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Microbial communities form an important symbiotic ecosystem within humans

and have direct effects on health and well-being. Numerous exogenous factors

including airborne triggers, diet, and drugs impact these established, but fragile

communities across the human lifespan. Crosstalk between the mucosal

microbiota and the immune system as well as the gut-lung axis have direct

correlations to immune bias that may promote chronic diseases like asthma.

Asthma initiation and pathogenesis are multifaceted and complex with input

from genetic, epigenetic, and environmental components. In this review, we

summarize and discuss the role of the airway microbiome in asthma, and how

the environment, diet and therapeutics impact this low biomass community of

microorganisms. We also focus this review on the pediatric and Black

populations as high-risk groups requiring special attention, emphasizing that

the whole patient must be considered during treatment. Although new culture-

independent techniques have been developed and are more accessible to

researchers, the exact contribution the airway microbiome makes in asthma

pathogenesis is not well understood. Understanding how the airway

microbiome, as a living entity in the respiratory tract, participates in lung

immunity during the development and progression of asthma may lead to

critical new treatments for asthma, including population-targeted

interventions, or even more effective administration of currently available

therapeutics.

KEYWORDS

diet, smoking, therapeutics, pediatric, vulnerable population, lung-gut axis

1 Introduction

The respiratory system, a member of the mucosal organ systems, is structurally and

functionally complex with its own barrier and immune defenses. The large surface area,

the continual availability of airway surface fluids, and perhaps constant ‘seeding’ from the

ambient environment and microaspiration from the oro-gastro-intestinal system,
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establishes and maintains the respiratory system microbiome

(Man et al., 2017) that begins colonizing shortly after birth (Senn

et al., 2020). The basic definition of the microbiome as the

“characteristic microbial community occupying a reasonably

well-defined habitat which has distinct physio-chemical

properties” (Whipps et al., 1988) may be extended based on

ecological, host/environmental interactions, and genomic/

methodological details (Berg et al., 2020). It is now well

established that microbiota occupying various niches in the

body play important roles in maintaining physical and mental

health (Lynch and Pedersen, 2016; Man et al., 2017; Rieder et al.,

2017; Chen et al., 2018; Halverson and Alagiakrishnan, 2020;

Jarbrink-Sehgal and Andreasson, 2020; El-Sayed et al., 2021).

Early life exposure to microorganisms is essential to train and

shape the immune system, while microbial colonization acts like

a barrier conferring protection against environmental pathogens

(Nino et al., 2021). Conversely, some bacteria, viruses and fungi

contribute to the development and pathogenesis of diseases.

While the current literature on the airway microbiome has

not provided definitive conclusions, it is strongly suggestive

that the respiratory microbiome plays a role in the

pathogenesis and control of chronic lung diseases like asthma.

Currently, much of the publishedmicrobiome research is focused

on the gut, where sampling techniques and sample acquisition

are standardized. We anticipate that respiratory microbiome

research will soon follow with the advent of more streamlined

airway sampling methods and hypothesis-driven study designs

(Carney et al., 2020). The airway microbiome has defined roles in

lung diseases like cystic fibrosis (Lynch and Bruce, 2013), cancer

(Goto, 2020), idiopathic pulmonary fibrosis (Amati et al., 2022),

chronic obstructive pulmonary syndrome (Budden et al., 2019),

and asthma, the focus of this manuscript.

Asthma is a chronic inflammatory airway disease with

burgeoning global prevalence affecting 262 million people of

all ages and causing an estimated 180,000 deaths worldwide

(Braman, 2006; Asthma Fact Sheet World Health Organization,

2022a). Symptoms include wheezing, chest tightness and

shortness of breath, which can vary in frequency and intensity

(Global Initiative for Asthma, 2021). It is currently the most

common chronic disease among children (Asthma Fact Sheet

GRAPHICAL ABSTRACT
Exogenous factors that influence the microbiome and asthma pathogenesis. External factors including a well-balanced diet and clean air
support a healthy gut microbiome that releases metabolites and short-chain fatty acids (SCFA) that promote a healthy pulmonary immune system
that remains non-inflammatory thereby protecting against the development of asthma or asthma exacerbations (left panel). An unhealthy diet, dirty
air, and some pharmaceutical agents on the other hand can induce dysbiosis in the gut and lung microbial communities through induction of
co-morbid states like obesity and aberrant immune activation. Additional confounders including modes of delivery and feeding, use of antibiotics
during pregnancy and childhood also have an impact on the airway microbial homeostasis and asthma onset and pathogenesis (right panel). Figure
prepared on BioRender.
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World Health Organization, 2022b) with 6 million pediatric

asthma patients in the United States alone [Centers for

Disease Control and Prevention (CDC)]. While many long-

held beliefs about racial differences in biology and disease

originated from social constructs, rather than any clearly

defined biological differences, these constructs remain an

integral part of our society and the literature. There are clear

disparities in asthma prevalence and outcomes when looking at

diverse populations and it is important to further define whether

there are biological differences, socioeconomic issues, or

healthcare access issues resulting in these differences. In some

cases, we cannot determine the cause with current information,

only that the disparities exist, and future effort should be devoted

to clarifying these issues. Asthma prevalence is racially disparate,

affecting approximately 16% of Black children compared to 7% of

White children [CDC]. Our University and Hospital are located

in Memphis Tennessee, a city on top of the list of ‘the worst

places to live in with allergies’ (Allergy Capitals, 2022), the third

poorest city in the United States with approximately 35% of

children living in poverty (Memphis Poverty Fact Sheet, 2021)

that have inconsistent access to healthcare. Additionally, nearly

80% of asthma patients in Memphis are Black (Oyana et al.,

2017). Many of our patients suffering with asthma are faced daily

with socioeconomic challenges making effective treatment of

their disease more difficult. As such, we are deeply aware of the

importance of approaching patient care contextually, addressing

both causes of asthma as well as barriers to patient care and

therapeutics.

There is no cure for asthma, and the choice for treatment

management is challenging due to its immunological

heterogeneity (Wangberg and Woessner, 2021). Asthma is

categorized into two major endotypes; type 2 (T2)-high

(eosinophilic) and T2-low (non-eosinophilic) based on their

inflammatory profile (Kuruvilla et al., 2019). Although asthma

etiology remains unknown, multiple genetic and environmental

risk factors have been identified, including genetic and epigenetic

variations, early severe viral infections, airborne environmental

allergens (Mims, 2015) and particulates (Manisalidis et al.,

2020), atopy, diet and nutrition, among others (Mims, 2015).

Racial and socioeconomic factors add additional layers of

complexity to asthma underscoring the importance of

personalized medicine and a holistic approach to personalized

treatment. Unfortunately, despite known increased prevalence of

asthma, far fewer reports on asthma are focused on the Black

population. For example, a PubMed search for ‘asthma children’

resulted in 64,072 hits while a search for ‘asthma children and

Black’ only resulted in 1,414 hits (2.20%). Adding on the search

term ‘microbiome’ only gave 3 hits, further emphasizing how

little attention is paid to understanding apparent racial

disparities in the literature. The aim of this review is to

summarize and discuss the relationship between the airway

microbiome and asthma pathogenesis in the context of extrinsic

factors (environmental triggers, diet, medications, and mode of

delivery) as well as intrinsic factors (genetics and the gut-lung

axis) with a focus on the Black population as an understudied

population across the country (Graphical Abstract). Literature on

the respiratory tract (RT) clearly demonstrates that the airway

microbiome varies by sampling location where the upper RT

contains the highest microbial density (Charlson et al., 2011;

Beck et al., 2012). As we focus on the impact external factors

may have on the airway microbiome, we do not sub-stratify the

airway microbiome by location within the RT. However, the reader

is referred to a comprehensive review by Abdel-Aziz et al. for details

on the airway microbiome by sampling location within the RT in

asthma (Abdel-Aziz et al., 2019).

