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Background: Biomedical named entity recognition is one of the important tasks of

biomedical literaturemining.With the development of natural language processing

technology, many deep learning models are used to extract valuable information

from the biomedical literature, which promotes the development of effective

BioNER models. However, for specialized domains with diverse and complex

contexts and a richer set of semantically related entity types (e.g., drug

molecules, targets, pathways, etc., in the biomedical domain), whether the

dependencies of these drugs, diseases, and targets can be helpful still needs to

be explored.

Method: Providing additional dependency information beyond context, a method

basedon the graph attention network andBERTpre-trainingmodel namedMKGAT

is proposed to improve BioNER performance in the biomedical domain. To

enhance BioNER by using external dependency knowledge, we integrate BERT-

processed text embeddings and entity dependencies to construct better entity

embedding representations for biomedical named entity recognition.

Results: The proposed method obtains competitive accuracy and higher

efficiency than the state-of-the-art method on three datasets, namely,

NCBI-disease corpus, BC2GM, and BC5CDR-chem, with a precision of

90.71%, 88.19%, and 95.71%, recall of 92.52%, 88.05%, and 95.62%, and F1-

scores of 91.61%, 88.12%, and 95.66%, respectively, which performs better than

existing methods.

Conclusion: Drug, disease, and protein dependencies can allow entities to be

better represented in neural networks, thereby improving the performance of

BioNER.
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1 Introduction

The number of biomedical literature is increasing rapidly. On

average, more than 3,000 new articles are published in peer-

reviewed journals every day, excluding technical reports such as

preprints and clinical trial reports in various archives. So far,

PubMed (Roberts, 2001) has 33 million citations and abstracts in

the biomedical literature. Reports containing valuable

information about new discoveries and insights have been

added to a large number of literature reports; meanwhile, the

ever-increasing volume of biomedical literature has caused great

challenges in extracting relevant and high-quality information.

Therefore, there is an increasing demand for accurate biomedical

text mining to extract information from the literature.

Named entity recognition (NER) is a fundamental task of

natural language processing, which aims to identify named

entities (NEs) in text, and is the basis for tasks such as

network clustering (Su et al., 2021), disease module

identification (Tian et al., 2020), relation extraction,

knowledge graph construction, and link prediction (Su et al.,

2020; Lei et al., 2021;Wang et al., 2021a;Wu et al., 2021; Cai et al.,

2022). Benefiting from the use of neural network models (Ma and

Hovy, 2016; Yang and Zhang, 2018) and pre-trained language

models (LMs) (Akbik et al., 2018; Devlin et al., 2019), NER in

natural language processing (NLP) has been extensively studied

in general terms of NE types, such as person names,

organizations, and departments, achieving human-level

performance. The most representative model for NER is

BiLSTM-CRF (Ma and Hovy, 2016; Tang et al., 2019), which

utilizes a bidirectional long short-term memory (BiLSTM)

network to encode biomedical texts and CRF to decode

named entity labels. Ma and Hovy (2016) extended LSTM-

CNNsCRF by utilizing a CNN and CRF. Zhang et al. (2018)

used long short-term memory (LSTM) as a baseline model,

combining multi-task learning and multi-step training to

improve the performance of the clinical NER datasets.

However, LSTM takes a long time to process long text;

considering the context, it generally adopts a bidirectional

structure (Kocaman and Talby, 2021), while BERT uses the

attention mechanism, and the weight of each position of text

relative to another position can be calculated in parallel, which is

much faster than LSTM on the premise of sufficient computing

resources. Other works replace the BiLSTM encoder with pre-

trained language models, such as ELMo and BERT (Devlin et al.,

2019), which consider deeper semantic features and farther

contextual semantics, and those works obtain better

experimental results. In addition, domain-specific pre-trained

language models also bring improvement in clinical NER. In the

past few years, the application of the recurrent neural network

(RNN) (Li and Jiang, 2017; Ju et al., 2018; Hemati and Mehler,

20192019), convolutional neural network (CNN) (Korvigo et al.,

2018; Zhu et al., 2018; Nie et al., 2021), and conditional random

field (CRF) (Wang et al., 2018) in biomedical named entity

recognition has promoted the development of biomedical text

mining models. In recent years, in order to improve the

performance of NER machine learning methods, external

knowledge has been used as a complement to traditional

contextual information, such as base information (Akbik

et al., 2018), n-gram information (Li and Jiang, 2017), and

part-of-speech (POS) tagging information (Devlin et al., 2019).

