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Background: Inhalation of asbestos fibers is the most common cause of

malignant pleural mesothelioma (MPM). In 2004, the United States Food and

Drug Administration approved a combination of cisplatin with pemetrexed to

treat unresectable MPM. Nonetheless novel treatment is urgently needed. The

objective of this study is to report the combination effect of dichloroacetate

(DCA) or niclosamide (Nic) Nic in MPM.

Materials and methods: The effect of a combination of DCA and Nic was

studied using a panel of MPM cell lines (H28, MSTO-211H, H226, H2052, and

H2452). Cell viability was monitored by MTT assay. Glycolysis, oxidative

phosphorylation, glucose, glycogen, pyruvate, lactate, citrate, succinate and

ATP levels were determined by corresponding ELISA. Apoptosis, mitochondrial

transmembrane potential, cell cycle analysis, hydrogen peroxide and

superoxide were investigated by flow cytometry. Cell migration and colony

formationwere investigated by transwell migration and colony formation assays

respectively. The in vivo effect was confirmed using 211H and H226 nude mice

xenograft models.

Results and conclusion: Cell viability was reduced. Disturbance of glycolysis

and/or oxidative phosphorylation resulted in downregulation of glycogen,

citrate and succinate. DCA and/or Nic increased apoptosis, mitochondrial

transmembrane depolarization, G2/M arrest and reactive oxygen species.

Moreover, DCA and/or Nic suppressed cell migration and colony formation.

Furthermore, a better initial tumor suppressive effect was induced by the DCA/

Nic combination compared with either drug alone in both 211H and

H226 xenograft models. In H226 xenografts, DCA/Nic increased median

survival of mice compared with single treatment. Single drug and/or a

combination disturbed the Warburg effect and activated apoptosis, and

inhibition of migration and proliferation in vivo. In conclusion,

dichloroacetate and/or niclosamide showed a tumor suppressive effect in
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MPM in vitro and in vivo, partially mediated by disturbance of glycolysis/

oxidative phosphorylation, apoptosis, ROS production, G2/M arrest, and

suppression of migration and proliferation.

KEYWORDS

malignant pleural mesothelioma, warburg effect, dichloroacetate, niclosamide,
apoptosis, xenografts

1 Introduction

Mesothelioma is a rare malignant tumor that grows on the

mesothelial surface of coelomic cavities including the tunica

vaginalis, pericardium, pleura and peritoneum. Malignant

pleural mesothelioma (MPM) is the most common form of

this malignancy. Asbestos is a set of silicate minerals found in

nature. Inhalational exposure to this carcinogenic substance is

the major cause of MPM (Ortega-Guerrero et al., 2014). Asbestos

is commonly used in construction and industrial materials,

making MPM an occupational disease that predominantly

affects males. Pemetrexed in combination with cisplatin has

become the cornerstone of chemotherapy in the clinical

management of advanced MPM (Vogelzang et al., 2003).

The Warburg effect is the phenomenon of aerobic glycolysis

in cancer cells including mesothelioma (Zhang et al., 2009a) that

leads to preferential conversion of glucose to lactate, even in

aerobic conditions (Sun et al., 2018). The Warburg effect

provides NADPH and other metabolic intermediates, which

are strong reducing agents and essential biomass, for cell

proliferation. Theoretically, inhibition of the Warburg effect

should be an effective and universal anticancer strategy. The

key intermediates in glycolysis and Krebs cycle are shown in

Supplementary Figure S1.

Inhibition of the Warburg effect has been studied

extensively in different cancer types. Nonetheless much less

is known about disruption of the Warburg effect in MPM.

There are only a few reports of the Warburg effect in

mesothelioma: inhibition by citrate (phosphofructokinase

inhibitor) with cisplatin (Zhang et al., 2009b), 3-

Bromopyruvate (hexokinase II Inhibitor II) with cisplatin

(Zhang et al., 2009a; Icard et al., 2012) and metformin

(mitochondrial respiratory complex I inhibitor) with

nutlin-3a (wild-type p53 inhibitor) (Shimazu et al., 2017).

Dichloroacetate is a prescribed drug for lactic acidosis. The

anticancer effect of DCA has been shown in breast

(Xintaropoulou et al., 2015), cervical (Li et al., 2017a),

colorectal (Tong et al., 2011) and lung cancers (Lu et al.,

2018) as well as glioma (Duan et al., 2013), melanoma

(Abildgaard et al., 2017), lymphoma (Kumar et al., 2012), and

leukemia (Voltan et al., 2016) via various mechanisms including

inhibition of PDK1–4, apoptosis and cell cycle arrest.