2 Airway microbiome in asthma

Approximately 15 years ago, the healthy human airways were

shown to harbor a microbiome that remains poorly understood

today, largely due to technical difficulties in access without

contamination (Abdel-Aziz et al., 2019). The development of

culture-independent molecular techniques such as the 16S rRNA

sequencing have allowed researchers a detailed view of the

microbial genome that has rapidly led to a bloom in the

microbiome literature over the past decade. Although studies

evaluating the respiratory microbiome are numerous, their

significance is obscured by heterogeneity in study design

including respiratory niche sampled and patient demographics

among other variables (Abdel-Aziz et al., 2019; Carney et al.,

2020). Microbial exposures/infections during human lung

development are also of fundamental importance to the

composition of the airway microbiome as rigorously reviewed

by Mthembu et al. (Mthembu et al., 2021). As asthma

exacerbations lead to muco-immuno-physiologic changes in

the airways and lungs, the time at which the airway

microbiome is sampled is of importance to capture waxing

and waning communities that may correlate with disease

severity. Furthermore, there may be significant differences in

airway microbiome in asthma patients of different ethnicities or

racial groups, and while these differences may be multifactorial

or related to socioeconomic status, they may be impactful in

disease progression and require personalized therapeutic

approaches. Despite discrepancies that confound seamless

comparisons between studies however, the existing literature

on the airway microbiome has already made significant

contributions to the field, compellingly demonstrating

differences in microbial diversity and composition between

asthma patients and healthy subjects. Although the

microbiome is comprised of bacteria, viruses, fungi, archea,

and parasites, here we focus on the dominant groups in the

airway microbiome ecosystem and their interactions with the

environment and host. A microbiome of high density and low

diversity is positively associated with inflammation (Segal et al.,

2014), therefore, in general, one would expect a break from the
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healthy airway microbiome which is highly diverse but lower in

mass to correlate with the development of asthma in which

airway inflammation is a hallmark.

2.1 Airway bacteriome

Bacteria are historically implicated in asthma pathogenesis

and exacerbations. Culture-dependent studies have

demonstrated the impact some species such as Streptococcus

pneumoniae, Haemophilus influenzae, Moraxella catarrhalis,

Chlamydia pneumoniae, and Mycoplasma pneumoniae may

have on asthma onset, exacerbations, severity and response to

therapeutics (Flores-Torres and Samarasinghe, 2022). A detailed

culture-independent study published over a decade ago

comparing airway microbiota from patients with chronic lung

disease to healthy controls showcased the presence of an airway

bacteriome that was characteristic of asthma (Hilty et al., 2010).

There is a general agreement that patients with asthma

have a higher abundance of the phylum Proteobacteria in

comparison with healthy controls in both the upper (Lee et al.,

2019) and lower RT (Hilty et al., 2010; Huang et al., 2011;

Marri et al., 2013; Zhang et al., 2016), although not all studies

have found significant differences at the phylum level (Li et al.,

2017). The phylum Proteobacteria includes a wide repertoire

of potentially pathogenic bacteria, some of which have been

found in higher abundance in asthma patients including the

genus Haemophilus (Hilty et al., 2010; Boutin et al., 2017;

Durack et al., 2017), Moraxella (Depner et al., 2017; Liu et al.,

2020) and Neisseria (Durack et al., 2017; Sverrild et al., 2017).

In contrast, healthy individuals have an abundance of the

phyla Bacteroidetes and Fusobacteria (Pang et al., 2019), with

Prevotella and Veillonella as the more common genera (Hilty

et al., 2010; Denner et al., 2016; Zhang et al., 2016). Analyses of

nasopharyngeal swabs from young and elderly asthma

patients identified specific bacterial genes that associate

with lung inflammation in addition to showing that

differing members of the microbiome correlate with

predicted FEV1 (%) in adults versus the elderly patients

(Lee et al., 2019).

Asthma is a complex disorder with inflammatory signatures

that vary by phenotype and differences in their respective

microbiomes are to be expected. Neutrophilic asthma for

example has lower bacterial diversity (Simpson et al., 2016;

Taylor et al., 2018; Yang et al., 2018; Pang et al., 2019),

richness (Simpson et al., 2016; Taylor et al., 2018; Yang et al.,

2018; Pang et al., 2019), and evenness (Simpson et al., 2016;

Taylor et al., 2018; Pang et al., 2019) and an increased abundance

of Proteobacteria, especiallyHaemophilus andMoraxella (Taylor

et al., 2018; Yang et al., 2018) compared to eosinophilic asthma

patients. Furthermore, M. catarrhalis or Haemophilus

colonization is positively correlated with sputum IL-8 and

neutrophilia, longer asthma symptom duration, and lower

FEV1 (Green et al., 2014). Experimental in vivo studies have

shown that H. influenzae type b, non-typeable H. influenzae and

M. catarrhalis, but not commensal Prevotella species, induce

higher levels of pro-inflammatory cytokines (IL-8 and TNF-α)
and neutrophil recruitment without eosinophil recruitment

(Larsen et al., 2015). In contrast, patients with eosinophilic

asthma may have a distinct microbiome with an increased

abundance of the family Enterobacteriaceae (Li et al., 2017)

and the genus Tropheryma (Simpson et al., 2016) and

Streptococcus (Zhang et al., 2016). S. pneumoniae is

particularly pertinent in asthma due to its increased carriage

among asthma patients and possible association with

exacerbations (Flores-Torres and Samarasinghe, 2022)

therefore, increasing the likelihood that endogenous

alterations in the airway bacteriome may occur during

Streptococcus infections in asthma patients. The airway

microbiome further differs based on the number of

eosinophils in the airways. For example, patients with low

eosinophil levels have an increased abundance of Neisseria,

Bacteroidetes Actinobacteria, and decreased abundance of

Sphingomonas, Halomonas and Aeribacillus species compared

with patients with high levels of eosinophils (Sverrild et al., 2017).

Generally, the bronchial bacterial burden is lower in T2-high

asthma patients compared to T2-low asthma patients (Durack

et al., 2017), potentially owing to diverse antibacterial functions

of eosinophils (LeMessurier and Samarasinghe, 2019).

2.2 Airway virome

The human virome comprises all viruses that populate

humans, including viruses that infect both eukaryotic and

prokaryotic cells, and those integrated into the human

genome (Wylie et al., 2012). Relatively little is known about

the airway virome mostly due to technical challenges and fewer

investigators in the field (Wylie et al., 2012). However, multiple

diseases have been associated with virome dysbiosis including

Crohn’s disease, type 1 diabetes, and obesity (Bai et al., 2022).

The most commonly detected commensal viruses in children

hospitalized with acute asthma exacerbations are rhinovirus C,

bocavirus-1 and respiratory syncytial virus-B (Romero-Espinoza

et al., 2018). Asthma patients have reduced abundance and

diversity of the bacteriophage populations while the

eukaryotic virome is increased predominantly by anelloviruses

and picornaviruses (Megremis et al., 2020). The reduction in the

phageome may be important as bacteriophages can control

microbial populations, and the use of bacteriophages as a

therapeutic strategy to reduce bacteria-induced asthma

exacerbations has been proposed (Tzani-Tzanopoulou et al.,

2021). While provocative, the use of phage-therapy must be

approached with caution in asthma patients as bacteriophages

are capable of natural transmission of antibiotic-resistant genes

amongst member of the commensal microbiome (Muniesa et al.,
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2013; Colavecchio et al., 2017). A recent analysis of the sputum

lung virome showed that severe asthma patients have an

increased virome density dominated by β- and γ-herpesviruses
that correlated with poor lung function compared to healthy

controls (Choi et al., 2021). Studies on the airway virome in

specific niches of the RT, in addition to enrollment of patients

with different subtypes of asthma and varying demographics in

parallel with the bacteriome would augment the field with

clinically relevant information beneficial for future

mechanistic studies.

2.3 Airway mycobiome

Environmental fungi are commonly allergenic to patients

with asthma. In fact, severe asthma with fungal sensitization is a

prevalent subcategory of asthma that is often eosinophilic and

difficult to treat (Moss, 2014). Similar to the bacteriome and the

virome, asthma patients have significant fluctuations in the

airway mycobiome (van Tilburg Bernardes et al., 2020a). In

contrast to the bacteriome however, bronchoalveolar lavage

(BAL) of asthma patients have a higher fungal diversity (Liu

et al., 2020) and relative abundance with predominance in

Trichoderma, Alternaria, Cladosporium, and Fusarium

compared to healthy individuals that have Blumeria and

Mycosphaerella enrichment (Sharma et al., 2019).

Rhodosporidium and Pneumocystis are abundant in BAL

samples of pediatric patients with severe asthma although

environmentally dominant Aspergillus/Alternaria species were

not enriched (Goldman et al., 2018). Higher abundance of

Malassezia pachydermatis (van Woerden et al., 2013) and

Cryptococcus pseudolongus (Rick et al., 2020) have also been

reported in the sputum of asthma patients in comparison with

healthy cohorts.