Biomedical named entity recognition (BioNER), which can

help drug discovery (Wang et al., 2021b; Cai et al., 2022; Wang

et al., 2022), is more challenging than it is in general fields.

Researchers try to use various methods to improve the

performance of BioNER, some introducing pre-trained

models. Pre-trained transformer language models such as

BERT (Devlin et al., 2019) and its variants such as RoBERTa

(Liu et al., 2019) have brought significant performance gains on a

variety of language tasks. BERT has been adopted in the

biomedical domain. Lee et al. (2020) trained BERT on

PubMed abstracts (PubMed) and PubMed central full-text

articles (PMC) and proposed BioBERT for domain-specific

language representation. Fang and Wang (2021) used a cased

WordPiece vocabulary trained from a biomedical corpus, which

also included all PubMed abstracts and 1 million PMC full-text

articles, to promote Bioformer, which is a lighter model than

BioBERT. BioNEs has more diverse context relations and richer

semantic-related entities, such as drug molecules, targets,

proteins, channels, and pathways. For example, “Alzheimer’s

disease (AD) is a neurodegenerative disease characterized by

progressive memory loss and dementia.” Here, there are four

different descriptions of Alzheimer’s in this sentence which are

“(AD),” “neurodegenerative disease,” “progressive memory loss,”

and “dementia”—some of them are diseases, and some are

symptoms. By observation, we find that if one of the words

can be identified, then the other entities can be identified through

dependencies. For instance, the disease entity “Alzheimer’s

disease” can be identified through dependency “characterized

by” and characteristic entity “progressive memory loss”. In

addition, knowledge is also widely used in other text mining,

while the one that contains the most dependencies is the

knowledge graph. Some researchers have found that

incorporating external knowledge can improve the

performance of NER. The integration of external knowledge is

used in deep learning models to improve their performances for

NER. Wang et al. (2018) used distant supervision methods based

on knowledge to improve the performances of clinical NER

systems via injecting the representations of concepts I n KG

into the representations of tokens. Wang et al. (2019)

incorporated medical dictionaries into BiLSTM-CRF and

achieved SOTA performance on the CCKS2017 dataset. Nie

et al. (2021) used entities from the WikiData knowledge to

promote NER models via concatenating concept embeddings

and token embeddings. Xiong et al. (2022) integrated the

boundary information on lexicon words from multiple

knowledge graphs or knowledge graph(s) and lexicon(s). Chen
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et al. (2021) adopted both global co-reference relations and local

dependency relations for building better entity mention

representations for BioNER. However, most of them treated

tokens in external knowledge equally also without considering

the relationship between entities, which may be helpful for

BioNER. Based on this consideration, we introduce a

knowledge description by mining textual entity dependencies

and expect to improve the NER performance. For example, the

two entities in the knowledge graph, the diseases “Alzheimer’s

disease” and “Senile Dementia,” belong to the “same as” entity

dependence. If we can recognize that “Alzheimer’s disease” is a

disease entity, we can more accurately infer whether the other

word, “Senile Dementia,” is a disease entity according to the

dependence.

In this study, we first perform word-level embeddings on

biomedical domain text and knowledge graph entities using a

BERT preprocessing model. Then, text word-level embeddings

and entity dependencies are integrated using a graph neural

network (GNN), specifically using graph attention (GAT)

networks (Velickovic et al., 2018). GAT has shown good

performance in many tasks, such as Chinese NER and short text

classification (Hu et al., 2019; Sui et al., 2019). The experimental

results show that the method proposed in this paper can obtain

better word representation and further improve the recognition

performance of biomedical named entities.

