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Stroke is a common disease in clinical practice, which seriously endangers

people’s physical and mental health. The neurovascular unit (NVU) plays a key

role in the occurrence and development of ischemic stroke. Different from

other classical types of cell death such as apoptosis, necrosis, autophagy, and

pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form

of cell death. Interestingly, the function of NVU and stroke development can be

regulated by activating or inhibiting ferroptosis. This review systematically

describes the NVU in ischemic stroke, provides a comprehensive overview

of the regulatory mechanisms and key regulators of ferroptosis, and uncovers

the role of ferroptosis in the NVU and the progression of ischemic stroke. We

further discuss the latest progress in the intervention of ferroptosis as a

therapeutic target for ischemic stroke and summarize the research progress

and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion,

ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is

expected to become a new therapeutic target for this disease.

KEYWORDS

stroke, neurovascular unit (NVU), ferroptosis, inhibitors, therapeutic target

Introduction

Stroke is a common disease in clinical practice, which seriously endangers people’s

health and is mainly divided into two subtypes, including ischemic and hemorrhagic

stroke (Peisker et al., 2017). Current evidence suggests that ischemic stroke accounts for

approximately 85% of the morbidity of stroke (Benjamin et al., 2018), mainly due to

cerebral blood circulation disorder, localized brain tissue necrosis or softening caused by
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ischemia and hypoxia, leading to corresponding nervous system

function defects (Sacco et al., 2013). Ischemic stroke is also a

serious disease with high mortality, and the resulting severe

cognitive and motor impairments can significantly burden

families and society (Owolabi et al., 2015; Donkor, 2018). The

post-ischemic brain is characterized by the accumulation of

amyloid plaques and neurofibrillary tangles, followed by the

development of dementia (Yang et al., 2019). Therefore,

ischemic stroke increases the neurological deficits in dementia

patients (Owolabi et al., 2015).

It is widely thought that the neurovascular unit (NVU)

plays a crucial role in the occurrence and development of

ischemic stroke (Iadecola, 2017), as well as in the remodeling

of blood vessels and nerves after stroke (Leigh et al., 2018).

The past decade has witnessed significant inroads in

pathological research on ischemic stroke with the discovery

of a new form of cell death in the NVU of ischemic stroke,

namely ferroptosis (Doll et al., 2017; Magtanong and Dixon,

2018; Zhou et al., 2021).

In recent years, ferroptosis has become a research hotspot

(Dixon et al., 2012). During ferroptosis, a high abundance of

unsaturated fatty acids on the cell membrane undergo lipid

peroxidation under ferrous iron or ester oxygenase, thereby

inducing cell death (Yang et al., 2016). The occurrence and

execution of ferroptosis depend on the interaction of amino

acid, lipid and iron metabolism (Ursini andMaiorino, 2020), and

its sensitivity is also regulated by several key pathways and

processes (Chen et al., 2021a). Ferroptosis is associated with

various diseases such as Parkinson’s disease (Mahoney-Sanchez

et al., 2021), tumor (Kim et al., 2016), and renal failure (Adedoyin

et al., 2018), and the development of these diseases can be

intervened by activating or inhibiting ferroptosis.

In ischemic stroke, pathological changes are closely related to

ferroptosis, such as iron metabolism disorder, lipid peroxidation,

and increased ROS (Hu et al., 2019; Ren et al., 2020). An

increasing body of evidence from recently published studies

substantiates the correlation between ferroptosis and stroke

(Hu et al., 2019; Ren et al., 2020). This review provides a

FIGURE 1
Schematic diagram of the pathological mechanism of ischemic stroke. Ischemic stroke triggers cascades of complex events that cause
oxidative stress and excitotoxicity due to the accumulation of ROS and calcium (Ca2+), blood-brain-barrier (BBB) breakdown and activated
inflammatory responses. Excessive ROS and Ca2+ lead to mitochondrial dysfunction and activation of apoptotic factors, ultimately leading to
apoptosis and necrotic cell death.
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comprehensive overview of the NVU of ischemic stroke and the

role of ferroptosis in ischemic stroke, providing new insights into

the application of ferroptosis in treating ischemic stroke.

NVU in ischemic stroke

Although significant progress has been made in better

understanding the mechanism of neuron injury and repair after

ischemia (Figure 1), there is still a lack of effective treatment for this

disease (Chan, 1996; Hu et al., 2017; Yang et al., 2017). In the past,

research on cerebral ischemic injury was mostly limited to neurons

(Yang et al., 2019) or different cell groups and structures in the brain

(Yang et al., 2017; Qin et al., 2019), ignoring the integrity of brain

function and the interaction between different structures. Recently, the

concept of the neurovascular unit as a newprotective target for ischemic

brain injury has been proposed (Cai et al., 2017; Zhao et al., 2020a).

The neurovascular unit is mainly composed of neurons, glial

cells (including astrocytes, microglia, oligodendrocytes), and the

blood-brain barrier (BBB, including vascular endothelial cells,

astrocytic end-foot processes, basal lamina and pericytes) to

maintain homeostasis of the central system (Pardridge, 1991),

and extracellular matrix that maintains the integrity of the brain

tissue environment (Lo and Rosenberg, 2009; Iadecola, 2017).

The NVU maintains the normal physiological function of

neurons and the repair of damaged neurons, which

emphasizes the importance of the interconnection and mutual

influence between neurons, glial cells and cerebrovascular

(Stamatovic et al., 2008; Lo and Rosenberg, 2009) and

provides the foothold for further study of neuron injury and

protection mechanism. Overall, the NVU plays a key role in the

clinical treatment of ischemic stroke and is increasingly valued by

researchers and clinicians (Iadecola, 2017).

