 6D).

5 Conclusion

In summary, our findings suggest that STA treatment

inhibits cell proliferation and migration by regulating glucose

metabolism in HCC cells. The clone formation assay and cell

scratch assay indicated that STA treatment reduced the

proliferation and migration capacity of Hep3B and

HCCLM3 cells in vitro. Further, transcriptome sequencing

and metabolomics results showed that STA treatment could

regulate glucose metabolism and reduce D-glucose and lactate

production in Hep3B cells. The subcutaneous tumorigenesis

assay in nude mice further verified that STA treatment

inhibits the growth of HCC tumors in vivo. Based on our

results, STA has the potential to be developed as a therapeutic

agent for the treatment of liver cancer.
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