2 Materials and methods

MKGATmainly consists of five layers, including an embedding

layer, a graph neural network layer, a knowledge fusion layer, and a

decoding layer (Figure 1). Sentences and nodes in the knowledge

graph are fed into the pre-trained LM embedding model Bioformer

to obtain semantic representation vectors. Then, the node

representation incorporates local dependencies by considering

adjacent node information and updates the node representation

vectors by feeding them into a GAT network. The semantic feature

vector and the updated node feature vector are fed into a multi-

dimensional encoder, which generates a more coupled vector

through feature blending. The decoder is then applied to this

vector, and finally, the label indicates the entity category is the

output.

2.1 External dependency knowledge

To leverage dependency knowledge, we use a knowledge

graph named the natural brain knowledge graph (NBKG)

FIGURE 1
Overview structure of MKGAT.

FIGURE 2
General process of NBKG construction.
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constructed by ourselves (Figure 2). We mine external text entity

dependencies through the NBKG, hoping to improve the

BioNER performance. The NBKG is developed based on a

large number of medical, botany, and pharmacy

encyclopedias, including PubMed (Roberts, 2001),

BIOFACQUIM (Pilón-Jiménez et al., 2019), CMAUP (Zeng

et al., 2018), and DrugBank (Wishart et al., 2018) databases,

which contain 30,926 drug compounds, 21,771 targets, and over

100 kinds of diseases in three categories: “Brain Disease,” “Drug,”

and “Target.” The types of edges in the NBKG include the same

entity type dependency, such as “same as” and “belong to” and

different entity type dependencies, such as “caused by” and “act

on.” For example, the disease entity “Alzheimer’s disease” has the

same entity type dependency “same as” with the disease entity

“senile dementia,” and also, “Alzheimer’s disease” has a different

entity type dependency “caused by” with the protein entity

“Mfn2.” We match text words with the NBKG entity, and in

this way, the external entity dependency for words in a sentence

is imported to improve the representation accuracy of the whole-

text entity space.

To build a domain knowledge graph, ontology needs to be

used to define concepts and express relationships between

concepts, to identify named entities and extract relationships

from the unstructured literature, such as PubMed, to integrate

knowledge with structured knowledge, such as DrugBank, and to

disambiguate semantics. Finally, knowledge will be sorted into

the form of a knowledge graph according to the concepts,

attributes, and relationships defined by ontology; the general

process is shown in Figure 2.

Since the domain knowledge map is built, compared with

extracting ontology structures from different databases, NBKG

ontology is built manually, and the conceptual relationship

displayed in the ontology is shown in Figure 3A. For

unstructured knowledge, such as the PubMed literature, the

finely tuned BioBERT is used to extract named entities and

relationships. For entity normalization, we used the International

Classification of Diseases, Tenth Edition (ICD-10), and other

standards. The structure example of the final NBKG is shown in

Figure 3B.

2.2 Model architecture

2.2.1 Embedding layers
To obtain the context representation of each token of input

sentence X � x1, x2, . . . , xn{ } , we first apply Bioformer to the

sentence as follows:

S � BERT X( ), (1)

where S � s1, s2, . . . , sn{ }. The representation of each token of the

knowledge graph node V � v1, v2, . . . , vm{ } is first marked with

special tags [CLS] and [SEP] for every word. Then, it is also

initialized through Bioformer:

CLS[ ]vi SEP[ ]
V ′ � BERT V( ) , (2)

where m is the number of nodes in the knowledge graph, V′ �
v1′, v2′, . . . , v′m{ }.