Neurons

It is well-established that neurons are most vulnerable to

cerebral ischemia-reperfusion injury (CIRI) (Lo and Rosenberg,

2009) and are continuously affected by several pathological

reactions such as inflammation, excitatory amino acid toxicity,

and oxidative stress after CIRI (Rohnert et al., 2012). Among

them, excitatory amino acids include glutamate and aspartate

(Brann and Mahesh, 1994), glutamate is the main excitatory

neurotransmitter in the mammalian central nervous system,

which can have long-term effects on the structure and function

of neurons, and glutamate-mediated excitatory signal transduction

can affectmammalian brain functions, including cognition,memory

and learning. The release of a large number of excitatory amino acids

will activate plenty of ion channels and lead to persistent intracellular

Ca2+ level increase, cell damage and death, which is called excitatory

amino acid toxicity (Gillessen et al., 2002). While, this excitotoxicity

caused by excitatory amino acids is one of the earliest and widely

recognized molecular mechanisms of CIRI (Lai et al., 2014). When

the brain is in a state of ischemia and hypoxia, the release of

excitatory neurotransmitters is increased and reuptake is impaired

due to metabolic disorders, and eventually the level of excitatory

neurotransmitters in the ischemic region increases rapidly that leads

to aberrant activation of many Ca2+-dependent pathways and

initiation of apoptosis, necroptosis and autophagy processes in

the brain (Shen et al., 2022). Current evidence suggests that

neuronal death accounts for the poor prognosis in ischemic

stroke (Chen et al., 2020). Indeed, assessing the severity of an

ischemic stroke and the cause of death depends largely on the

number of neurons dying in the affected brain area (Lazarov and

Hollands, 2016).

Microglia

Microglia are innate immune cells in the brain, accounting

for approximately 5–20% of glial cells (Benveniste, 1997). The

main functions of microglia are to recognize pathogens,

phagocytose necrotic or apoptotic cells, remove damaged

neurons, tissue fragments, small and inactive synapses,

infected small molecules and macromolecules, regulate T cell

response, and induce inflammatory process (Nimmerjahn et al.,

2005). In addition, microglia have extensive connections with

other NVU cells (Thurgur and Pinteaux, 2019), which can

regulate the microenvironmental homeostasis of NVU, and

have positive significance for maintaining the barrier function

of BBB (Abdullahi et al., 2018). When an ischemic stroke occurs,

neurons activate microglia to differentiate into M1-and M2-

phenotypes by releasing certain soluble factors and

intracellular components (Akhmetzyanova et al., 2019; Qin

et al., 2019). It is well-established that M1-type microglia have

a pro-inflammatory and deleterious effect on the ischemic brain

(Yu et al., 2022), while M2-type microglia can reduce the

inflammatory response and exert neuroprotective effects

(Varin and Gordon, 2009; Soehnlein and Lindbom, 2010).

In addition, microglia can affect the activity of neurons by

releasing ATP and stimulating astrocytes to release glutamate to

increase the excitatory postsynaptic potential (Barakat and

Redzic, 2016; Illes et al., 2021). After cerebral ischemia,

microglia release many inflammatory factors (Soehnlein and

Lindbom, 2010), destroy the normal function of neurons and

damage vascular endothelial cells, thereby destroying the BBB

structure and aggravating brain edema (Yenari et al., 2010).

Oligodendrocytes

Oligodendrocytes are the myelinating cells in the central

nervous system (CNS) and originate from oligodendrocyte

progenitor cells (OPCs). OPCs can differentiate into

oligodendrocytes or astrocytes according to the environment
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(Hughes et al., 1988). Endothelial cells promote the proliferation

of OPCs by releasing trophic factors such as brain-derived

neurotrophic factor (BDNF) and basic fibroblast growth factor

(bFGF) (Dugas et al., 2008) and release vascular endothelial

growth factor A (VEGF-A) to promote oligodendrocyte

migration (Guo et al., 2008; Arai and Lo, 2009). The main

function of oligodendrocytes is to form an insulating myelin

sheath wrapping the axons in the CNS, assist in the efficient

transmission of bioelectrical signals, and maintain and protect

the normal function of neurons (Baumann and Pham-Dinh,

2001; Kuhn et al., 2019). Abnormalities in oligodendrocytes not

only lead to demyelinating lesions of the CNS but also cause

neuronal damage, psychiatric diseases, and even brain tumors

(Kuhn et al., 2019). Under ischemic conditions, the expression of

Nogo-A in oligodendrocytes is upregulated (Kern et al., 2013),

thereby inhibiting axonal remodeling, impairing neuronal

function, and triggering the early breakdown of BBB by

secreting matrix metalloproteinase-9 (Mandai et al., 1997;

Dewar et al., 2003).

Vascular endothelial cells

Vascular endothelial cells (VECs) constitute a monolayer of

specialized cells strategically positioned between the vascular wall

and the bloodstream (Kruger-Genge et al., 2019). Ischemic stroke

results from a combination of factors such as platelet adhesion

and aggregation and related release reactions (Del Zoppo, 1998),

fibrin protease activation, and fibrin formation after vascular

endothelial injury (Zhou et al., 2020). Under normal conditions,

certain active factors released by VECs play a protective role in

regulating vascular tension, coagulation, fibrinolysis, and

maintaining normal blood pressure and hemodynamics

(Sandoo et al., 2010). Once the vascular endothelium is

damaged, the exposed subendothelial layer can cause platelet

adhesion and aggregation, leading to thrombosis (Chen and

Lopez, 2005). The stimulated VECs can also release tissue

factors to promote the extrinsic coagulation process involving

coagulation factor XII and accelerate thrombosis (Lopes-Bezerra

and Filler, 2003). Notably, prolonged ischemia-hypoxia and

ischemia-reperfusion (I/R) can damage VECs (Zhou et al.,

2020). In addition, ischemia and hypoxia can induce the

expression of VEGF (Ramakrishnan et al., 2014), which can

promote the proliferation of VECs and participate in

angiogenesis, thereby suppressing ischemic stroke and playing

a neuroprotective role (Lopes-Bezerra and Filler, 2003; Zhou

et al., 2020).