Niclosamide is an oral anthelminthic drug used to treat

parasitic infestations. It has been demonstrated that

niclosamide can suppress tumor growth in different cancer

types, e.g., adrenocortical carcinoma (Khan et al., 2016),

glioma (Wieland et al., 2013), and leukemia (Chae et al.,

2018), as well as head and neck (Wang et al., 2017), breast

(Yin et al., 2016), lung (Xiang et al., 2017), ovarian (Arend et al.,

2016), prostate (Lu et al., 2011) and renal (Yu et al., 2018) cancers

via different mechanisms, including inhibition of Wnt, Notch,

mTOR, and NF-κB signaling. In the preliminary experiment, we

selected 3 reagents related to the Warburg effect to screen for

anticancer activity in MPM cell lines: metformin, dichloroacetate

and niclosamide. Synergism was observed when dichloroacetate

was combined with niclosamide. The mechanisms of action are

disclosed.

2 Materials and methods

2.1 Cell lines and reagents

A panel of 5 mesothelioma cell lines (NCI-H28

(sarcomatoid), MSTO-211H (biphasic), NCI-H226

(epithelioid), NCI-H2052 (sarcomatoid) and NCI-H2452

(epithelioid)) was purchased and authenticated (American

Type Culture Collection, Manassas, VA, United States). Cells

were incubated in RPMI-1640 medium (Gibco®, Life

Technologies, Carlsbad, California, United States) enriched

with 10% fetal bovine serum (FBS) (Gibco®) in a humidified

atmosphere of 5% CO2 at 37°C (Lam et al., 2017).

2.2 Sodium dichloroacetate and
niclosamide

Sodium dichloroacetate (DCA) and niclosamide (Nic) were

purchased from Sigma-Aldrich.

2.3 Study of protein expression with
Western blot, immunohistochemistry and
immunofluorescence staining

Western blot was performed as previously described (Lam

et al., 2020). Specific primary antibodies [mouse monoclonal

anti-human β-actin (Sigma-Aldrich); anti-PCNA, anti-PARP

(Santa Cruz Biotechnology, Inc., Santa Cruz, California,

United States of America); anti-PFKP, anti-LDHB, anti-Bcl-2,
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anti-survivin, anti-XIAP, anti-AKT, anti-CDK2, anti-CDK4,

anti-CDK7, anti-Cyclin D2, H, anti-CDK4, anti-N-cadherin,

anti-β-catenin (Cell Signaling Technology, Danvers,

Massachusetts, United States of America); and corresponding

horseradish peroxidase (HRP)-conjugated secondary (Cell

Signaling Technology)] were purchased. An enhanced

chemiluminescence (ECL) kit (GE Healthcare) was used to

detect protein expression. Beta-actin was selected as a

reference protein (Lam et al., 2020).

2.4 Cell viability assay and colony
formation assay

Briefly, cells (5000/well) were treated with different

concentrations of DCA and/or Nic while medium only served

as a negative control. Absorbance (595 nm) was measured using

a microplate reader Fluo Star Optima (Bmg Labtec GmbH,

Ortenberg, Germany) (Lam et al., 2017). Colony formation

assay was carried out as previously reported (Iwanaga et al.,

2022).

2.5 Detection of metabolites in glycolysis
and krebs cycle

Glycolysis (Cayman #600450), oxygen consumption rate

(Cayman 3600800), L-lactate (Cayman #700510), glucose

uptake (Cayman #600470), ATP (Cayman #700410), and

pyruvate (Cayman #700470), glucose (Cayman #10009582),

citrate (BioAssay system, ECIT-100) and succinate (BioAssay

system, ESNT-100) levels were determined according to the

manufacturers’ instructions.

2.6 Detection of apoptosis

Apoptosis andmitochondrial membrane depolarization were

determined by annexin-V binding assay and JC-1 staining assay

respectively, as previously reported (Lam et al., 2016).

2.7 Migration and invasion assays

For migration assay, 5000 cells were suspended in 250 μl

plain medium and seeded in the upper chamber while 750 μl

medium containing 10% FBS was placed in the lower chamber.

DCA and/or Nic were added to the upper chamber and

incubated for 24 h. Cells were fixed with 4% formaldehyde

for 30 min and stained with crystal violet for 2 h. Cells on the

inner part of the upper chamber were removed. Photos were

captured using a Nikon Ni-U fluorescence microscope

(Nikon, Tokyo, Japan) equipped with a camera/detector

Diagnostic Instrument RT3 Slider (Meyer Instruments,

Houston, United States).

For invasion assay, a layer of Matrigel was coated on the

upper chamber before adding cells. The number of cells added

was 50000 for H28 cells and 500,000 for other cell lines.