2.2.2 Graph neural network layer
The external entity dependency introduced by the

knowledge graph is considered to enhance the context

representation of the token. The computational process of

GAT (Velickovic et al., 2018) can be summarized as follows,

given a graph G � (V, A) with nodes vi ∈ V and the adjacent

matrix A. It is worth mentioning that we want to focus this

FIGURE 3
(A) Conceptual relationship in the NBKG ontology. (B) Overview structure of the NBKG.
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exploration on comparing the influence of the presence or

absence of external dependencies on the experiment rather

than the influence of the type of relationship on the

experiment, so we temporarily consider all external

dependencies to be of the same type. The adjacent matrix A

is defined according to the knowledge graph node vi and its

adjacent node vj, in which vi also appears in the input sentence,

where Ai,j � 1. At the same time, in order to facilitate feature

fusion while maintaining the original semantic information on

node entities that may appear in a sentence, the self-adjacency

values of nodes are defined as Ai,i � 1.

The graph attention mechanism is used to aggregate the

information on neighbor nodes and their corresponding

standardized attention scores, and the attention score αki,j of

the k-th head is defined as follows:

αk
i,j �

exp σ aT Wkv′i
�����Wkv′j( )( )( )

∑z∈Ni
exp σ aT Wkv′i

����Wkv′z( )( )( ), (3)

where aT is the learnable weight vector, Wk is the parameter

matrix of the k-th attention head of GNN, and z represents all the

neighbors of node i. We compute αki,j for nodes i and j ∈ Ni, and

Ni is the first-order neighborhood of node i in the graph obtained

from the adjacent matrix A. So, the node representation gi is

updated to hi:

gi � σ ∑
j∈Ni

αk
i,jW

kv′j + v′i( ) (4)
hi � concat gi( ) (5)

H � h1, h2, . . . , hn( ) (6)

where αki,j is the attention score of the k-th head, σ represents the

activation function LeakyReLU, and vki represents the graph node

code v′i under the k-th attention head, k � 1, 2, . . . , K{ }.

2.2.3 Fusion layer
Similar to themethod used by Chen et al. (2021), the sentence

word embeddings S and GNN-updated node entity embeddings

H are also fused using a fusion layer. The two kinds of

embeddings are first projected into the same hidden space

using a linear transformation and then added:

F � w1S + w2H, (7)

where w1 and w2 are trainable weights, F � h1′, h2′, . . . , h′n{ }.

2.2.4 Decoding layer
A conditional random field (CRF) is used for named entity

label prediction. Given the input sentence X � x1, x2, . . . , xn{ }
with knowledge-enhanced representation F � h1′, h2′, . . . , h′n{ },
the probability of the label sequence Y � y1, y2, . . . , yn{ }:

P Y |X( ) � exp ∑iW
yi f h′i + T yi−1, yi( )( )

∑y∈D exp ∑iW
yi f h′i + T yi−1, yi( )( ), (8)

where D represents all possible label sequences of input X, Wyi

represents the emission weight of yi for h′i , and T represents the

transition matrix weight of two adjacent labels. In addition, the

negative log-likelihood function is used as the loss function as

follows:

loss � −∑n

i�1log P yi
∣∣∣∣xi( )( ). (9)

3 Experiments

3.1 Datasets

We tested the performance of the model on three general

datasets in BioNER, NCBI-disease corpus (Dogan et al., 2014),

BC2GM, and BC5CDR-chem (Li et al., 2016) datasets. The

NCBI-disease corpus contains 793 PubMed abstracts,

6,892 disease mentions, and 790 unique disease concepts.

BC2GM contains 20,703 labeled entities, and BC5CDR corpus

consists of 1,500 PubMed articles with 4,409 annotated

chemicals, which are used for the experiment. The NCBI-

disease corpus is fully annotated at the mention and concept

level to serve as a research resource for the biomedical natural

language processing community. BC2GM is from a genemention

tagging task, as part of the BioCreative II challenge, which is

concerned with the named entity extraction of gene and gene

product mentions in the text. BC5CDR is introduced in

BioCreative V CDR task corpus, which is a resource for

chemical disease relation extraction.