Astrocytes

In glial cells, astrocytes perform multiple homeostatic

functions to maintain the survival and stability of the NVU

(Becerra-Calixto and Cardona-Gomez, 2017), exerting

neuroprotective, angiogenic, immunomodulatory,

neurogenic, and antioxidant effects with the ability to

modulate synaptic function (Daneman and Prat, 2015;

Becerra-Calixto and Cardona-Gomez, 2017). Under

physiological conditions, astrocytes release various

neurotrophic factors, which can repair damage to neurons

and VECs (Ye et al., 2018). During cerebral ischemia, the

energy supply of brain cells is insufficient, resulting in the

dysregulation of intracellular calcium and sodium pumps

(Peng et al., 2019). Because of the extensive gap junctions

and hemichannels in astrocytes, the gap junctions are

destroyed, and Ca2+ and toxic substances are rapidly

transmitted, causing astrocytes to release a large amount of

glutamate to aggravate the excitatory amino acid toxicity (Lim

et al., 2021). On the other hand, astrocytes are overactivated in

the acute phase of ischemia, eventually forming a glial scar

that hinders the repair of neurons (Sofroniew, 2009).

Pericytes

Brain pericytes are located in the center of the NVU and

respond by receiving, integrating and processing signals from

neighboring cells (Hamilton et al., 2010; Armulik et al., 2011;

Winkler et al., 2011). They are critical in maintaining the normal

function of the CNS and are involved in the formation and

maintenance of BBB, cerebral blood flow (CBF) regulation,

immunoregulation, angiogenesis, and stability. Overwhelming

evidence substantiates that the dysfunction and loss of pericytes

play a key role in the pathogenesis of various cerebrovascular

diseases (Winkler et al., 2011). It has been shown that after

ischemia, pericytes begin to detach from the cerebral

microvessels (Zhou et al., 2022), which causes the destruction

of tight junctions between cells, resulting in the destruction and

leakage of the BBB (Bergers and Song, 2005). The platelet-derived

growth factor receptor β (PDGFRβ) on pericytes is upregulated

after cerebral ischemia and can combine with PDGFβ secreted by
VECs to promote the recruitment and migration of pericytes for

neovascularization to promote maturation (Makihara et al., 2015;

Hutter-Schmid and Humpel, 2016). It has been shown that

pericytes begin to secrete VEGF within 24 h after ischemic

stroke, which promotes angiogenesis in the peri-infarct area

by activating VEGFR in endothelial cells (Shibuya, 2011; Yang

et al., 2017; Zhou et al., 2022). Under ischemic and hypoxic

conditions, pericytes can exhibit pluripotent stem cell properties

and participate in immune responses (Davidoff, 2019;

Fernandez-Morales et al., 2019). A recent study found that

TNF-α could promote the release of IL-6 from pericytes,

which contributed to the activation of microglia (Matsumoto

et al., 2018a).

This NVU theory emphasizes the important connection

between neurons, glial cells and microvessels after cerebral
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ischemia, corroborating that all components of NVU are

involved in the pathological process of cerebral ischemia

injury (Stamatovic et al., 2008; Mcconnell et al., 2017). This

connection is realized through cell-cell and cell-matrix

interaction. There are many chemicals involved in the

regulation of BBB permeability in different cell types of NVU.

These regulatory chemicals fall into different categories, such as

proinflammatory cytokines (e.g., TNF-α, IL-1, IL-6),

neurotransmitters (e.g., NO), ROS and other substances

(Table 1). Comprehensive treatment of NVU can effectively

combat ischemic stroke. Therefore, NVU provides a

theoretical basis for the current research and treatment of

neurological diseases, and targeting NVU from a global

perspective may bring new opportunities for treating ischemic

stroke.

Mechanisms and key regulators of
ferroptosis

Programmed cell death plays an important role in

homeostasis and disease development. Among them,

ferroptosis is a newly discovered form first proposed by

Stockwell et al., in 2012 (Dixon et al., 2012). Ferroptosis is

significantly different from other types of cell death such as

apoptosis, necrosis, autophagy, and pyroptosis at the

morphological, biochemical, and genetic levels (Dixon et al.,

2012). The morphological features of ferroptosis are mainly

manifested in mitochondria, including reduced volume,

increased membrane density, and reduced numbers or absence

(Chen et al., 2021a; Jiang et al., 2021). Regarding biochemical

characteristics, ferroptosis manifests as glutathione depletion,

TABLE 1 The functions and regulators of NVU.

NVU
components

Functions Regulators References

Neurons Critical in the regulation of BBB function, innervate
endothelial cells and their associated astrocytes.
Maintain the homeostasis of the brain
microenvironment, provide nutritional support for the
brainetc.

Mcl-1/Bcl-2, OXR1, P53/Caspase-3, TRAF3,
ADIPOR2etc.

Awooda et al. (Awooda et al., 2015)

Anilkumar et al. (Anilkumar et al.,
2020)

Cregan et al. (Cregan et al., 1999)

Astrocytes As a part of the blood-brain barrier, can connect
capillaries and neurons, participate in the nutritional
support of neurons and the regulation of
electrophysiological activities, and can secrete a large
number of neurotrophic factors and growth factors to
maintain the stability of the microenvironment and
repair after injury

AQP-4, TLR4, TGF-β, ADIPOR2, Nrf2, ApoE,
MCSF, IL-6, MCP-1, MMP-9, GFAP, GLT-1,
GLAST, PARsetc.