2.8 Tumor growth inhibition in vivo

The 211H and H226 xenograft models were created by

subcutaneous injection of 107 corresponding cells in PBS into

the upper back of 40 nude mice (female, 4-6-weeks-old, 10–14 g,

BALB/cAnN-nu, Charles River Laboratories, Wilmington,

United States). Mice were randomized to one of 4 groups

after tumor growth was established. Nic was dissolved in PBS

containing 10% Kolliphor® EL (Sigma-Aldrich). The mixture

was sonicated for 30 min and sterilized by filtration. Solvent

(control), DCA, Nic and a combination of DCA and Nic were

administered intraperitoneally and daily. Tumor dimension

(using standard calipers) and body weight of mice were

measured twice a week and tumor volume calculated

[volume = length x width x width)/2]. For humane reasons,

mice were sacrificed when tumor volume reached 600 mm3.

Tumor xenografts were collected. The study protocol was

approved by the institutional Animal Ethics Committee

(approval reference number: CULATR 5170-19), and standard

humane endpoints for animal research were applied (Lam et al.,

2020).

2.9 Statistical analysis

Experiments were repeated at least three times and data

analyzed. Student’s two-tailed t-test was used for comparison of

pairs. The difference between groups (more than two groups) was

analyzed using variance analysis (ANOVA) by Prism (GraphPad

Software, La Jolla, Southern California, United States). A

p-value < 0.05 was considered statistically significant (*: p <
0.05, **: p < 0.01, ***: p < 0.001).

3 Results

3.1 Basal expression of
phosphofructokinase platelet and lactate
dehydrogenase B

The expression of phosphofructokinase platelet (PFKP) and

lactate dehydrogenase B (LDHB) was correlated with

mesothelioma patient survival (data generated by The Cancer

Genome Atlas (TCGA) research network: https://www.cancer.

gov/tcga). Higher expression of PFKB and LDHB resulted in

lower median survival (p = 0.086 and <0.0001 respectively)
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FIGURE 1
Phosphofructokinase platelet (PFKP) and lactate dehydrogenase B (LDHB) in mesothelioma. And synergism in DCA/Nic combination in MPM
cell lines (A) Mesothelioma patients with lower expression of PFKP or LDHB have a longer median survival. (B) The expression of PFKP and LDHB is
higher inMPM cell lines than normalmesothelial cells Met5A. (C)DCA orNic reduced cell viability in a dose-dependent fashion. Synergistic effect was
observed when DCA and Nic were combined. (D) Synergistic inhibitory effect in colony formation was observed when DCA and Nic were
combined.
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(Figure 1A). The expression of PFKP inMPM cell lines was about

3–5 times higher than that of normal mesothelial cell line Met5A.

On the contrary, LDHB expression in cancer cell lines was

2–7 times higher than that in Met5A cells, except in

H2452 cells that had larger variability (Figure 1B).

3.2 Reduction in cell viability

DCA or Nic alone reduced cell viability in a dose-

dependent manner. When H28, 211H, H226, H2052, and

H2452 cells were treated with DCA or Nic for 72 h, the

FIGURE 2
Alteration of glycolysis level, oxygen consumption, intracellular glycogen, citrate and succinate by DCA and/or Nic in MPM cells. (A) Nic
increased glycolysis rate. (B)DCA decreased oxygen consumption in 4 cell lines while Nic andDCA/Nic increased oxygen consumption in 2 cell lines.
DCA/Nic decreased intracellular (C) glycogen, (D) citrate and (E) succinate in 4 cell lines.
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IC50 value was 20, 21, 20, 23 and 25 mM or 2, 2, 3, 3 and

2.5 μM respectively. Furthermore, combination of DCA and

Nic demonstrated a synergistic anti-cancer effect in all 5 cell

lines. The IC50 value for DCA/Nic combination was decreased

to 10, 7.5, 8, 8 and 10.5 or 1, 0.75, 0.8, 0.8 and 1.1 respectively

(Figure 1C, Supplementary Table S1). DCA/Nic combination

synergistically inhibited colony formation in all cell lines

(Figure 1D).

3.3 Glycolysis and citric acid cycle

The short-term effects of DCA and/or Nic were investigated:

extracellular lactate (glycolysis), oxygen consumption (oxidative

phosphorylation), glucose uptake, intracellular level of glucose,

glycogen, pyruvate, lactate, citrate, succinate and ATP were

evaluated. There was no significant cell death during 4 h of treatment.

3.3.1 Extracellular lactate (glycolysis)
DCA decreased extracellular lactate in 211H and H2452 cells.

On the contrary, Nic elevated extracellular lactate in all cell lines but

was partially reversed when combined with DCA (Figure 2A).

3.3.2 Oxygen consumption (oxidative
phosphorylation)

DCA decreased oxygen consumption in H28, 211H, H226,

and H2052 cells. On the contrary, Nic and DCA/Nic increased

oxygen consumption in H28 and H226 cells (Figure 2B).