Differences in mycobiome have been classified by asthma

endotypes as well where T2-high asthma patients have a reduced

fungal diversity (correlated with increased eosinophil numbers

(Liu et al., 2020)) compared with T2-low patients (Sharma et al.,

2019; Yang et al., 2022). Endobronchial brushings and BAL

samples from T2-high adult asthma patients showed

enrichment by Alternaria, Aspergillus, Fusarium, and

Cladosporium and these taxa are suggested to serve as

biomarkers of asthma phenotypes (Sharma et al., 2019). As

with other microbes, the immune system is programmed to

recognize and keep commensal fungi in check to prevent a

‘super bloom’. Environmental fungi are able to increase

asthma susceptibility through a variety of antigens (chitin, β-
glucan, proteases, etc.), that stimulate a TH2/TH17 bias (Tiwary

and Samarasinghe, 2021). Then, perhaps dysbiosis in the

mycobiome may promote asthma development through

pulmonary immune stimulation (van Tilburg Bernardes et al.,

2020a). Whether asthma patients with altered mycobiota are

concurrently sensitized to environmental fungi, whether the

mycobiome blooms after an environmental fungal exposure,

and whether environmental fungi interact with commensal

fungi in airways remain enigmatic and in need of investigation.

3 Airway dysbiosis in children and
asthma development

The window between infancy and early childhood is crucial

for immune and microbiome development through crosstalk at

multiple levels (Zheng et al., 2020). Early-life also offers a critical

window during which a signature-microbiome is imprinted

wherein colonization may begin immediately after birth

(Bosch et al., 2016; Chu et al., 2017) and lower airway

microbiome matures in humans within the first two postnatal

months (Pattaroni et al., 2018). The early-life airway microbiome

is a critical regulator in immune programming to impede allergic

asthma. The development of lymphoid tissues in the lungs are

promoted by endotoxins early in life (but not in adulthood)

(Rangel-Moreno et al., 2011). In mouse models of allergic

asthma, the absence of microbial colonization (by

maintenance in germ-free conditions or by administration of

antibiotics early in life) increases total IgE and T2-associated

cytokines in BAL, airway eosinophilia, and airway resistance

(Herbst et al., 2011; Olszak et al., 2012; Russell et al., 2012). The

shift in predominance from Firmicutes and

Gammaproteobacteria to Bacteroidetes in early life induces a

specific subset of regulatory T cells crucial for aeroallergen

immune tolerance via PD-L1 in mice (Gollwitzer et al., 2014).

Similarly, early-life fungal colonization also participates in host

immune development and modulation during airway

inflammation to ovalbumin (van Tilburg Bernardes et al., 2020b).

Colonization of the airway microbiome occurs after birth

even in preterm infants. While bacterial DNA is detectable in

tracheal aspirates of only a fraction of preterm infants during the

first days after birth, all preterm infants have a measurable load of

bacterial DNA by the first week of life (Mourani et al., 2011;

Lohmann et al., 2014) thus exemplifying that the airway

colonization occurs only after birth. Variations in the airway

microbiome based on gestation time (term versus preterm) have

been investigated and demonstrated that severely preterm infants

who showed consistent dysbiosis of the airway microbiome after

birth went on to develop bronchopulmonary dysplasia (Lal et al.,

2016). Moreover, neonates with chorioamnionitis have reduced

levels of Lactobacillus at birth (Lal et al., 2016). Whether airway

colonization begins before birth remains contentious, the

neonatal airway colonization is likely established early after

birth and probably plays a significant role in the development

of the long-term mucosal immunity.

The mode of delivery has a clear influence on asthma

pathogenesis, as many studies have found that Caesarean section

(CS) is a risk factor for asthma development (Thavagnanam et al.,

2008; Guibas et al., 2013). The mode of delivery has a significant
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impact n the mucosal microbiota as well. Delivery by CS delays

intestinal (Kim et al., 2020) and respiratory bacterial colonization,

particularly reducing commensals related to health such as

Dolosigranulum and Corynebacterium (Bosch et al., 2016). In

addition, infants born through vaginal delivery have higher

bacterial load in the lower airways, particularly with more

Firmicutes and Lactobacillus species compared to CS delivery

(Cardelli et al., 2021). History of CS is a risk factor for future

hospitalizations due to viral infections during infancy and childhood

(Moore et al., 2012; Kristensen et al., 2015; Miller et al., 2020;

Alterman et al., 2021), which, depending on the infectious agent,

may increase the risk of asthma onset (Gern, 2000; Beigelman and

Bacharier, 2016; Flores-Torres and Samarasinghe, 2022).

Correspondingly, children delivered by CS have a higher risk of

RSV-induced hospitalization, subsequent wheezing, and asthma

symptomatology compared to those delivered vaginally (Zomer-

Kooijker et al., 2014; Kristensen et al., 2015). Neonatal gut

Clostridium abundance in early life after CS delivery (Shaterian

et al., 2021), may promote asthma risk in later life (Penders et al.,

2007). This is concerning, as the number of CS performed

(sometimes performed as a patient preference) is increasing

globally, with projections that nearly a third of all births will be

by CS by 2030 (WHO, 2021). Black women have been found to be

more likely to have a CS compared to other races in the US

(Edmonds et al., 2013; Valdes, 2021), with increased incidence

from 22 to 64% (Valdes, 2021). The link between increased

incidence of asthma and CS delivery suggest that this is an area

for intervention and that research efforts should be focused on

understanding the drivers for increased CS. Longitudinal analyses of

the gutmicrobiome inCS delivered versus vaginally delivered infants

with emphasis on maternal demographics may help elucidate the

long-term impact CS may have on the health of the baby.

4 Lung-Gut axis

The epithelia of the respiratory and gastrointestinal tracts

share a common embryonic origin thus sharing mucosal

functions despite performing physiologically distinct roles

(Chunxi et al., 2020). The microbiota of the GI tract is the

highest in abundance in the human body at 1014 bacteria in

comparison with the low abundance in the lower RT of

10–100 bacteria/1,000 human cells (Marsland et al., 2015).

Bifidobacterium, Faecalibacterium, and Bacteroides represent

the most abundant genera in intestinal microbiota (Marsland

et al., 2015) encompassing clusters of bacteria known as

enterotypes. Bifidobacterium species in the gut are important

inducers of antimicrobial peptides and immunoglobulin A (IgA)

production that are vital for broader mucosal protection (Pilette

et al., 2004; Mantis et al., 2011; Budden et al., 2017; Budden et al.,

2019).

Metabolites of gut microbiota regulate the tone and

composition of the gut microbiota communities as well as

immunological responses capable of affecting distal organs

including the lungs as reviewed previously (Stavropoulou

et al., 2020). Variations in the makeup and abundance in the

gut microbiome have been associated with lung diseases and it is

estimated that microbiota of each organ may cross-regulate

during health and disease (Anand and Mande, 2018; Barcik

et al., 2020). Since the immune system is educated by non-

self-patterns, it is no surprise that the gut-lung microbiota axis

can program and regulate the immune system. Gut metabolites

such as short-chain fatty acids (SCFA) serve either as an energy

source, or as signaling molecules (Anand and Mande, 2018), by

binding to G-protein coupled receptors initiating host immune

cascades (Sun et al., 2017). Microbiome-secreted SCFA hinders

the development of allergic asthma via several mechanisms

including signaling through G-protein coupled receptor 41

(Sun et al., 2017), inhibition of histone deacetylases

(Verstegen et al., 2021), and immunoregulation of dendritic

cells (DCs), T and B lymphocytes to be non-reactive to

environmental allergens in experimental models of allergic

asthma (Trompette et al., 2014; Kim et al., 2016; Cait et al.,

2018; Dang and Marsland, 2019). During diseases that weaken

mucosal barrier integrity such as sepsis and acute respiratory

distress syndrome, there may be opportunities for the direct

transfer of microbiota across the gut-lung axis (Budden et al.,

2017). Indeed, dysbiosis in neonatal gut microbiota with depleted

Bifidobacteriaceae, Lactobacillaceae, Clostridiceae bacteria and

enriched Candida and Rhodotorula fungi together with

metabolites such as lipokines and sterols that inhibit

regulatory T cells are associated with atopy and allergy

development in childhood (Fujimura et al., 2016).