Becerra-Calixto et al.
(Becerra-Calixto and
Cardona-Gomez, 2017)

Hiroko (Ikeshima-Kataoka, 2016)

Cekanaviciute et al. (Cekanaviciute
and Buckwalter, 2016)

Microglia As an innate immune effector cell, microglia is
necessary for the normal development of the nervous
system

TLR, MHC-II, CD16/32, BDNF, GDNF, VEGF,
BMP-7, TGF-β, CSF-1, TNF-α, TNF-β, IGF-1,
NADPH oxidase, IL-1, IL-4, IL-5, IL-6, IL-8, IL-10,
pro-MMP-9, NO, ROSetc.

Kim et al. (Kim and De Vellis,
2005)

Hamel (Hamel, 2006)

Colonna et al. (Colonna and
Butovsky, 2017)

Kang et al. (Kang et al., 2020)

Oligodendrocytes Their main function is to wrap axons in the central
nervous system, form an insulating myelin structure,
assist in the efficient transmission of bioelectrical
signals, maintain and protect the normal function of
neurons

Nogo-A, CNTF, IGF-1, NT-3, PDGFetc. Nave et al. (Nave and Werner,
2014)

Plemel et al. (Plemel et al., 2014)

Vascular endothelia
cells (VECs)

As the physical barrier of the BBB, VECs are formed by
preventing cells and molecules from passively entering
the brain through tight junctions between cells

NF-κB, NO, Prostacyclin, EDHF, Eicosanoids,
TIMP-2, VCAM-1, ICAM-1, P-selectin, MMPsetc.

Onat et al. (Onat et al., 2011)

Henke et al. (Henke et al., 2007)

Kathrina et al. (Marcelo et al., 2013)

Pericytes Vital in the formation and maintenance of BBB
integrity, angiogenesis, and removal of toxic substances

Angiopoientin-1, MIF, Occludin, SIPT1, MRPetc. Rustenhoven et al. (Rustenhoven
et al., 2017)

Hori et al. (Hori et al., 2004)

Extracellular
matrix (ECM)

Mediating cell differentiation, proliferation, adhesion,
morphogenesis and phenotype

Collagen, Undulin, Tenascin, Fibronectin,
Dermatan sulfate, Decorinetc.

Bonnans et al. (Bonnans et al.,
2014)

Zhang et al. (Zhang et al., 2021a)

Basal lamina Located on the outside of the lumen of the cerebral
microvascular endothelium, it is composed of
extracellular matrix proteins secreted by VECs,
pericytes, and astrocytes, and is involved in the
regulation of vascular integrity

Collagen, Laminin, Fibronectin, Elastin,
Proteoglycans, Merosin, Dystroglycan, Nidogen,
Growth factors, MMPsetc.

Hoshi et al. (Hoshi and Ushiki,
2004)

Nguyen et al. (Nguyen et al., 2021)
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glutathione peroxidase 4 (GPX4) inactivation, and lipid peroxide

accumulation (Chen et al., 2021a; Jiang et al., 2021).

It has been confirmed that ferroptosis is closely related to

neurodegenerative diseases, tumors, cardiovascular and

cerebrovascular diseases, and acute kidney injury (AKI)

(Ward et al., 2014; Fang et al., 2019; Bao et al., 2021), and

its inhibitors can effectively delay disease progression and

improve clinical symptoms (Angeli et al., 2017). However, the

regulatory mechanism of ferroptosis has not yet been fully

elucidated. With significant progress achieved in the study of

ferroptosis, various regulatory factors and mechanisms have

been discovered, suggesting that it is mainly related to iron

metabolism disorder, amino acid antioxidant system

imbalance, and lipid peroxide accumulation (Figure 2)

(Dixon et al., 2012; Chen et al., 2021a). When iron

metabolism disorder causes the increase of intracellular free

iron, iron catalyzes the production of ROS through the Fenton

reaction, and ROS further promotes lipid peroxidation,

causing the accumulation of lipid peroxides and inducing

ferroptosis (Dixon et al., 2012; Stockwell et al., 2017; Chen

et al., 2021a). Indeed, an in-depth study and elucidation of the

pathophysiological mechanism of ferroptosis can provide new

ideas and treatment methods for ferroptosis-related diseases.

Iron metabolism

Iron metabolism disorders, especially iron overload, are key to

ferroptosis (Dixon et al., 2012). Fe3+ in the blood circulation is

combined with transferrin and transported to the cell through

transferrin receptor 1 (TFR1) on the cell membrane surface

(Beguin et al., 2014). Then Fe3+ is reduced to Fe2+ and released

into the labile iron pool (LIP) in the cytoplasm (Kakhlon and

Cabantchik, 2002), while excess iron is stored in ferritin (Jacobs et al.,

1972). During this process, nuclear receptor coactivator 4 (NCOA4)

acts as an adaptor protein to mediate the targeted transport of

ferritin to lysosomes for autophagic degradation, thereby releasing

free Fe2+, a process called ferritinophagy, mainly responsible for iron

release and recovery (Mancias et al., 2014). Part of Fe2+ is transported

out of cells through ferroportin1 (FPN1) on the cell membrane to

ensure that the intracellular iron concentration is not excessively

high under physiological conditions (Zhang et al., 2011; Zhang et al.,

FIGURE 2
Regulatory mechanisms of ferroptosis. The primary metabolism involved in ferroptosis can be roughly divided into three categories: iron
metabolism, System Xc−/GSH/GPX4 pathway, and lipid peroxidation. Besides, the FSP1-CoQ10-NAD(P)H pathway, which exists as an independent
parallel system with GPX4 and GSH, inhibits phospholipid peroxidation and ferroptosis.
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2012). Current evidence suggests that ironmetabolism disorders can

increase intracellular LIP and cause an increase in intracellular free

iron (Ravingerova et al., 2020).

Due to the instability and high reactivity of Fe2+, hydroxyl

radicals can be generated through the Fenton reaction (Thomas

et al., 2009), which can directly react with polyunsaturated fatty

acids (PUFAs) in the plasma membrane to generate a large

amount of lipid ROS (Magtanong et al., 2016), and further

promote lipid peroxidation and peroxide accumulation,

inducing cell ferroptosis (Stockwell et al., 2017).