Interestingly, Nic and DCA/Nic elevated both glycolysis and

oxidative phosphorylation in H226 cells.

3.3.3 Intracellular glycogen
DCA increased intracellular glycogen in 211H cells while Nic

and DCA/Nic decreased intracellular glycogen in 211H, H226,

H2052, and H2452 cells (Figure 2C).

3.3.4 Intracellular citrate
Intracellular citrate was downregulated by Nic and DCA/Nic in

211H and H2452 cells. On the contrary, only DCA/Nic decreased

intracellular citrate in H226 and H2052 cells (Figure 2D).

3.3.5 Intracellular succinate
Intracellular succinate concentration was decreased by Nic

and DCA/Nic in 211H, H2052, and H2452 cells and decreased by

DCA/Nic in H2052 cells (Figure 2E).

3.3.6 Glucose uptake as well as intracellular
glucose, pyruvate, lactate and ATP

DCA/Nic neither altered the level nor induced consistent

alteration among different cell lines (Supplementary Figure S2).

In general, glycolysis was upregulated while intracellular glycogen,

citrate and succinate were downregulated byDCA/Nic, indicating that

the Warburg effect was enhanced by DCA/Nic treatment.

3.4 Induction of apoptosis

In H28 cells, there was no alteration in apoptotic cells by any

treatment. In 211H and H2052 cells, Nic and DCA/Nic induced a

similar level of apoptosis. In H226 cells, DCA/Nic increased

apoptosis. In H2452 cells, Nic elevated the percentage of

apoptotic cells and was further enhanced by DCA/Nic

(Figure 3A).

3.5 Increase in mitochondrial membrane
depolarization

Mitochondrial membrane depolarization is another

indication of apoptosis. In H28 and 211H cells, Nic

increased mitochondrial membrane depolarization and

this was further elevated when combined with DCA. In

H226, H2052, and H2452 cells, Nic and DCA/Nic

induced a similar level of mitochondrial membrane

depolarization (Figure 3B).

3.6 Alteration of protein expression

Bcl-2, survivin and XIAP are anti-apoptotic proteins. PCNA

and Akt are related to cell proliferation while PARP regulates

DNA repair. In H28 cells, Bcl-2 was downregulated by DCA, Nic

and DCA/Nic while PCNA level was reduced by DCA/Nic. In

211H cells, the expression of Bcl-2, survivin, XIAP, PCNA, Akt

and PARP was decreased by Nic and DCA/Nic. In H226 cells, the

expression of XIAP was downregulated by DCA/Nic while

PCNA, Akt and PARP were suppressed by Nic and DCA/Nic.

In H2052 cells, only PARP was downregulated by Nic and DCA/

Nic. In H2452 cells, Bcl-2, survivin, XIAP, Akt and PARP were

suppressed by DCA/Nic while PCNA expression level was

decreased by Nic and DCA/Nic (Figure 3C). DCA/Nic

induced apoptosis and inhibited proliferation and DNA repair

in MPM cell lines.

3.7 Elevation of reactive oxygen species

In H28, H226, and H2452 cells, Nic increased the hydrogen

peroxide level that was further enhanced by addition of DCA. In

211H cells, DCA elevated hydrogen peroxide level that was

further increased in DCA/Nic arms. In H2052 cells, hydrogen

peroxide was upregulated by Nic and further enhanced in the

DCA/Nic group (Figure 4A).

In H28 cells, superoxide was slightly increased by DCA.

In 211H cells, Nic elevated the superoxide level that was

further enhanced by DCA/Nic. In H226 cells, both DCA and

Nic increased superoxide and was further enhanced in the

DCA/Nic group. In H2052 cells, Nic and DCA/Nic
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FIGURE 3
DCA/Nic induced apoptosis in MPM cell lines. DCA/Nic increased (A) apoptosis and (B) mitochondrial membrane depolarization. (C) DCA/Nic
downregulated Bcl-2, survivin, XIAP, PCNA, Akt, and PARP in a cell-line specific manner.
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upregulated the superoxide level to a similar degree. In

H2452 cells, Nic slightly increased superoxide content

(Figure 4B). DCA/Nic could elevate the level of hydrogen

peroxide in all cell lines while superoxide was induced in

most of the cell lines.