The number of common disease concepts existing both in

NBKG and NCBI-disease is 92, and the number of common

gene/protein concepts existing both in NBKG and BC2GM is

1,468, which is displayed in the “common” column in the table,

while the number of common gene/protein concepts existing

both in NBKG and BC5CDR-chem is 257 (Table 1).

3.2 Experimental settings

We use the “BIO” (B—begin, I—inside, and O—outside)

labels to represent the boundaries of entity mentions. We set the

maximum length of sentences to 175 for NCBI-disease corpus,

300 for BC2GM, and 200 for BC5CDR-chem, which covers over

99% of sentences. The hidden size of the BERT is set to 512. The

dropout rate is set to 0.2 in BERT and the GNN updating layer.

The Adam optimization algorithm is used as the optimizer with a

learning rate of 1e-5. We use a layer GAT to model external

knowledge with 50 hidden nodes. The number of epochs we set is

10, and the batch size is set to 35 at each epoch. Bioformer, pre-

trained from the scratch on the same corpus as the vocabulary,

which included 33 million PubMed abstracts and 1 million PMC

full-text articles, is used to embed the sentence. We train the
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entities embedding on the NBKG using Bioformer. All hyper-

parameters in Bioformer for entities embedding training are set

to their default values except the following hyperparameters: the

number of epochs is set to 10, and the batch size is set to 35. All

experiments are conducted on RTX 3090.

3.3 Evaluation metrics

We use several metrics to evaluate the model performance,

including precision, recall, and F1 score. Precision is the ratio of

true positives in the identified positive samples, which reflects the

classification accuracy of the model for BioNEs tokens:

Precision � TP

TP + FP
, (10)

where TP indicates the number of positive classes predicted as

positive classes, and FP indicates the number of negative classes

predicted as positive classes. Recall represents the proportion of

all positive samples in the test set that are correctly identified as

positive samples, which reflects the ability of the model to

distinguish BioNEs:

Recall � TP

TP + FN
, (11)

where FN indicates the number of positive classes predicted as

negative classes. The F1 score is one of the most commonly used

metrics in classification and information retrieval, reflecting the

average performance of model precision and recall:

F1 � 2pPrecisionpRecall
Precison + Recall

. (12)

4 Results

4.1 Comparison with existing methods

Using 3,924 disease BioNEs, 20,703 gene/protein BioNEs and

21,899 knowledge graph tokens, we make a comparison of our

model with existing methods on the two datasets (Table 1).

Layered-BiLSTM-CRF without considering external

knowledge was used for the test first. Then we compare our

method with the SOTA method using BERT as the embedded

layer, including BERT base, BioBERT v1.0, BioBERT v1.1, and

MKRGCN considering external knowledge.

Layered-BiLSTM-CRF is a neural layered model for

nested NER.

MTM-CW is a multi-task learning model which shares

character-level embedding parameters, word-level embedding

parameters, and character and word layer embedding

parameters for NER.

BERT-base (Devlin et al., 2019) is a contextualized word

representation model that is based on a masked language

model and pre-trained using bidirectional transformers. We

use the embeddings from it with BiLSTM-CRF architecture as

a baseline.

BioBERT v1.0 (Lee et al., 2020) is a BERT-base pre-trained

with 200 thousand PubMed abstracts and 270 thousand PMC

full-text articles. We use the NER fine-tuning version of it with

BiLSTM-CRF architecture as a baseline.

BioBERT v1.1 (Lee et al., 2020) is the same as BioBERT

v1.0 but pre-trained with 1 million PubMed abstracts.

MKRGCN (Xiong et al., 2022) leverages lexicon of words in

Chinese and domain knowledge graph concepts to consider the

boundaries of NEs.

EnRel-G (Chen et al., 2021b) incorporates entity mention

relations based on both global co-reference relations and local

dependency relations by graph neural networks.

We run our model five times with different seeds, and report

the precision, recall, and F1 score.