System Xc−

The cystine-glutamate antiporter System Xc− is widely

distributed in the phospholipid bilayer of biological cells

(Bannai, 1986; Sasaki et al., 2002; Bridges et al., 2012). It is a

heterodimer composed of light chain solute carrier family seven

member 11 (SLC7A11) and heavy chain solute carrier family

three member 2 (SLC3A2) (Sato et al., 1999; Broer and Wagner,

2002; Verrey et al., 2004). The System Xc− can export intracellular

glutamate to the extracellular space while importing cystine into

the cytoplasm, where cystine is reduced to cysteine, which is

involved in glutathione (GSH) synthesis (Seib et al., 2011).

Glutathione peroxidase (GPX), whose active center is

selenocysteine, catalyzes the conversion of reduced GSH to

oxidized glutathione (GSSG), converting toxic peroxides into

hydroxyl compounds to protect cell membranes from oxidative

stress damage (Guan et al., 2017).

GPX4 is the only enzyme found in the GPX family that can

reduce peroxides in lipid membranes, and its antioxidant

effect is significantly higher than other family members

(Margis et al., 2008). In particular, GPX4 can degrade

hydrogen peroxide and other small molecule peroxides

induced by iron overload in cells, preventing ferroptosis

caused by the accumulation of ROS (Borchert et al., 2018).

The antioxidant activity of GPX4 depends on GSH, which acts

as an electron donor and converts toxic lipid hydroperoxide

into non-toxic lipid alcohol (L-OH) (Fei et al., 2020). When

System Xc− is blocked, glutamate and cystine cannot be

exchanged, resulting in the accumulation of intracellular

glutamate, decreased GSH synthesis and GPX4 activity,

thereby increasing ROS in lipids and inducing cell

ferroptosis (Forcina and Dixon, 2019).

Lipid peroxidation

Lipid peroxidation refers to the loss of hydrogen atoms of

lipids under the action of free radicals or lipid peroxidase,

resulting in the oxidation, fragmentation and shortening of

lipid carbon chains and the production of lipid free radicals,

lipid hydroperoxides (LOOH) and reactive aldehydes (such as

malondialdehyde and 4-hydroxynonenal) and other cytotoxic

substances, eventually cause lipid oxidative degradation reactions

that damage cells (Ayala et al., 2014). ROS are a group of

molecules with partially reduced oxygen, including peroxides,

superoxides, singlet oxygen, free radicals, etc., which cause cell

death by damaging DNA, RNA and lipid molecules (Su et al.,

2019; Villalpando-Rodriguez and Gibson, 2021). As a member of

intracellular ROS, lipid peroxides are the ultimate executors of

ferroptosis (Cheng et al., 2021). The deleterious effect of lipid

peroxidation is mainly reflected in the oxidative degradation of

two important biofilm components, including

phosphatidylethanolamines (PEs) and PUFAs (Gaschler and

Stockwell, 2017).

PUFA is the main component of phospholipids in cell and

organelle membranes and is also an important substrate for the

synthesis of PE (Stubbs and Smith, 1984). PUFA has a high

affinity for free radicals, and the hydrogen atoms between its

double bonds are easily oxidized by free radicals (Cunnane,

1994). The lipid peroxidation reaction of PUFA is roughly

divided into two stages (Kanner et al., 1987; Girotti, 1998;

Ayala et al., 2014). First, ROS acquire hydrogen atoms in

PUFA to generate lipid radicals (Yin et al., 2011);

subsequently, lipid radicals interact with oxygen molecules to

generate lipid peroxyl radicals (LOO-) (Chamulitrat and Mason,

1989). LOO- can reportedly abstract hydrogen atoms from other

PUFAs to form lipid radicals and lipid hydroperoxides

(Chamulitrat and Mason, 1989; Girotti, 1998). Moreover,

LOO- participates in the oxidation process of PUFAs, which

ensures that the lipid peroxidation of PUFAs exhibits the

characteristics of a cascade reaction (Yin et al., 2011).

However, the affinity between PE and free radicals is not

high, and oxidation sites need to be formed under the action of

two enzymes before lipid peroxidation occurs (Pratt et al., 2011).

First, long-chain acyl-Coa synthetase-4 (ACSL4) utilizes

arachidonic acid (AA) and adrenic acid (AdA) to synthesize

arachidonoyl-CoA (AA-COA) and adrenoyl-CoA (AdA-COA)

(Ma et al., 2021); then, AA/AdA-COA combines with PE to form

PE-AA/AdA under the catalytic action of

lysophosphatidylcholine acyltransferase 3 (LPCAT3) (Kagan

et al., 2017).

PE-AA/AdA is easily oxidized to cytotoxic PE-AA/AdA-

OOH by free radicals or Arachidonate 15-Lipoxygenase

(ALOX15), which promotes ferroptosis (Kagan et al., 2017).

LOX-mediated lipid hydroperoxide production has been

suggested to be involved in ferroptosis (Shintoku et al., 2017).

The accumulation of lipid peroxides, especially phospholipid

peroxides, is a hallmark event of ferroptosis (Shintoku et al.,

2017). High levels of ACSL4 and LPCAT3 have been detected in

various tumors, such as renal and liver cancer cells (Luo et al.,

2021). At present, the expression of these two enzymes has been

used to assess the sensitivity of various tumor cells to ferroptosis

(Yuan et al., 2016a; Doll et al., 2017; Kagan et al., 2017;

Magtanong and Dixon, 2018).
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Nrf2

Nuclear factor-E2-related factor 2 (Nrf2) is a transcription

factor with a leucine zipper structure, which plays a key anti-

oxidation role (Jaiswal, 2004). The activity of Nrf2 is strictly

regulated by Kelch-like ECH-associated protein 1 (Keap1)

(Kobayashi and Yamamoto, 2006). Under normal conditions,

Nrf2 binds to Keap1 and is inactivated with ubiquitination and

degradation in the proteasome (Zhang et al., 2004). Once in a

state of oxidative stress, Keap1 is degraded by autophagy to

release Nrf2 (Kaspar et al., 2009). Free Nrf2 rapidly translocates

to the nucleus, which binds to antioxidant response elements

(AREs) in the promoter region to drive antioxidant gene

expression, balance oxidative stress and maintain cellular

redox homeostasis (Kwak et al., 2007).