3.8 Induction of G2/M arrest

In H28 and H226 cells, DCA/Nic induced G2/M arrest. In

211H cells, Nic and DCA/Nic caused G2/M arrest. In

H2052 cells, DCA induced G/M2 arrest that was further

FIGURE 4
DCA/Nic increased ROS and induced G2/M arrest in MPM cell lines. DCA/Nic elevated (A) hydrogen peroxide, (B) superoxide and (C) G2/M
arrest as well as (D) downregulating CDK2, CDK7, cyclin D2, and cyclin H in a cell-line specific manner.
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enhanced by DCA/Nic. In H2452 cells, DCA, Nic or DCA/Nic

caused G2/M arrest to a similar degree (Figure 4C). In

H28 cells, no alteration to different CDKs or cyclins was

detected. In 211H cells, CDK4, CDK7, cyclin D2 and cyclin

H were downregulated in the Nic and DCA/Nic groups. In

H226 cells, CDK2, CDK4, and CDK7 expression was

suppressed by Nic and DCA/Nic. In H2052 cells, the

expression of CDK4 was decreased in Nic and DCA/Nic

arms. In H2452 cells, CDK4, and CDK7 were

downregulated by Nic and DCA/Nic (Figure 4D).

G2/M arrest was induced by DCA/Nic in all cell lines and

accompanied by downregulation of CDK2, CDK4, cyclin D2, and/

or cyclin H.

3.9 Inhibition of cell migration

In H28 cells, cell migration was inhibited by Nic and Nic/

DCA. In 211H cells, only DCA/Nic supressed cell migration. In

H226 cells, cell migratory activity was decreased by both DCA

and Nic and further suppressed in the DCA/Nic group. In

H2452 cells, cell migration was inhibited by Nic and DCA/

Nic (Figure 5A, Supplementary Figure S3). The basal invasive

ability of mesothelioma cell lines was low. There was no

alteration after different treatments (Supplementary Figure

S3). Both N-cadherin and β-catenin were important in cell-

cell adhesion. N-cadherin was downregulated by DCA/Nic in

211H, H226, and H2452 cells but unaltered in H28 and

H2052 cells. The expression of β-catenin was decreased by

DCA/Nic in 211H, H226, H2052, and H2452 cells (Figure 5B).

3.10 Tumor suppressive effect of
dichloroacetate and niclosamide in vivo

In the 211H xenograft, tumor growth was suppressed by a single

treatment of DCA or Nic and further repressed by DCA/Nic. The

median survival in both DCA and DCA/Nic groups was 29 days,

longer than in the control and Nic arms (22 days). In the

H226 xenograft, the relative tumor size was reduced in the DCA/

Nic group with a consequent longer median survival of 26 days

compared with 22 days in the control, DCA andNic arms (Figure 6A).

FIGURE 5
DCA/Nic suppressed themigratory ability of MPM cell lines. (A) The number of migrating cells was decreased by DCA/Nic accompanied byh (B)
suppression of N-cadherin and β-catenin in a cell-line specific manner.
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Since the intracellular glycogen, citrate and succinate were

relatively constantly decreased by treatments in vitro, they were

tested in vivo. In contrast to the in vitro results, the intratumoral

glycogen, citrate and succinate concentrations were elevated by

single and combination treatment in the 211H xenograft. In the

H226 xenograft, intratumoral glycogen, citrate and succinate

FIGURE 6
Tumor suppressive effect of DCA/Nic in 211H andH226 xenograftmodels. (A)DCA/Nic inhibited tumor growth and increasedmedian survival in
211H and H226 xenografts. (B) Intratumoral glycogen, citrate and succinate were elevated by DCA/Nic in 211H xenografts but reduced in
H226 xenografts. (C) DCA/Nic downregulated Bcl-2 and PARP in 211H xenografts and Bcl-2, XIAP, PCNA, Akt, CDK7, and β-catenin in
H226 xenografts.
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level were decreased in the Nic and DCA/Nic group, consistent

with the in vitro result (Figure 6B).

In the 211H xenograft, Bcl-2 was downregulated,

corroborating the increased apoptosis in vivo in the DCA/Nic

group. Expression of PARP was suppressed in the DCA/Nic, so

the DNA repair mechanism may have been impaired. In the

H226 xenograft, downregulation of Bcl-2 and XIAP, PCNA, and

Akt, CDK7 and β-catenin by DCA/Nic indicated apoptosis,

antiproliferation, G2 arrest and decreased migratory activity

respectively (Figure 6C).

4 Discussion

Fructose 6-phosphate is converted to fructose 1,6-

bisphosphate by phosphofructokinase platelet and is a key

step in glycolysis. Pyruvate is converted to lactate by lactate

dehydrogenase and is also important in anaerobic glycolysis.

Both enzymes play important roles in the Warburg effect. All

MPM cell lines in this study showed high basal expression of

phosphofructokinase platelet and lactate dehydrogenase:

MPM cells exhibited the Warburg effect and were

theoretically sensitive to inhibition of such effect. DCA is a

pyruvate dehydrogenase kinase inhibitor that shifts glycolysis

and lactate production to glucose oxidation in mitochondria.