We have achieved the best results, as highlighted. MKGAT

outperforms layered-BiLSTM-CRF, MTM-CW, BERT-base

(Wiki + Books), BioBERT v1.0 (+PubMed + PMC), BioBERT

v1.1 (+PubMed), and MKRGCN on the NCBI-disease corpus,

BC2GM and BC5CDR-Chem datasets (Table 2). MKGAT

achieves an F1 score of 90.78% on the NCBI-disease dataset,

an F1 score of 88.12% on the BC2GM dataset, and an F1 score of

95.66% on the BC5CDR-chem dataset, higher than the existing

best performances reported by Xiong et al. (2022) by 0.98% in F1
score on the NCBI-disease dataset and 0.31% in F1 score on the

BC2GM dataset, respectively. Compared with Bioformer,

MKGAT achieves higher F1 score by 1.42%, 2.91%, and 2.21%

on the NCBI-disease corpus, BC2GM, and BC5CDR-chem

datasets, respectively. The improvements from external

knowledge encoding and the fusion layer are significant. In

the case of the methods that can utilize KG concepts and

local dependency, using them together may be more effective.

TABLE 1 Quantity of entities in the NBKG and three corpora.

NCBI-disease corpus BC2GM NBKG Common

Disease 3,924 — 128 92

Gene/protein — 20,703 21,771 1,468

Drug 4,409 — 2,499 257
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For example, MKGAT performs better than MKRGCN on the

NCBI-disease corpus but sometimes worse on the BC2GM

(MKRGCN-max is higher than MKGAT-min). This result

indicates that leveraging local dependency from external

knowledge for NER is not simple. The reason may be that the

representation space of article words is different from that of KG

concepts. We can see that MKGAT performs better on NCBI-

disease corpus than BC2GM as same as other models (Figure 4).

This may be caused by the scale of the dataset and the length of

the entities in them. MKGAT provides an effective attention

mechanism to leverage local dependency for NER and also shows

potential to be applied to other tasks.

4.2 Ablation study

We conduct an ablation study on the three BioNER

datasets to evaluate the performance of the embedding

mode and knowledge from KG on the MKGAT. The

models with “concept” are the models using BERT to

embed knowledge graph concepts without relation, and the

models with “relation” are the models using the GNN to

model knowledge graph concepts and their relations

(Table 3). It is worth mentioning that the effect of the

structure of BiLSTEM + CRF is compared. The results

show that replacing the BiLSTM module with a full

connection can still achieve better results, which may be

related to our concern about the relationship from

additional knowledge rather than context. Comparing the

results of Bioformer with those of the Bioformer concept,

we can see both the embedding mode and source of knowledge

can bring improvements. The performance that Bioformer +

GAT relation gets better scores on precision, recall, and F1
shows that considering relations of concepts can help find out

a better representation space for all words in articles so as to

identify entities more accurately.

TABLE 2 Comparison of different methods on the NCBI-disease corpus, BC2GM and BC5CDR-Chem datasets.

Method Datasets

NCBI-disease corpus BC2GM BC5CDR-chem

Precision Recall F1 Precision Recall F1 Precision Recall F1

Layered-BiLSTM-CRF 83.63 76.26 79.97 77.42 72.10 74.66 80.20 65.19 75.92

MTM-CW 85.43 84.71 85.07 79.43 77.25 78.32 88.98 88.54 88.75

BERT-base (Wiki + Books) 84.12 87.19 85.63 81.17 82.42 81.79 90.94 91.38 91.16

BioBERT v1.0 (+PubMed
+ PMC)

87.78 88.85 88.31 85.04 83.26 84.14 93.27 93.61 93.44

BioBERT v1.1 (+PubMed) 87.24 89.89 88.54 84.13 84.95 84.54 93.68 93.26 93.47

Bioformer 88.01 90.76 89.36 85.05 85.38 85.21 93.52 93.39 93.45

MKRGCN Xiong et al.
(2022)