It is well-established that Nrf2 can regulate a variety of

antioxidant enzymes, such as superoxide dismutase (SOD),

catalase (CAT), glutathione peroxidase (GPX), glutathione

reductase (GR), NAD(P)H quinine oxidoreductase (NQO1)

and so on (Dhakshinamoorthy et al., 2000; Zhu et al., 2005).

Therefore, Nrf2 is considered an important regulator of

ferroptosis and a therapeutic target for tumors and

neurodegenerative diseases highly associated with oxidative

stress (Abdalkader et al., 2018; Song and Long, 2020).

P53

p53 has attracted much interest as a tumor suppressor molecule

since its discovery (Harris, 1996). The p53 molecule can induce

apoptosis and cell cycle arrest, exerting a strong tumor suppressor

effect (Chen, 2016). In 2015, Jiang et al. linked p53 to ferroptosis for

the first time (Jiang et al., 2015) and demonstrated that mutation of

p53 can inhibit the activity of System Xc−, downregulate the

expression of SLC7A11 (Jiang et al., 2015), and reduce the

activity of GPX4, thereby promoting lipid peroxidation and

inducing ferroptosis (Jiang et al., 2015). It is widely thought that

p53 is at the core of a powerful signaling network; it regulates the

sensitivity of cells to ferroptosis in different cell types and under

different stress factors through several independent signaling

pathways (Harris and Levine, 2005; Huang, 2021).

In addition to increasing sensitivity to ferroptosis, p53 appears to

have an opposing effect (Liu et al., 2020a). When cells undergo

cysteine deprivation, another signaling pathway is activated, with

increased expression of wild-type p53 to induce p21 transcription or

inhibit DPP4 binding to NOX1, ultimately inhibiting cell

susceptibility to ferroptosis (Wang et al., 2012; Badgley et al.,

2020). These two functions seem contradictory, but they are

unified in cells. On the one hand, ferroptosis, as a form of

regulated cell death, has physiological significance in the

evolution of species, and p53 can achieve the purpose of

removing abnormal cells and inhibiting tumorigenesis by

increasing the sensitivity of cells to ferroptosis (Jiang et al., 2015;

Liu et al., 2020a); on the other hand, when metabolic stress occurs,

p53 can reduce the sensitivity of cells to ferroptosis by enhancing the

ability to regulate ROS level to help normal cells survive the damage

induced by various stress factors and promote cell survival

(Tarangelo et al., 2018). Overwhelming evidence substantiates

that cell types and p53 mutation sites may influence the

mechanism of p53 in regulating cell ferroptosis (Wynford-

Thomas and Blaydes, 1998; Wang et al., 2008; Ji et al., 2022),

although the specific underlying mechanism warrants further study.

FSP1

Previous studies suggested that GPX4 and free radical

antioxidants regulate ferroptosis. Recently, Marcus Conrad and

José Pedro Friedmann Angeli’s team used a clonal expression

strategy to screen for genes that can inhibit ferroptosis caused by

loss of GPX4 in human cancer cells and found that flavoprotein

apoptosis-inducing factor mitochondria-related 2 (AIFM2) is an anti-

ferroptosis gene and renamed AIFM2 to ferroptosis suppressor

protein 1 (FSP1). FSP1, originally described as a pro-apoptotic

gene, showed the ability to inhibit ferroptosis induced by GPX4

knockout (Doll et al., 2019). In addition, the researchers found that

the main mechanism of FSP1 in inhibiting ferroptosis is to reduce

Coenzyme Q10 (CoQ10) with NAD(P)H, inhibit lipid peroxidation,

and resist the occurrence of ferroptosis (Doll et al., 2019). The FSP1-

CoQ10-NAD(P)H pathway exists as an independent parallel system,

which, together with GPX4 and glutathione, inhibits phospholipid

peroxidation and ferroptosis (Bersuker et al., 2019; Doll et al., 2019).

Their anti-ferroptosis properties have been widely used in the study

of anti-tumor therapy (Bersuker et al., 2019). Growing evidence

suggests that when GPX4 is inactivated, FSP1 can continue to

maintain tumor growth in vivo, while deletion of GPX4 and

FSP1 can inhibit tumor growth (Doll et al., 2019). As a novel

ferroptosis inhibitor, FSP1 provides a new direction for disease

research.

ACSL4

ACSL4 is a lipid metabolism enzyme required for lipid

peroxidation and belongs to the ACSL family (Lopes-Marques

et al., 2013). Current research suggests that PUFAs can be used as

substrates for lipid peroxidation (Ayala et al., 2014), and their

accumulation is a marker of ferroptosis; thus, the intracellular

PUFAs content determines the development of ferroptosis and

increased content can promote the progression of lipid

peroxidation-induced ferroptosis (Das, 2019; Kuang et al.,

2020). ACSL4 can activate free PUFAs and then complete the

peroxidation process of membrane phospholipids with the

participation of the other key enzymes, LPCAT3 and ALOX15

(Lee et al., 2021). Therefore, the ACSL4/LPCAT3/

ALOX15 pathway can promote lipid peroxidation-induced
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ferroptosis (Lee et al., 2021). Zhang et al. showed that PKCβII,
one of the isoforms of PKC (Steinberg, 2008), is an important

lipid peroxidation sensor activated by lipid peroxidation during

ferroptosis that can phosphorylate ACSL4 to amplify the effect of

lipid peroxidation, eventually inducing ferroptosis (Zhang et al.,

2022). This study also confirmed that the PKCβII-ACSL4
mechanism affects the efficacy of cancer immunotherapy by

regulating ferroptosis (Zhang et al., 2022).