This is known to reverse the Warburg effect (Zhou et al.,

2022). Niclosamide is a mitochondrial (oxidative

phosphorylation) uncoupler that is known to alter the

Warburg effect (Alasadi et al., 2018). The effect of DCA

and Nic has not been reported in MPM. This study

revealed the combination effect of DCA and Nic in a panel

of 5 MPM cell lines with different sub-types (sarcomatoid,

biphasic and epithelioid) (Supplementary Figure S4) and

2 xenograft models (Supplementary Figure S5). DCA/Nic

disturbed glycolysis and/or oxidative phosphorylation,

reduced cell viability and cell migratory activity, induced

apoptosis, G2/M arrest and ROS production, and

suppressed tumor growth in MPM xenograft models.

DCA has been shown to inhibit cell viability as well as induce

apoptosis (Kumar et al., 2012; Duan et al., 2013; Xintaropoulou

et al., 2015; Guo et al., 2022a). Niclosamide inhibits cell

proliferation and activates apoptosis (Chae et al., 2018; Guo

et al., 2022b). In MPM cell lines, DCA alone did not induce

apoptosis. On the contrary, Nic alone did induce apoptosis in all

MPM cell lines. Interestingly, DCA enhanced Nic-induced

apoptosis in 4 cell lines.

PCNA is a proliferative factor that is also involved in DNA

replication and repairing (Shen et al., 2021). Akt is important in

proliferation and epithelial-mesenchymal transition (Barzegar

Behrooz et al., 2022). PARP is essential for DNA repairing

and maintenance of telomere integrity (Muoio et al., 2022).

Proliferation and DNA repairing were significantly and

predominantly inhibited by Nic in MPM cell line models.

Synergism has been reported when DCA is combined with

different drugs for anti-cancer research: DCA/cisplatin or

gefitnib or elotinib (Al-Azawi et al., 2021), DCA/metformin

(Kim et al., 2021; Klose et al., 2021; Korsakova et al., 2021),

DCA/3-bromopyruvate (Nikravesh et al., 2021), DCA/sorafenib

(Sun et al., 2021), DCA/PX-478 (Parczyk et al., 2021) and DCA/

erlotinib (Dyrstad et al., 2021). Said synergistic effect has also

been observed when Nic is combined with other agents: Nic/

gemcitabine (Guo et al., 2022b), Nic/metformin (Kang et al.,

2021) and Nic/doxorubicin (Lohiya and Katti, 2021). We show a

novel combination of DCA with Nic that synergistically

suppressed tumor growth in MPM cell line and xenograft

models. We also tested the combination effect of DCA with

metformin or Nic with metformin, but no synergism was

observed (data not shown).

DCA has been added to the chemoradiotherapy for locally-

advanced head and neck squamous cell carcinoma in a phase II

study. Significantly higher response rates have been observed in

the DCA arm (Lam et al., 2016). Six myeloma patients have been

recruited in a pilot phase II clinical trial and treated with oral

clinical grade sodium DCA for 84 days. One patient is

maintaining a response to DCA at day 84 and 2 patients

showed a partial response at day 28 (Tian et al., 2019). DCA

has been combined with anti-parasite drug ivermectin and

chemotherapy in 3 cases of malignant tumor with consequent

relief of symptoms observed (Ishiguro et al., 2022). The use of

DCA is clinically safe and combination regimens containing

DCA may increase its efficacy. NIKOLO is a phase II clinical

trial of the safety and efficacy of niclosamide in metastatic

colorectal cancer patients but results are not yet available

(Burock et al., 2018). A phase Ib clinical trial combining an

oral bioavailable form of Nic (PDMX1001) with abiraterone and

prednisone in castration-resistant prostate cancer patients is

underway. Five of 9 patients have more than a 50% prostate-

specific antigen response while 2 patients have a complete

prostate-specific antigen response (Parikh et al., 2021).

Aerobic glycolysis is preferred by most cancer cells to

oxidative phosphorylation for energy production. Aerobic

glycolysis and oxidative phosphorylation produce 2 and

36 ATP respectively. Nonetheless the glucose metabolic rate of

aerobic glycolysis is 10–100 times faster than complete glucose

oxidation in the mitochondria (Shestov et al., 2014). As such,

cancer cells express more glucose transporter and increase

glucose uptake. This is known as the Warburg effect.