— — 89.44
(±0.36)

— — 86.86
(±0.40)

— — —

EnRel-G Chen et al. (2021) 89.06 90.12 89.59 87.82 87.59 87.70 94.69 94.58 94.63

MKGAT 90.04
(±0.12)

91.52
(±0.63)

90.78
(±0.36)

88.19
(±0.72)

88.05
(±1.19)

88.12
(±0.95)

95.71
(±0.35)

95.62
(±0.74)

95.66
(±0.56)

FIGURE 4
F1-score of MKGAT on three datasets.
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4.3 Fine-grained study

We conduct a fine-grained study on the two NER datasets to

identify which kind of entity can be recognized effectively in

MKGAT.

It is shown that MKGAT achieves an F1 score of 90.33%,

91.81%, and 91.67% for labels “B,” “I,” and “O,” respectively, on

the NCBI-disease corpus (Figure 5A), an F1 score of 88.05%,

88.32%, and 88.10% for labels “B,” “I”, and “O,” respectively, on

the BC2GM (Figure 5B), and an F1 score of 95.69%, 95.32%, and

95.34% for labels “B,” “I,” and “O,” respectively, on the BC5CDR-

chem dataset (Figure 5C). Compared with “B” and “O,”MKGAT

achieved a higher score on label “I”. The reason may be that

words with label “I” can be better characterized because of their

greater quantity.

5 Discussion

From a pharmacological point of view, medical entities such

as drugs, diseases, targets, and pathways are inseparable, and any

of them will have an impact on the action of the drug. Then, for

related research work in biomedicine, it is necessary to consider

the dependencies between them, including BioNER. With the

advent of the Internet era, especially with the outbreak of

COVID-19, a wealth of information about diseases, drugs, and

receptors has accumulated. However, most of the information is

stored in the form of the literature. In addition to unstructured

data, such as text data, many related semi-structured and

unstructured data in different forms have also emerged, such

as knowledge graphs. Therefore, it seems to us most natural to

carry out biomedical named entity identification in the context of

incorporating external knowledge. In this paper, we use a simple

knowledge graph constructed by ourselves from PubMed

(Roberts, 2001), BIOFACQUIM (Pilón-Jiménez et al., 2019),

CMAUP (Zeng et al., 2018), and DrugBank (Wishart et al.,

2018) databases. In order to take advantage of the

dependencies in the knowledge graph, we match the entities

in the graph with the words in the training sentences. To explore

the effects of drug, disease, and target dependencies on BioNER,

we constructed a model which first performs word-level

embeddings on biomedical domain text and knowledge graph

entities using a BERT preprocessing model. Then, text word-level

embeddings and entity dependencies are integrated by using a

graph neural network (GNN), specifically using graph attention

(GAT) networks (Velickovic et al., 2018). GAT has shown good

TABLE 3 Ablation experiments for different embeddings and network structures.

Method NCBI-disease corpus BC2GM BC5CDR-chem

Precision Recall F1 Precision Recall F1 Precision Recall F1

BiLSTM + GAT-relation 82.22 75.63 78.79 71.52 65.74 68.51 83.12 83.28 83.20

BioBERT v1.0 + GAT relation 88.64 89.38 89.01 86.81 87.06 86.93 90.66 90.52 90.59

BioBERT v1.1 + GAT relation 89.53 90.87 90.20 87.49 87.73 87.61 92.91 92.83 92.87

Bioformer 88.01 90.76 89.36 85.05 85.38 85.21 92.87 92.68 92.77

Bioformer concept 88.35 90.73 89.52 85.73 85.91 85.82 93.01 93.14 93.07

Bioformer + RGCN relation 88.91 90.16 89.53 87.68 87.01 87.34 93.45 93.79 93.62

Bioformer + GAT relation 90.71 92.52 91.61 88.19 88.05 88.12 95.71 95.62 95.66

FIGURE 5
MKGAT performance for label “BIO” on (A) NCBI-disease, (B) BC2GM, and (C) BC5CDR-chem datasets.
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performance in many tasks, such as Chinese NER and short text

classification (Hu et al., 2019; Sui et al., 2019).