Other regulatory mechanisms

Heat shock proteins (HSP) are a class of highly conserved

molecular chaperones expressed in response to environmental

stress and render cells resistant to different types of cell death

(Feder and Hofmann, 1999). For example, HSPB1 can inhibit

ferroptosis by reducing iron uptake (Sun et al., 2015);

HSPA5 binds to and stabilizes GPX4, thereby indirectly

avoiding the damage of lipid peroxidation in ferroptosis (Zhu

et al., 2017); however, the HSP9 inhibitor CDDO can inhibit

ferroptosis in tumor cells, suggesting that HSP90 may play a

different role in ferroptosis (Qin et al., 2015).

Mitochondria have been reported to participate in the

pathogenesis of ferroptosis (Gao et al., 2019). CDGSH iron-

sulfur domain 1 (CISD1) is a class of mitochondrial iron-

exporting proteins that inhibit ferroptosis by preventing the

accumulation of iron and the production of ROS in

mitochondria (Yuan et al., 2016b). In addition, voltage-

dependent anion channels (VDACs) located in the

mitochondrial outer membrane play an important regulatory

role in ferroptosis (Lemasters, 2017). It has been shown that

Erastin, a ferroptosis inducer (Shibata et al., 2019; Zhao et al.,

2020b), can act on VDAC to promote the release of a large

number of oxides, causing ROS-dependent mitochondrial

dysfunction and bioenergy exhaustion to induce ferroptosis

(Zhao et al., 2020b), while the reduction of VDAC expression

can reduce the occurrence of Erastin-induced ferroptosis (Yang

et al., 2020).

Epigenetics is a key factor in regulating gene expression, and

more and more research results show that epigenetic regulation

(e.g., DNA methylation, histone modification and miRNA) plays

an important role in ferroptosis (Jaenisch and Bird, 2003; Wu

et al., 2020). DNA methylation is the most widely studied

epigenetic modification. Increased DNA methylation may lead

to gene silencing, while decreased methylation activates gene

expression (Newell-Price et al., 2000), and DNA methylation is

closely related to iron metabolism and can control the expression

of ferroptosis-related genes (e.g., GPX4 and SLC7A11) to regulate

ferroptosis (Zhao et al., 2022). Currently, DNA methylation is

widely used as a diagnostic, predictive, and prognostic biomarker

for multiple cancers (Huo et al., 2019). According to the histone

modification studies, it was found that reducing histone 2A

ubiquitination (H2Aub) on the SLC7A11 promoter can

downregulate SLC7A11 and prevent ferroptosis (Zhang et al.,

2019a); the histone 2B monoubiquitination (H2Bub1)

modification is significantly down-regulated during the

induction of ferroptosis, and artificial inhibition of

endogenous H2Bub1 can significantly increase the sensitivity

of cells to the ferroptosis inducer Erastin (Wang et al., 2019); in

addition, histone deacetylase (HDAC) can regulate iron

metabolism by inhibiting HAMP gene expression (Sukiennicki

et al., 2019). There are also many studies reporting that a large

number of microRNAs (miRNAs) can regulate ROS metabolism

and ferroptosis (Zhang et al., 2020a). Mitofusin (Mfn) is a key

protein that maintains mitochondrial morphology, regulates

cellular lipid metabolism, endoplasmic reticulum stress and

ROS generation (Papanicolaou et al., 2011), and plays a

potential role in ferroptosis (Wei et al., 2020). miR-195, miR-

125a and miR-761 have all been reported to regulate the

mitochondrial function and metabolism of breast cancer cells,

pancreatic cancer cells and liver cancer cells by targeting Mfn2,

respectively, and affect the growth of tumor cells (Guo et al.,

2017; Pan et al., 2018; Purohit et al., 2019); miR-137 can

negatively regulate ferroptosis by directly targeting glutamine

transporter SLC1A5 in melanoma cells (Luo et al., 2018). These

further reveal the miRNA regulation role in ferroptosis, which

contributes to an in-depth understanding of the mechanism of

ferroptosis.

Ferroptosis in ischemic stroke

An increasing body of evidence from recently published studies

suggests that ferroptosis is closely related to various diseases, such as

tumor and neurological diseases (Ward et al., 2014; Fang et al., 2019;

Bao et al., 2021). On the one hand, ferroptosis inducers can induce

ferroptosis in abnormal cells, and tumor cells are highly sensitive to

ferroptosis (Wu et al., 2019). Accordingly, ferroptosis can be induced

in tumor cells to treat tumors. Non-targeted strategies based on

nanoparticles have been designed to deliver iron, peroxides and

other toxic substances to kill tumor cells (Zhang et al., 2019b; Raj

et al., 2021).

The discovery of various enzymes regulating ferroptosis has

enabled the targeted therapy of tumors, the most prominent

target being GPX4, which is expressed in most tumor cells and is

important for cell survival (Zhang et al., 2020b). GPX4-deficient

cancer cells can be efficiently eliminated by the FSP-specific

inhibitor iFSP1, while in GPX4-expressing cancer cells,

iFSP1 cooperates with RSL3 to induce cancer cell ferroptosis

(Gaschler et al., 2018). Therefore, FSP1 inhibitors may have

clinical applications, especially for treating drug-resistant tumors

or tumors that exhibit de-differentiation characteristics (Wang

et al., 2021a). In addition, pharmacological or genetic inhibition

of system Xc− to prevent the development and metastasis of

various tumors has yielded good efficacy and low toxicity in

mouse models (Zhu et al., 2019).
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On the other hand, ferroptosis inhibitors can inhibit

ferroptosis in normal cells and can be used to prevent or treat

neurological diseases (Angeli et al., 2017). Studies have found

that ferroptosis is associated with Parkinson’s disease (Mahoney-

Sanchez et al., 2021). Ferroptosis is an important cell death

pathway of dopaminergic neurons (Do Van et al., 2016), and

the ferroptosis inhibitor ferrostatin-1 can reportedly inhibit

neuronal cell death in vitro and in vivo (Reichert et al., 2020).