DCA is a pyruvate dehydrogenase kinase inhibitor that

suppresses glycolysis (Michelakis et al., 2008; Meng et al.,

2020; Guo et al., 2022a) while increasing oxidative

phosphorylation (Michelakis et al., 2008; Klose et al., 2021;

Belkahla et al., 2022). DCA decreases pyruvate in NSCLC cells

(Dyrstad et al., 2021) by promoting pyruvate influx into the TCA

cycle (Sharma and Singh, 2020). DCA has been shown to

decrease serum pyruvate and lactate in a phase II clinical trial

(Lam et al., 2016). DCA decreases lactate level (Michelakis et al.,
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2008), glucose consumption (Kolesnik et al., 2020; Guo et al.,

2022a), lactate production (Dyrstad et al., 2021; Kim et al., 2021)

and lactate excretion (Dyrstad et al., 2021), intracellular ATP

(Kim et al., 2021) and citrate (El Sayed et al., 2019) but elevates

succinate (Zhang et al., 2018).

The effects of Nic in glycolysis, the TCA cycle and oxidative

phosphorylation are less well-known. Nic decreases glycolysis

(Alasadi et al., 2018; Shangguan et al., 2020). It suppresses

oxidative phosphorylation in ovarian cancer (Shangguan et al.,

2020) but elevates oxidative phosphorylation in myeloma cells

(Khanim et al., 2011). Nic downregulates ATP and lactate

(Alasadi et al., 2018).

The effect in the DCA/Nic group was predominantly by Nic

in our MPM cell lines: increased glycolysis (Warburg effect) as

well as decreased glycogen, citrate and succinate. Although it is

well-known that most cancer cells exhibit theWarburg effect and

inhibition might cause cell death, enhancement of the Warburg

effect above basal level might also induce killing of cancer cells. It

has been shown that glycolysis was enhanced when breast cancer

cells were treated with a combination of tamoxifen and dasatinib

by disabling the use of their fuel supply (Martinez-Outschoorn

et al., 2011). In this study, the Warburg effect was downregulated

by DCA but upregulated by Nic after 4 h of treatment. In

addition, cell viability was reduced and apoptosis was induced

after 72 h treatment. It seems that the Warburg effect is well-

balanced in MPM cells and either inhibition of the effect by DCA

or enhancement by Nic may kill MPM cells.

DCA has been shown to elevate hydrogen peroxide (Xie et al.,

2011) and ROS (Kumar et al., 2012; Duan et al., 2013; Kim et al.,

2021; Klose et al., 2021; Nikravesh et al., 2021). In addition, ROS

is increased when DCA is combined with sorafenib (Sun et al.,

2021) or PX-478 (Parczyk et al., 2021). Nic also increases ROS

(Zhou et al., 2017; Shangguan et al., 2020; Kaushal et al., 2021;

Lohiya and Katti, 2021). In this study, DCA alone increased only

hydrogen peroxide in 211H cells and superoxide in H226 cells.

On the other hand, Nic elevated hydrogen peroxide in 4 MPM

cell lines and superoxide in 3MPM cell lines. Interestingly, DCA/

Nic further upregulated hydrogen peroxide in 4 MPM cell lines

and superoxide in 2 MPM cell lines. In general, DCA/Nic

increased ROS in MPM cell lines.

DCA induces G1 arrest (Lin et al., 2014; Allende-Vega

et al., 2015) and G2/M arrest (Lin et al., 2014; Shen et al.,

2015a). G2/M arrest is enhanced by different DCA

combinations (Shen et al., 2015b; Zhang et al., 2015; Dong

et al., 2016; Verma et al., 2019). Nic induces G0/G1 arrest (Ren

et al., 2010; Wu et al., 2020; Kaushal et al., 2021; Lohiya and

Katti, 2021), G1 arrest (Wieland et al., 2013; Satoh et al., 2016;

Li et al., 2017b; Han et al., 2018; Lee et al., 2020), G1/S arrest

(Chae et al., 2018) and G2/M arrest (Li et al., 2015). In this

study, G2/M arrest was induced by DCA in H2052 and

H2452 cells and by Nic in 211H and H2452 cells. More

importantly, DCA/Nic induced G2/M arrest in all MPM

cells. Nic predominantly suppressed the expression of

different CDKs and cyclins in a cell-line specific manner.

Downregulation of CDK2 (Li et al., 2019), CDK4 (Abaza et al.,

2015; Li et al., 2019), CDK7 (Abaza et al., 2015), cyclin D2

(Yang et al., 2018) and cyclin H (Dogan Sigva et al., 2019) are

related to G2/M arrest. It has been shown that Nic induces

downregulation of CDK2 and CDK4 (Li et al., 2017b), but not

CDK7, cyclin D2 or cyclin H in other cancer types.

It has been demonstrated that DCA inhibits migration

(Florio et al., 2018; Tataranni et al., 2019; Guo et al., 2022a)

of cells as well as invasion (Guo et al., 2022a). Nic has been shown

to have anti-migratory and anti-invasive properties (Zhu et al.,

2019; Guo et al., 2022b; Yeh et al., 2022). In this study, DCA

inhibited migration in H226 cells while Nic suppressedmigration

in 3 MPM cells lines. DCA/Nic synergistically decreased the

migratory ability of 211H cells. The action mechanism is partially

mediated by downregulation of N-cadherin and β-catenin by

DCA/Nic.