To test the effect of the model, we conduct experiments using

real-world datasets and compare them with seven currently more

advanced methods (Table 2). MKGAT achieves an F1 score of

90.78% on the NCBI-disease dataset and an F1 score of 88.12%

on the BC2GM dataset, higher than the existing best

performances reported by Xiong et al. (2022) (Fang and

Wang, 2021) by 0.98% in F1 score on the NCBI-disease

corpus dataset and 0.31% in F1 score on the BC2GM dataset,

respectively. Compared with Bioformer, MKGAT achieves

higher F1 scores by 1.42% and 2.91% on the NCBI-disease

dataset and the BC2GM dataset, respectively. The

improvements from external knowledge encoding and the

fusion layer are significant. Compared with MKRGCN (Xiong

et al., 2022) of “integrating entity-related words with external

knowledge,” our model is also very effective, indicating that

“integrating entity dependencies” can also improve the

accuracy of biomedical entity recognition. Compared with

EnRel-G (Chen et al. (2021)), which incorporates entity-

mentioned relations based on both global co-reference

relations and local dependency relations, our model is more

accurate, which means external knowledge brings more effective

information. In addition, there are LSTM-based methods that

have achieved good results in recent years, such as the

SparkNLP’s BiLSTM-CNN structure model (Kocaman and

Talby, 2021). However, because LSTM cannot perform parallel

computing, this method is less efficient than the model proposed

in this paper, so no further discussion will be made.

We also observed the performance of MKGAT using

different modules on the three datasets (Table 3). It is found

that when we do not use the pre-training model to fine-tune and

only use the RNN to focus on the semantics within sentences, the

performance degradation is serious, which confirms that

compared with ordinary NEs, the semantic relationship of

BioNEs is much more complex. The recognition accuracy is

also unsatisfactory when we do not consider the data in the

knowledge graph. This result confirms the effectiveness of our

choice to incorporate external dependency knowledge in the

process of identifying entities.

So is it really a dependency that affects the accuracy of the

identified entity? We thought of this question and explored it.

First, we only use the “entities in the knowledge graph

corresponding to the words in the training set” to test. Then,

we compare it with the test results using the “relational entities

corresponding to the entities in the knowledge graph,” and we

find that the results of integrating the relationship are better.

However, it is worth noting that the improvement brought by

dependencies is not much from the results alone. Why is the

dependency relationship not improved so much? Later, we

thought about whether the semantic relationship of BioNEs in

texts is complicated, which leads to the confusion of recognition

after incorporating the external dependency

relationship. Therefore, we take the dependency entity as an

attribute of BioNEs through GAT (Velickovic et al., 2018) and try

to make the model focus on BioNEs themselves. The results show

that it is helpful. Due to the complexity of the structure of

BioNEs, such as “ (), numbers, etc.”, in order to explore the

completeness of the model’s recognition, we also compared the

boundary and internal recognition of BioNEs on three datasets

(Figure 5). We found that although MKGAT can accurately

identify NEs, the identification accuracy of boundaries is not as

high as that of the interior, which also explains the direction of

future research for us.

Although themodel presented in this paper provides valuable

insights into the application of pharmacological dependencies on

BioNER, it is also important to consider the limitations to this

study. As mentioned previously, it can be seen from the results

that MKGAT is not accurate enough to identify the boundary of

the entity; from the perspective of external knowledge, the

knowledge graph constructed by us cannot cover all possible

entities involved, resulting in the inaccurate recognition of

individual BioNEs, and from the way of external knowledge

integration, all kinds of local dependencies of entities in the

knowledge graph are represented as an adjacent matrix, which

may lose some information. It is important to remember,

therefore, that the model presented here simply provides an

idea for BioNER to leverage external knowledge.
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