The “common mucosal response” theory is gaining

popularity with increasing evidence suggesting that effects of

the microbiome on gut mucosal immunity may influence

mucosal immune responses in the lungs (Anand and Mande,

2018). Mucosa-associated lymphoid tissue (MALT), the main

component of the mucosal immune system, includes the gut-

associated lymphoid tissues (GALT) and the bronchus-

associated lymphoid tissues (BALT), both of which perform

situational functions as inducer and/or effector sites (Anand

and Mande, 2018; Barcik et al., 2020). Microfold cells that line

the GALT take up gut microbial antigens transferring them to

DCs in subepithelial regions (Anand andMande, 2018) to initiate

T and B cell responses including IgA production (Anand and

Mande, 2018). Conversely, gut dysbiosis can alter the balance

between immunoglobulins to promote IgE levels either through

increasing sensitivity to allergens or degrading IgA cumulatively

leading to atopy/allergy (Fujimura et al., 2016; Salameh et al.,

2020). Thus, gut commensals act as important immune

informers, especially in asthma pathophysiology.

Differences in gut microbiota have been associated with

disease susceptibilities by race and sex. Although minimal

emphasis is placed on microbiome profiling by race, analysis

of the gut microbiome may be a simple and early biomarker
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for disease predisposition provided sufficient information is

made available in health and disease states across racial

groups. For example, while the composition and abundance

of Firmicutes and Bacteroidetes were equivalent between

Black and White populations, Actinobacteria and

Verrucomicrobia were more abundant phyla in Black

women particularly in relation to insulin resistance

compared to White women (Price et al., 2022). This

difference suggests that a linkage exists between

microbiome and race in the context of disease susceptibility

and severity (Brooks et al., 2018). While these susceptibilities

may be the result of socioeconomic differences rather than

inherent biological differences, recognizing and

understanding the origins of these differences may be

valuable determining the appropriate interventions.

5 Factors that affect the airway
microbiome

5.1 Genetics

Host genetics also govern the airway microbiome

composition based on genome-wide association study

(GWAS). Host genes involved in shaping the airway

microbiota include those important in pattern recognition

receptors, barrier defense and mucosal immunity, MHC/HLA

specificity, cytokine and chemokine signaling including the JAK/

signal transducer and activator of transcription pathway, and

vitamin D signaling (Tang et al., 2021). GWAS correlating host

genetics and airway microbiota show positive association

between mucosal immunity genes (such as FUT3, PGLYRP3,

and PGLYRP4) and the relative abundance of upper RT

microbiome (Igartua et al., 2017).

The fact that close relatives have significantly reduced beta-

diversity in the airway microbiome further implicates the

importance of host genetics on the make-up of the airway

microbiome (Igartua et al., 2017). Data on host genetic

variations in 93 individuals and respective bacterial abundance

retrieved from the Human Microbiome Project, showed

significant association between host genetic variation and

composition of microbiome in upper RT components anterior

nares, throat, and tongue dorsum (Blekhman et al., 2015). These

authors performed further analysis to elucidate the biological

processes involved in host genetics and microbiome interaction

and found substantial enrichment within the leptin signaling

pathway suggesting that leptin may regulate the microbiome

(Blekhman et al., 2015). Leptin, the protein derivative of the

obesity gene, is a significant biomarker of asthma in children

(Sood et al., 2006).

Innate immune signaling cascades are increasingly gaining

traction for their role in asthma pathogenesis (Zakeri and Russo,

2018) and creating the setting for the airway microbiome

(Lipinski et al., 2021), so much so that pattern recognition

receptor manipulation is a successful therapeutic avenue for

asthma (Bezemer et al., 2012). Polymorphisms in CD14

rs2569190 and TLR2 rs13150331 in asthma patients influences

the microbial composition (Losol et al., 2021). Asthma patients

with genotypes AG/GG at CD14 rs2569190 showed elevated

levels of neutrophils and lower levels of Prevotella and

Dolosigranulum compared to those with the AA genotype

(Losol et al., 2021).

5.2 Smoking

Smoking is a major cause of several chronic airway

diseases such as chronic obstructive pulmonary disease

(COPD), lung cancer (Cox et al., 2011) and asthma (Huang

and Shi, 2019) wherein smokers have more severe symptoms

compared to non-smokers and smoking cessation drastically

improves disease control (Munck et al., 2016). Since the

airway microbiome plays a crucial role in disease

pathology, several studies have attempted to elucidate the

effect of smoking on the airway microbiome. Of the

4,000 chemical compounds found in tobacco smoke, about

100 have known hazards to human health (Pietinalho et al.,

2009). However, how specific compounds within cigarette

smoke may impact the respiratory microbiome is notably

under investigated.

As expected, smokers’ microbiome differed between the

upper and lower RTs with no significant difference in the

relative abundance of specific microbes of lower RT (Morris

et al., 2013). Compared to the oral microbiome of non-

smokers, the relative abundance of species belonging to

Porphyromonas, and Gemella was substantially less in

smokers (Morris et al., 2013). Although electronic cigarettes

(EC) have been introduced as a relatively low-risk alternative

to tobacco cigarettes, studies have only recently started to

address the paucity of data concerning adverse effects of EC

use on respiratory health including the airway microbiome

(Chopyk et al., 2021). In comparison to non-smokers/-vapers,

EC users have greater alpha diversity in saliva samples, and a

substantial shift in beta diversity in buccal mucosa samples

(Chopyk et al., 2021). A significant increase in the abundance

of bacteria such as Veillonella and Haemophilus was also

observed in EC users together with increased nasal

colonization by Staphylococcus aureus (Chopyk et al., 2021).

The oral microbiome has been compared to the lung

microbiome in cigarette smokers, EC users, and never-

smokers (Ying et al., 2022). The lung microbiome in

cigarette smokers differs from that of EC users and non-

smokers, where most bacteria including N. elongata, N.

sicca, and H. parainfluenzae are decreased in smokers.

Comparing the oral microbiome of smokers versus never-

smokers, and smokers versus EC users showed differential
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abundance of 152 species and 17 species, respectively, but only

21 species differed in their abundance within the lung and oral

cavity (Ying et al., 2022).

The airway microbiome in the context of smoking show

increased relative abundance of Firmicutes, Actinobacteria, and

Propionibacterium species and a decrease in Betaproteobacteria

abundance in smokers (Pfeiffer et al., 2022). A positive

correlation was observed between lung specific Bacteroidetes and

long-term smoking compared to the negative correlation observed

between Prevotella and Veillonella genera smoking years (Pfeiffer

et al., 2022). The relative abundance of upper RT Leptotrichia and

Centipeda increased and associated with the levels of nicotine

metabolites and smoking frequency (Pfeiffer et al., 2022).

The depletion of oxygen in oropharynx can lead to the

outgrowth of anaerobes and facultative anaerobes like

Streptococcus and Veillonella although commensals like S. aureus

are not altered by smoking status (Pfeiffer et al., 2022). The

symbiotic relationships of several bacteria in upper and lower

airway can be disrupted by smoking, thus affecting lung health.

Compared to never-smokers, smokers have a lower relative

abundance of Proteobacteria in the upper airways and higher

abundance in the lungs. This could be due to epithelial cell

injury caused by cigarette smoke (Spira et al., 2004) that permits

colonization by biofilm-forming bacteria (Invernizzi et al., 2020).

Pfeiffer et al. reported that such biofilm-forming bacteria included

Betaproteobacteria and Gammaproteobacteria, and were detected

solely in the lungs of smokers (Pfeiffer et al., 2022). Striking

similarities in the abundance of airway microbiome of smokers

versus non-smokers were reported byCharlson et al. (Charlson et al.,

2010) wherein the anaerobic Firmicute Megasphaera species

significantly increases alongside increased abundance of potential

pathogens like Actinomyces, Atopobium, Streptococcus, and

Veillonella species. Significant increase in the abundance of

Haemophilus has also been observed in smokers’ sputum

compared to non-smokers (Wang et al., 2019). A recent study

on a Chinese cohort found an increase in the relative abundance of

the genera Haemophilus, Rothia, Neisseria, Actinomycetes,

Porphyrins, Streptococcus, and Acinetobacter in smokers was

observed (Liu et al., 2022).

Dysbiosis and alterations in relationships within microbial

communities that result from smoking may depend on smoking

mode, frequency, ingredients, and underlying co-morbidities. For

instance, microbes such as Pseudomonas aeruginosa, Acinetobacter,

Clostridium, Bacillus, Burkholderia, and Klebsiella have been

detected in cigarettes made in European Union (Huang and Shi,

2019). Smoking also affects the respiratory epithelial barrier and

function which cascades to alterations in the pulmonary immune

response including antimicrobial defense strategies that may keep

the airway microbiome in check. Importantly, the change in the

microenvironment of the airway due to smoking such as reduced

oxygen, pH shift, and acid productionmay also aid in the outgrowth

of microbes that are anaerobic (Huang and Shi, 2019). While

smokers who have asthma show a greater bacterial diversity in

comparison to non-smokers, smoke cessation does not alter

bacterial diversity (Munck et al., 2016). Thirdhand smoke

exposure in children has also been reported to cause an

alteration in their airway microbiome, in a manner similar to

studies reported earlier for smokers, which includes changes in

the abundance of Streptococcus, Corynebacterium, and

Staphylococcus (Kelley et al., 2021).