The tumor suppressive effect of DCA or Nic combination

regimens has been demonstrated in xenografts of different cancer

types: DCA/activated natural killer cells/anti-CD20 (Belkahla

et al., 2022), DCA/4-methylumbelliferone (Twarock et al.,

2019), DCA/arginase (Verma et al., 2019), DCA/sirtinol

(SIRT2 inhibitor) (Ma et al., 2018), DCA/cisplatin

(Woolbright et al., 2018), Nic/cisplatin (Liu et al., 2021) and

Nic/paclitaxel (Chen et al., 2017). Although either DCA or Nic

may exert its tumor suppressive effect in different cancer

xenografts, a better anti-cancer effect is usually observed when

DCA or Nic is combined with another therapeutic drug. In our

MPM xenograft models, a combination of DCA and Nic showed

a better initial tumor suppressive response in both MPM

xenograft models and increased median survival in

H226 xenografts. Since intracellular glycogen, succinate and

citrate were relatively consistent reduced by treatment in vitro,

their levels were investigated in vivo. The glycolysis assay kit

measured extracellular lactate and was not applicable in

xenograft models. To the best of our knowledge, the in vivo

effect of DCA or Nic on intratumoral glycogen, succinate and

citrate has not been reported.

Cells with a lower glycolysis rate increase conversion of glucose

to glycogen and glycogen storage (also known as glycogenesis).

Increase in glycogen storage indicates that cancer cells shift away

from cancer metabolism including the Warburg effect and

glycolysis. On the other hand, oxidative phosphorylation is

decreased when cellular glycogen storage declines. Furthermore,

rates of proliferation and division are slowed when cells store more

glycogen (Steenbergen et al., 2018). Accumulation of citrate is a sign

of inhibition of glycolysis. When glycolysis is inhibited, the energy

and building blocks are decreased, so proliferation is suppressed.

Overproduction of citrate and ATP inhibits cell proliferation.

Elevation of oxidative phosphorylation increases cellular ATP

and citrate levels as well as ROS (Philippe IS et al., 2017).

Succinate is a tumor promoter and also a marker of hypoxia and

mitochondrial dysfunction. Accumulation of cellular succinate
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increases production of ROS and DNA hypermethylation (Ristic

et al., 2017).

In the 211H xenograft, intratumoral glycogen, succinate and

citrate were upregulated in DCA, Nic and DCA/Nic arms,

contrary to in vitro results. Although the results are

paradoxical, the in vivo data are more favorable since they

more closely mimic the human system. Treatments inhibited

glycolysis/Warburg effect (increase in glycogen) and

proliferation while increasing oxidative phosphorylation

(increase in glycogen) and ROS. In accordance, glycogen,

succinate and citrate were reduced by DCA/Nic in both

H226 cell lines and nude mice model: glycogen was decreased

by treatments in the H226 xenograft, indicating that theWarburg

effect was enhanced while oxidative phosphorylation was

decreased. As such, DCA/Nic disturbed glycolysis/oxidative

phosphorylation and suppressed tumor growth in vivo. In the

211H xenograft, downregulation of Bcl-2 and PARP by DCA/Nic

indicated activation of apoptosis and suppression of DNA

repairing activity. In the H226 xenograft, tumor growth was

suppressed by DCA/Nic and partially mediated by apoptosis

(downregulation of Bcl-2 and XIAP), anti-proliferation (decrease

in expression of PCNA and Akt), G2/M arrest

(CDK7 downregulation) and suppressed migration (decline in

expression β-catenin). Downregulation of Bcl-2 (Liu et al., 2021)

and β-catenin (Guo et al., 2022b) by Nic in vivo has been

reported. Furthermore, lower expression of CDK7, AKT1,

PARP1 (p < 0.1), CCND2 (cyclin D2), CDK2, CDK4, BIRC5

(survivin), PCNA and CDH2 (N-cadherin) (p < 0.005) have been

shown to result in longer median survival of patients with

mesothelioma (Supplementary Figure S6). They are

downregulated in vitro and some of them are suppressed in

vivo by DCA/Nic. This may partially explain the potent

anticancer effect in vitro and prolonged median survival in vivo.

5 Conclusion

In summary, DCA/Nic synergistically inhibited different

subtypes of MPM in vitro and in vivo, partially mediated by

disturbed glycolysis/oxidative phosphorylation, activation of

apoptosis, anti-proliferation, induction of G2/M arrest,

production of ROS and/or inhibition of migration.
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