Glycerol, propylene glycol and several flavorings are key

chemical ingredients in ECs which may or may not consist of

nicotine (Farsalinos et al., 2014). Although studies suggest that

ECs may only release low levels of toxic compounds, the use of

food-approved flavorings in EC may pose a health risk upon

inhalation (Farsalinos et al., 2014). For instance, a study focusing

on the effect of flavored EC, with or without nicotine, showed a

substantial negative effect on pathophysiology of allergic airways

disease in mice (Chapman et al., 2019) and occupational

inhalation of food flavorings has been known to aggravate

asthma symptoms (Clapp and Jaspers, 2017). Thermal

decomposition of EC liquid ingredients propylene glycol and

vegetable glycerin, pose a risk of production of reactive carbonyl

compounds such as acrolein, formaldehyde, and acetaldehyde

which have known toxic properties (Clapp and Jaspers, 2017).

Moreover, rodent models have revealed that nicotine exposure of

dams causes lung developmental abnormalities in the offspring,

and lead to transmission of asthma-like symptoms through

multiple generations (Clapp and Jaspers, 2017) suggestive of

epigenetic imprinting. As ECs can have a plethora of effects on

the pulmonary system including the microbiome, detailed

studies on the effect of EC on respiratory microbiome in

asthmatics and non-asthmatics would be pertinent (Hickman

and Jaspers, 2020).

The percentage of theWhite and Black populations that smoke is

comparable (Smoking & Tobacco use, 2022), however, intriguingly,

Black smokers suffer frommore significant negative consequences of

smoking (Mendez and Le TTT, 2021) including asthma (Marchese

et al., 2015) than their White counterparts. Factors including the age

of smoking onset, smoking index, pack years, housing type (shared

ventilation systems vs. single), and second-hand smoke exposure

require further investigation to better understand the impact smoking

has on the pediatric population in correlation with asthma symptoms

and may contribute to the race-associated differences reported

between White and Black smokers.

5.3 Diet and nutrition and other
socioeconomic factors

The co-occurrence of asthma and obesity is well-recognized

as associative, although mechanistic insights are not fully

elucidated. Obesity is a risk factor not only in adults, but

also in children, and the increase in the risk of asthma

development due to obesity may start in utero (Dixon and

Que, 2022). Furthermore, the occurrence of maternal obesity is
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independently associated with a 15–30% increase in the risk of

asthma in the progeny although this risk is also governed by

inflammatory mechanisms and pre-/post-natal changes (Dixon

and Que, 2022). The role of obesity-associated inflammatory

response which can ultimately lead to asthma, and the

contributory role diet plays in this relationship has been

validated (Calcaterra et al., 2021). In obese patients with

asthma, food components such as sugar, fat, and inferior-

quality nutrients have been associated with the inflammatory

response (Calcaterra et al., 2021). The US Department of

Agriculture has identified four zip codes within the city of

Memphis as being food deserts, where families do not have

access to grocery stores (Economic Research Service, 2022).

Children living in such environments regularly consume a diet

high in fat, low in fiber, and low in methylation, all of which

promote asthma severity and airway dysbiosis (Montrose et al.,

2017; Rosa and Perzanowski, 2019; Musso et al., 2020; Toivonen

et al., 2020; Wen et al., 2022).

Breastmilk is a rich admixture of macro- (protein, fat, and

lactose) and micro- (vitamins, trace elements) nutrients, bio-

actives (hormones, antibodies, cytokines, antimicrobials, and

exosomes) (Ballard and Morrow, 2013). Wasilewska et al.

showed a strong correlation between duration of

breastfeeding and health status of children wherein the

breast-fed group of infants had comparatively lower

incidence of hypersensitivity to allergens and subsequent

asthma development (Wasilewska et al., 2022). While the

source remains controversial, breastmilk also contains a

microbiome abundant in Lactobacillus and Bifidobacterium

species that are likely to promote infant gut health (Ruiz et al.,

2019). Compared to breast-fed babies, formula-fed babies

show a lower bacterial-diversity and are more prone to

developing asthma. For example, maternal TGF-β and IgA

are crucial for intestinal homeostasis (Oddy, 2017) and

protection against obesity and allergic disease later in life

(Oddy, 2017). While the benefits of breast-feeding are well

accepted (Wang et al., 2017) including the mitigation of

potentially detrimental effects of antibiotic use during

pregnancy (Huo et al., 2018), breastmilk itself may also be

detrimental as a source of obesogenic factors, as opposed to

protective components (Isganaitis, 2021).

The link between diet and microbiota is evident from the co-

occurrence of gut dysbiosis and malnutrition. A diet that is rich

in nutrients and dietary fibers can result in a diverse gut

microbiome that is favorable for host immunity and health

(Anand and Mande, 2018). A compromised diet not only

affect the intestinal health, but also leads to chronic

pulmonary disorders such as COPD and asthma (Anand and

Mande, 2018). The impact of variation in diet and dietary

components on the composition of microbiota of the host has

been reviewed extensively (Singh et al., 2017; Tomova et al., 2019;

Zhao et al., 2019; Peled, 2021; Wu et al., 2022). However, the

modes by which the microbiota composition is altered, either due

to interactions between dietary components and the microbiota,

or due to crosstalk between microbes themselves as a result of the

variation in diet, remains less clear.

5.3.1 Carbohydrates
Gut microbiota utilize complex carbohydrates and soluble

fibers to produce metabolites including SCFA by anaerobic

fermentation. These SCFA in turn play a potential role in

maintaining a “normal” gut microbiota. Considering this, and

the role of a normal microbiome in maintaining pulmonary

health, the contribution of dietary carbohydrates and fibers to

gut-lung health is significant. SCFA produced by gut microbiota

contains acetate, propionate, and butyrate at a 60:20:

20 proportion (Machado et al., 2021) thereby making acetic

acid, propionic acid, and butyric acid the most abundant

SCFA in the human gut (Yip et al., 2021). In addition to

serving as immunomodulators, SCFA may also either act as a

carbon source for certain gut microbiota or be toxic (at higher

concentrations) to other microbial community members (Sun

and O’Riordan, 2013). SCFA production causes changes to the

gut pH which has an important regulatory role on the gut

microbiota composition (Krautkramer et al., 2021).

Several studies indicate that the risk of asthma is lower in

subjects who consume a fiber-rich diet or have high levels of

SCFA (Lee-Sarwar et al., 2020; Yip et al., 2021; Wen et al., 2022).

Allergic asthma is ameliorated by butyrate via various

mechanisms such as suppressing the activation of DC and

migration to local lymph nodes, by inhibiting B cell isotype

class switching and differentiation of plasma cells to reduce

circulating IgE (Yip et al., 2021). Maternal SCFA

supplementation during pregnancy in a mouse model reduced

allergic airways disease development in the offspring (Lee-Sarwar

et al., 2020). Similarly, infant fecal SCFA levels correlate with

reduced asthma development as one year old infants with high

fecal butyrate and propionate levels have 50% reduced sensitivity

to allergens by age six (Yip et al., 2021). A correlation exists

between the presence of butyrate or butyrate-producing

commensals, and the severity of allergic asthma in mice as

well as humans (Yip et al., 2021). Susceptibility towards

allergic outcomes in children is higher in cases of low SCFA

levels in early life (Cheng et al., 2022). SCFA show

immunomodulation by increasing T regulatory cell

differentiation (Lee-Sarwar et al., 2020), a cell population that

seems important in alleviating allergic asthma in experimental

models (Kearley et al., 2005; Lewkowich et al., 2005; Baru et al.,

2010) although their specific role in human disease is still unclear

(Robinson, 2004).

Most studies have associated high fiber diets with elevated

SCFA production by gut commensals, health, and ultimate

reduction in asthma occurrence. It is also possible that high

fiber diets alter the microbiome without affecting SCFA

production and subsequently reduce lung inflammation and

asthma (Wen et al., 2022). Herein, the gut microbiome was
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altered by a new genus of lipid-metabolizing microbes such as

Romboutsia and Ruminococcus torques that were enriched by a

high-cellulose diet (Wen et al., 2022). Although not directly

tested, positive associations between dietary fiber intake in

asthma patients and improved lung function (Berthon et al.,

2013) are likely through direct/indirect microbiome regulation.

Both Black and White populations have reduced fecal SCFA

content compared to Native Africans (O’Keefe et al., 2009), and

incorporating fiber-rich food has led to significant alterations to

the gut microbiome thereby improving mucosal health in Black

cohorts (O’Keefe et al., 2015). Therefore, ensuring that Black

children, especially, have access to fiber-rich food may promote

gut microbiome health and reduce asthma pathogenesis.

5.3.2 Proteins
The various states that proteins exist in the gut based on post-

translational modifications, digestion, and their interaction with

other food components, can all affect the composition of the gut

microbiota (Wu et al., 2022). Furthermore, protein source also

affects the gut microbiome; hen egg white-fed rats show relatively

higher levels of Akkermansia while duck egg white-fed rats have

higher abundance of Peptostreptococcaceae and Proteobacteria

and lower abundance of Lachnospiraceae (Yu et al., 2020). On the

other hand, soy proteins improve abundance of Bifidobacteria

and Lactobacilli while decreasing Bacteroidetes (Huang et al.,

2016; Ashaolu, 2020). Variations in nutritional protein source

could play a vital role in asthma symptom control.

A study comparing children from an African village on an

agrarian diet (rich in fiber and low in animal protein and fat)

and children from the European Union on a Western diet

(rich in fat and sugar) showed substantial differences in the

gut microbiota. Children on the agrarian diet showed

enrichment in Bacteroidetes, depletion in Firmicutes,

higher SCFA content, and lower levels of Escherichia and

Shigella (De Filippo et al., 2010). As expected, Prevotella and

Xylanibacter (genetically equipped to digest fiber to produce

SCFA) were more abundant in the African children (De

Filippo et al., 2010). Thus, plant-based high protein diet

could potentially help reduce asthma risk in all children.

Surviving human biliary secretions that can be cytotoxic to

prokaryotes requires microbial adaptation (Begley et al.,

2005). Diets rich in animal protein led to abundance of

bile-tolerant bacteria such as Bacteroides, Alistipes, and

Bilophila, and lowered the levels of Firmicutes Roseburia,

Ruminococcus bromii, and Eubacterium rectale (David

et al., 2014). As a change in proportion of functionally

distinct bacterial populations can occur when specific

macronutrients are favored or limited, a diet that is

disproportional can cause dysbiosis (Zhao et al., 2019).

Indeed, a long-term high protein diet causes gut dysbiosis

along with gut inflammation with heightened permeability,

kidney damage, and elevated risk of developing metabolic

(type 2 diabetes and obesity) and cardiovascular diseases

(Snelson et al., 2021; Cai et al., 2022). However, the intake

of a protein-rich diet can help reduce fat mass (Geiker et al.,

2018) which could help improve asthma symptoms. A diet

enriched with meat does not impact lung function in adults

with asthma (Hooper et al., 2010) emphasizing that a single

cause and effect relationship between macromolecules and

asthma may not exist.

5.3.3 Fats
A diet high in fat, does reduce FEV1 in adult asthma patients

possibly through direct impact on inflammation (Wood et al.,

2011), impacting obesity (Jessri et al., 2017), and the microbiome

(Murphy et al., 2015). Several studies have reported on changes in

the composition of the gut microbiota as a function of dietary fat

(Fava et al., 2013; Costantini et al., 2017; Muralidharan et al.,

2019; Wolters et al., 2019; Mokkala et al., 2020), however, very

few of them have attempted to decipher the mode by which fats

affect the microbiota composition. Studies on the effect of high-

fat diet on the microbiota composition are contradictory likely

because food is complex and considering the effect of a particular

dietary component on the microbiota composition does not

address the synergistic effect of other dietary components.

Gut dysbiosis from fat-rich diets, may be compounded by

other dietary components. Nuts, for instance, are rich in

unsaturated fatty acid, fiber, as well as various bioactive

phenolics and minerals. Some of these components reach the

colon in an intact form, ultimately affecting the composition of

microbiota. Phenolics, and the SCFA such as butyric acid

produced from nut fiber can positively alter gut microbiota to

yield a healthier composition. Nuts may function as prebiotics

either by increasing the abundance of Bifidobacteria or lactic acid

bacteria (Muralidharan et al., 2019) or by providing an additional

fat source due to incomplete absorption (Cassady et al., 2009).

In the case of planned diets such as the very low-calorie

ketogenic diet (VLCKD), the consumption of fat is high

(Alsharairi, 2020). Generally, a fat-rich diet can cause

dysbiosis. However, dysbiosis from high-fat diet drastically

differs from that of a VLCKD wherein Bifidobacterium species

are reduced in abundance largely as ketone bodies directly hinder

Bifidobacterium growth (Ang et al., 2020). VLCKD has been

associated with altered gut microbiota in pediatric patients and

reduced asthma risk, perhaps by metabolic reprogramming and

epigenetic markers (Alsharairi, 2020) or reducing allergen-

induced airway inflammation by inhibiting innate lymphoid

cells in the lungs (Karagiannis et al., 2020). Supplementing the

diet with polyunsaturated fatty acids like eicosapentaenoic acid

and docosahexaenoic acid substantially decreases abundance of

Bacteroidetes while increasing Firmicutes in mice (Mujico et al.,

2013) potentially through the alteration of the intestinal wall

fatty acid composition thus affecting gastrointestinal

microbiota attachment (Costantini et al., 2017).

Alternatively, fatty acids could get incorporated into

bacterial cell membranes which also affects their adhesion
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properties (Mokkala et al., 2020), possibly favoring certain

microbes over others. The metabolites produced by the gut

microbiota as a result of high-fat diet may affect their

composition either by modifying the toxicity locally of the

intestinal environment, or by systematically inducing low-

grade inflammation (Mokkala et al., 2020).

Diets rich in omega-6 fatty acids can impact metabolism and

inflammation. Compared to mice fed with more omega-6 fatty

acids, mice given more omega-3 fatty acids showed undetectable

levels of LPS-producing pro-inflammatory bacteria, including

the phyla Proteobacteria (gamma- and delta-proteobacteria,

E. coli, Fusobacterium, Prevotella, segmented filamentous

commensals and Clostridium cluster XI (Kaliannan et al.,

2015). Mice that were given more omega-3 fatty acids also

had elevated levels of bacterial groups such as Lactobacillus

(primarily L. gasseri), Bifidobacterium, Enterococcus faecium,

Akkermansia muciniphila, and Clostridium clusters IV and

XIVa which are anti-inflammatory and/or LPS-suppressing

(Kaliannan et al., 2015).

Antimicrobial properties of fatty acids may also exert a direct

effect on microbiota composition. Ethyl ester of eicosapentaenoic

acid inhibits the growth of anaerobe symbiont, Bacteroides

thetaiotaomicron, a representative member of Bacteroidetes,

whereas linoleic acid inhibits Lactobacillus strains (Mokkala

et al., 2020). Conversely, medium chain fatty acids, which are

abundant in breast milk, may increase the growth of Lactobacillus

and Bifidobacterium, highlighting their role in early development

of gut microbiota (Nejrup et al., 2015). It is worth noting that

both, Lactobacillus and Bifidobacterium have been known to

substantially alleviate asthma and other allergic conditions

(Ozdemir, 2010; Liu et al., 2021). Aforementioned animal

protein-rich diets are also accompanied by high fat content

that promoted bile secretion. Intriguingly, the microbiota

composition of mice fed with a bile-supplemented diet is

similar to mice fed with high-fat diet (Zheng et al., 2017).

5.3.4 Probiotics
The beneficial effects of probiotics include stimulation of

anti-inflammatory cytokines, enhancing mucosal barrier

function, and modification of the gut microbiome

composition (Singh et al., 2017; Stavropoulou and

Bezirtzoglou, 2020). Regular consumption of probiotic foods

such as fermented milk and yogurt leads to an increase in

bacterial load, especially beneficial gut bacteria such as

Bifidobacteria and/or Lactobacilli (Singh et al., 2017) which

play significant roles in asthma symptom alleviation

(Ozdemir, 2010). Studies have also exemplified that probiotic

bacteria aid in re-establishing normal microbiota after

perturbation (Sanders, 2016). For instance, the use of

antibiotics is associated with antibiotic-associated diarrhea

typically caused by the outgrowth of Clostridioides difficile.

The use of Lactobacillus rhamnosus GG and Saccharomyces

boulardii after the termination of antibiotic treatment has

been reported to control the outgrowth of C. difficile and

restore the microbiota to normalcy (Ceapa et al., 2013).

The transient probiotic bacteria can modulate commensals

by producing anti-microbial compounds such as reuterin

(produced by Lactobacillus reuteri) and plantaricin (produced

by Lactobacillus plantarum), or indirectly via immune system

modulation or altering the gut barrier function (Ceapa et al.,

2013). Probiotic microbes may also modulate outgrowth or

abundance of specific microbiota such as Roseburia intestinalis

or Eubacterium halii, which are lactate-using firmicutes capable

of producing various kinds of SCFA (O’Keefe et al., 2009).

Cumulatively, functions of probiotic bacteria may help regain

a favorable microbiome after stress.

5.3.5 Vitamins
Since vitamins are efficiently absorbed in the proximal

small intestine, and do not tend to reach the distal

gastrointestinal tract, they were not thought to affect the

composition of gut microbiota. However, administration of

higher doses to escape complete absorption (Mandal et al.,

2016) and colon-targeted delivery (Fangmann et al., 2018) are

efficacious modes of gut microbiome modulation (Pham et al.,

2021). Each vitamin may aid in maintaining the pulmonary

health via one or more mechanisms. Vitamins A, C, and E for

instance, can alleviate asthma severity by downregulating

oxidative stress which exacerbates airway inflammation

(Han et al., 2013). Vitamin A may also act directly on the

immune system by inhibiting TH2 and TH17 responses while

vitamin C may reduce airway reactivity and inflammation

through prostaglandin inhibition (Han et al., 2013). The

dietary intake of vitamin A and vitamin C in asthma

patients is significantly low (Allen et al., 2009), and children

with severe asthma have low plasma vitamin A levels

(Samarasinghe et al., 2020). In comparison to mild asthma,

vitamin E levels are significantly low in severe asthma (Allen

et al., 2009). Vitamin D also plays a crucial role in pulmonary

health, and similar to children with eosinophilic esophagitis

(Armbruster-Lee et al., 2018), vitamin D deficiency/

insufficiency are associated with asthma pathogenesis (Wang

et al., 2022). A strong correlation has been observed between

vitamin D deficiency and asthma in Black children (Paul et al.,

2012). Interestingly, other risk factors for developing asthma

such as urban residency and obesity are also observed with

vitamin D deficiency (Paul et al., 2012). Independent of racial

ancestry, an association between vitamin D deficiency and

asthma exacerbations has also been observed in Puerto

Rican children (Brehm et al., 2012). Although the exact

mode of action of vitamin D in asthma prevention is not

well-understood, it may be through regulation of immune

response or gene expression, enhancing responsiveness

towards steroids, influencing lung development/function,

prevention of weight gain, or by protecting against viral

infections (Han et al., 2013; Armbruster-Lee et al., 2018).
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Although humans depend greatly on their diet for vitamin

acquisition, gut microbiota also serve as a source (Rowland et al.,

2018; Pham et al., 2021). Vitamins (such as B vitamins) produced

by the gut microbiota may primarily be utilized by microbes of

symbiotic association, thus not being able to provide the host

with the daily recommended intake (Magnusdottir et al., 2015).

Markers of folate deficiency, for instance, have been associated

with asthma as well as attacks of shortness of breath (Thuesen

et al., 2010). Others such as vitamin K are predominantly

produced by Firmicutes, Proteobacteria, and Bacteroidetes in

the gut (Ravcheev and Thiele, 2016). Vitamin K is a crucial co-

factor for periostin (Coutu et al., 2008) which is significantly

increased in asthma patients (Jia et al., 2012), linking gut

dysbiosis to lung disease.

5.3.6 Minerals
Minerals can be divided into three groups based on their role

in asthma pathophysiology: 1) minerals (such as copper, zinc,

and selenium) that are involved directly in immunity, 2) minerals

(such as chromium, iodine, iron, and manganese) that are

involved in obesity, disturbances in thyroid gland, anemia,

and oxidative stress, and 3) the minerals of minor or

unknown significance in asthma (Zajac, 2021).

Commensals of the gut are sensitive to mineral levels, utilize

them, and regulate availability for the host (Barone et al., 2022).

The mechanism by which the minerals affect the microbiota

composition is interesting. For instance, iron availability

correlates with butyrate production by pediatric gut

microbiota and iron deficiency leads to a reduction in

butyrate-producing anaerobe bacteria such as Roseburia

species, E. rectale and members of Clostridium cluster IV,

such as F. prausnitzii (Dostal et al., 2015). The gut microbiota

also plays a crucial role in improving the bioavailability of iron

for the host. For instance, p-hydroxyphenyllactic acid secreted by

the probiotic microbe L. fermentum reduces ferric iron to ferrous,

thus making it bioavailable to the host (Gonzalez et al., 2017).

Accordingly, intestinal epithelia of germ-free mice showed a 2-

fold decrease in ferroprotein abundance, as well as iron

deficiency, which was restored in the presence of the

commensals B. thetaiotaomicron and F. prausnitzii and the

probiotic bacterium S. thermophilus by a 12-fold induction of

ferritin in colon (Deschemin et al., 2016). Asthma and poor lung

function are associated with reduced serum iron levels possibly

due to iron loading that occurs in leukocytes recruited into the

lungs during exacerbations (Brigham et al., 2015; Ali et al., 2020;

Zajac, 2021).

Gut microbiota also play a role in improving the

bioavailability of other minerals. Lactobacillus strains such as

L. paracasei LPC09 (DSM 24243) have been shown to degrade

oxalates, which otherwise hinder the absorption of calcium in

the host (Mogna et al., 2014). Fiber-rich diets enrich

Bacteroidetes (Parabacteroides) and Firmicutes (Clostridium)

FIGURE 1
Dominant bacteria, viruses and fungi in the airways in health and asthma. Certain microbial families dominate in lungs on healthy individuals to
maintain a balance between varying ecosystems and remain in a symbiotic relationship with the host. This balance is rapidly broken during altered
immune states in response to an exogenous trigger as in asthma. Dysbiosis, whether by cause or as effect, is a prominent feature in asthma, andmay
have a long-lasting impact on both the endogenous microbiome and the host. Figure prepared on BioRender.
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that produce SCFA (Whisner et al., 2016) through calcium

absorption. Additionally, SCFA-driven reduction in pH boosts

calcium bioavailability to the host by hindering calcium

phosphate formation (Weaver, 2015; Whisner et al., 2016).

Calcium itself supports the growth of Bifidobacterium species

that are associated with substantial alleviation of asthma

(Chaplin et al., 2016).

Magnesium influences the diversity of gut microbiota (Bielik

and Kolisek, 2021) where optimal levels of magnesium are favorable

for gut microbiome homeostasis. Elevated magnesium in rats leads

to overgrowth of proinflammatory phyla Proteobacteria, along with

Parabacteroides, Victivallis, and Butyricimonas, whilst normal

magnesium levels promote higher diversity of the gut microbiota

(Garcia-Legorreta et al., 2020). Interestingly, deficiency or

excessively high levels of copper have been associated with

chronic inflammation. Deficiency of other elements such as

selenium and zinc on the other hand, have been correlated with

asthma. Other elements such as manganese show contradictory

association with asthma pathogenesis (Zajac, 2021).

6 Drugs and vaccines

Alterations to the gut/lung microbiomes affects asthma

symptoms and adds another layer of complexity to asthma

pathogenesis. Unfortunately, asthma patients are often treated with

medications that directly impair the gut and airway microbiota.

Although some of these medications are recommended for asthma

control, precise regulation and control are needed as misuse and

overuse of them could be less beneficial or even harmful.

6.1 Antibiotics

Since their discovery, antibiotics have saved countless lives.

However, misuse and overuse of these medications can result in

the development of bacterial resistance, microbial dysbiosis and

increased risk of diseases including diabetes, obesity, allergies and

asthma (Blaser, 2016). Studies have shown that asthma

development positively correlates with antibiotic usage during

pregnancy and periods of life when antibiotic prescription is

more frequent (Penders et al., 2006; Kozyrskyj et al., 2007; Marra

et al., 2009; Martel et al., 2009; Murk et al., 2011; Penders et al.,

2011; Risnes et al., 2011; Hoskin-Parr et al., 2013; Arrieta et al.,

2015; Bookstaver et al., 2015; Blaser, 2016; Castro-Rodriguez

et al., 2016; Loewen et al., 2018; Ni et al., 2019; Donovan et al.,

2020; Zhong et al., 2021). In fact, international guidelines for

asthma recommend against antibiotic usage in infants and young

children (Global Initiative for Asthma, 2021). However,

antibiotics are commonly prescribed to children (Hales et al.,

2018), and given to children with asthma at a greater rate than

children without asthma (Fong et al., 2021), sometimes without

any justification (Paul et al., 2011).

Experimental studies have demonstrated that antibiotic use

increases asthma symptom severity and reveal some of the

immunologic mechanisms involved (Russell et al., 2012; Kim

et al., 2014; Yang et al., 2019; Alhasan et al., 2020). Antibiotics

reduce CD4+FoxP3+ T regulatory cells in the colon (Russell et al.,

2012) and lung-draining lymph nodes (Adami et al., 2018),

decrease cecal levels of SCFAs (Alhasan et al., 2020), promote

M2 macrophage polarization in the lungs (Kim et al., 2014),

leading to long-lasting alterations to the gut and lung

microbiome richness, evenness, and composition (Jernberg

et al., 2010; Yang et al., 2019). Additionally, expansion of

fungi Wallemia mellicola and Candida albicans in the gut

after antibiotic treatment exacerbates the airway inflammation

after allergen exposure in mice (Noverr et al., 2004; Skalski et al.,

2018). Similarly, antifungals induce intestinal dysbiosis and

enhance allergic airway inflammation through gut-lung

crosstalk (Wheeler et al., 2016; Li et al., 2018). Moreover,

antibiotics affect immune responses to respiratory bacterial

and/or viral infections associated with asthma exacerbations

(Flores-Torres and Samarasinghe, 2022), including S.

pneumoniae (Schuijt et al., 2016; LeMessurier et al., 2019) and

influenza virus (Abt et al., 2012; LeMessurier et al., 2019).

The impact antibiotics have on the microbiome has been

evaluated in humans. Azithromycin, for example is frequently

used in low doses to reduce airway inflammation in chronic

diseases like COPD and bronchiolitis obliterans. It is one of the

most commonly prescribed antibiotics to pediatric patients and

known to reduce the intestinal bacterial diversity and composition in

children (Doan et al., 2017; Oldenburg et al., 2018). Smokers’ lung

microbiota show a reduction in alpha-diversity after azithromycin

treatment although the overall bacterial load may not change (Segal

et al., 2017). Antibiotic-induced reductions in beneficial gut

commensals like Bifidobacterium species and Actinobacteria may

then permit the outgrowth of potentially pathogenic Firmicutes,

Proteobacteria, and Bacteroidetes (Korpela et al., 2016; Reyman

et al., 2022), some of which are linked to asthma exacerbations (Earl

et al., 2015).Much remains unknown about the impact of antibiotics

on the airway microbiome in the context of asthma, patient

demographics, and lifestyle (Hufnagl et al., 2020).

6.2 Corticosteroids

Although current asthma guidelines recommend the use of

corticosteroids to control asthma symptoms and exacerbations

(Global Initiative for Asthma, 2021), there is evidence suggesting

that their use is associated with increased risk of respiratory

infections in asthma patients (McKeever et al., 2013; Qian et al.,

2017) and alterations to the airway microbiome (Hartmann et al.,

2021). For example, steroid-resistant patients present bacterial

enrichment in Microbacteriaceae and Pasteurellaceae, families

while steroid-responsive patients have enrichment of

Streptococcaceae, Fusobacteriaceae, and Sphingomonodaceae in the
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upper RT microbiome (Durack et al., 2017). Steroid-resistant

asthma patients also present an airway expansion of specific

Gram-negative bacteria, which are suggested to trigger TAK1/

MAPK signaling and induce corticosteroid resistance (Goleva

et al., 2013). Patients receiving steroid therapy have increased

fungal load in the BAL (Fraczek et al., 2018), with greater

abundance of Fusarium and Mortierella, and reductions in

Wallemia, Alternaria and Aspergillus compared to patients not

on corticosteroids (Huang et al., 2020).

Studies investigating airway dysbiosis in asthma patients

considered corticosteroids as confounders to disease-induced

changes on the microbiome. Indeed, patients with asthma do

present with airway dysbiosis independent of corticosteroid

treatment (Durack et al., 2017). However, there is evidence

suggesting that corticosteroids can drive further alterations in

the asthma patient microbiome, as corticosteroids associate with

decreased abundance of Bacteroidetes, Fusobacteria and

Prevotella species, and with increased abundance of

Proteobacteria (Denner et al., 2016; Durack et al., 2017).

Neutrophils are resistant to corticosteroid-induced apoptosis

(Saffar et al., 2011) although patients with neutrophilic and

paucigranulocytic asthma may be treated with higher doses of

corticosteroids (Cowan et al., 2010). Therefore, effects of

corticosteroids may amalgamate with underlying changes to

the microbiome in patients with neutrophil dominant asthma

phenotypes to cause an overall reduction in bacterial diversity

and richness (Taylor et al., 2018).

6.3 Vaccination

Multiple studies have shown that microbiome

perturbation alters the vaccine-induced antibody responses

(Oh et al., 2014). Due to the emphasis on the vaccination on

the gut microbiota (de Jong et al., 2020), less is known about

the vaccine efficacy during dysbiosis in other niches including

the airways. Although the live-attenuated influenza vaccine

(LAIV) is the only intranasally administered vaccine, other

intranasal vaccines such as severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) are under development (de Jong

et al., 2020). The LAIV immunogenicity is now reported to be

dampened by Streptococcal colonization in humans (Carniel

et al., 2021), which is interesting since S. pneumoniae

colonization rate is high in children (Bogaert et al., 2004),

and asthma patients have a higher carriage compared to

healthy individuals (Jounio et al., 2010). These data suggest

that LAIV could be less effective among asthma patients.

Additionally, LAIV is contraindicated in wheezing children

with precautions in 5 year old asthma patients (Grohskopf

et al., 2020) although the LAIV has been proven safe and

effective by others (Flores-Torres and Samarasinghe, 2022).

7 Conclusion

The risk factors for the pathogenesis and severity of

asthma are multifactorial and include among other factors,

environmental pollutants, obesity and poor nutrition, overall

poor socioeconomic status, and even repeated exposure to

toxic stress. Whether race contributes to asthma severity and

outcomes more as a biological factor or a social construct is

unclear, but what is clear is that higher prevalence, higher

severity, and worse outcomes are associated with the Black

race as defined in the literature. Better classification of these

relationships will provide a blueprint for more effective

clinical interventions. Drastic measures to reduce

complications of childhood obesity, including bariatric

surgery, have decreased the frequency and severity of

asthma exacerbations. Although not discussed in detail

here, environmental pollutants including particulate matter

are also variable depending on housing location of patients.

For example, areas of highest asthma incidence are often

located in zip codes adjacent to large cities, airports, or

factories. All these components can impact the host

microbiome which may imprint the next generation as

well (Graphical Abstract).

A multitude of factors contribute to poorly controlled

asthma that we see in our city of Memphis. While it is true

that the lung microbiome is adversely affected by childhood

infections, Tennessee is the sixth highest state in the nation for

outpatient antibiotic prescribing practices with

1,169 prescriptions per 1,000 patients. Although the exact

mechanism of how antibiotics negatively affect the lung

microbiome and why they are overprescribed remain

unknown, there is supporting data that a healthy gut

microbiome results in better vaccine effectiveness against

viral infections. It is reasonable to conclude that the

overuse of antibiotics is actively contributing adversely to

asthma severity we see in our community, with our

emergency department caring for approximately

8,000 asthma related patient care visits per year.

The future of scientific study into new therapeutics and possibly,

one day, gene directed therapy is exciting. Development of targeted

treatments for various asthma subtypes seems promising, as does the

development of immune and monoclonal antibody therapeutics, but

this seems a lofty goal when many of the patients suffering with the

most treatment-resistant asthma do not even have access to their own

beta agonist inhaler. Thankfully, inhaled corticosteroids are relatively

inexpensive by comparison and have been the mainstay of chronic

asthmamanagement. The exact effect of inhaled corticosteroids on the

lung microbiome has yet to be fully understood, however research up

to this point suggests that such therapy may be beneficial for some

patients but harmful for others as it negatively affects the lung

microbiome.
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