Interestingly, it has been reported that many pathological

features of Alzheimer’s disease are associated with an

imbalance in iron homeostasis, and iron overload in the brain

may be responsible for the rapid cognitive decline in Alzheimer’s

patients (Belaidi and Bush, 2016). Water maze experiments

showed that mice with GPX4 knockout in the cerebral cortex

and hippocampal neurons showed significant cognitive

impairment and degeneration of hippocampal neurons. The

degree of neurodegeneration was reduced after treatment with

Vitamin E or the ferroptosis inhibitor Liproxstatin-1 (Hambright

et al., 2017; Lane et al., 2018). These studies suggest that

ferroptosis is widely involved in regulating the functions of

neurons related to learning and memory.

It has been established that the levels of intracellular lipid

peroxides and Fe2+ are increased during stroke, and

ferroptosis inhibitors can upregulate the levels of GSH,

GPX4 or system Xc− to alleviate brain damage, indicating

that ferroptosis affects the progression of stroke (Magtanong

and Dixon, 2018; Zhang et al., 2021b). Studies have shown that

ferroptosis inhibitors protect mice from ischemia-reperfusion

injury in a middle cerebral artery occlusion (MCAO) model

(Tuo et al., 2017), suggesting that ferroptosis can lead to

neuronal death and NVU damage after ischemic stroke (Xu

et al., 2022). Understanding the roles of iron metabolism,

amino acid metabolism, and lipid metabolism of ferroptosis in

ischemic stroke provides theoretical support for treating this

disease (Jiang et al., 2021). The following content specifically

discusses the role of ferroptosis in ischemic stroke (Figure 3).

Iron metabolism and ischemic stroke

It is well-established that iron homeostasis in the brain is

disrupted after ischemic stroke, which impedes NVU

FIGURE 3
Themechanisms of ferroptosis in ischemic stroke. Following ischemic stroke, the BBB is disrupted, which allows Fe3+ in the blood to be released
into cells through TF and TFR1, then stored in the endosome, where Fe3+ is converted into Fe2+ and transported to the cytoplasm by DMT1 with the
cooperation of STEAP3. The excess Fe2+ generates ROS and participates in the synthesis of PUFA lipid peroxides (L-OOH), which can induce
ferroptosis; System Xc− is simultaneously impaired, which inhibits cystine-glutamate exchange and reduces the generation of GSH and GPX4,
thereby inhibiting lipid alcohol (L-OH) production, ultimately leading to ferroptosis. Additionally, the Nrf2 pathway can inhibit ferroptosis and alleviate
ischemic stroke injury by inducing GSH, SLC7A11, and GPX4 transcription.
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recovery (Hu and Song, 2017). Intracellular iron overload is

the main mechanism for inducing ferroptosis after cerebral

ischemia, and the inhibition of iron overload can suppress

ferroptosis in ischemic stroke and reduce damage (Fang

et al., 2018). Under pathological conditions of ischemia

and hypoxia, the expression of ferritin, transferrin, and

TFR1 in the brain is increased, resulting in increased iron

uptake by neurons and oligodendrocytes in the NVU

(Kawabata, 2019; Ng et al., 2019). The acidic environment

of ischemia and hypoxia can cause the overexpression of

divalent metal-ion transporter 1 (DMT1) in microglia (Rotin

et al., 1986; Chang et al., 2006), resulting in increased brain

iron content (Cheli et al., 2018); meanwhile, ischemia can

upregulate TFR1 levels, resulting in increased iron uptake

(Chen et al., 2019; Tang et al., 2021).

There is a rich literature available suggesting that serum

hepcidin and iron concentrations are elevated in patients with

ischemic stroke, indicating that hepcidin is critical in cerebral

ischemic iron overload (Davalos et al., 1994; Petrova et al.,

2016). During ischemic stroke, the expression of interleukin-6

(IL-6) in cells increases hepcidin through the JAK/

STAT3 pathway (Cojocaru et al., 2009), which causes

FPN1 degradation, resulting in reduced iron release and

thus intensified iron accumulation in cells (Cojocaru et al.,

2009; Zhou et al., 2017). Therefore, the rational application of

iron metabolism inhibitors, such as deferoxamine and iron

chelators, to reduce the iron content in the brain after an

ischemic stroke can reduce neuronal death and promote the

recovery of NVU function after ischemic stroke (Jones et al.,

2020; Roemhild et al., 2021; Yang et al., 2021).

In 2017, Tuo et al. revealed the relationship between Tau

and ferroptosis and the role of ferroptosis in CIRI using the

MCAO mouse model (Tuo et al., 2017). Tau can promote

neuronal iron efflux and inhibit ferroptosis, which may

be related to the reduction of tau caused by cerebral

ischemia. Meanwhile, ferroptosis inhibitors liproxstatin-1

(Lip-1) or ferrostatin-1 (Fer-1) can significantly reduce

neurological damage, indicating that ferroptosis can

aggravate CIRI.

After ischemic stroke, the BBB is destroyed, leading to

cerebral edema and aggravating brain tissue damage and

neurological dysfunction (Abdullahi et al., 2018).

Numerous studies have shown that systemic iron pools are

transferred to neurons in the brain parenchyma when the BBB

is disrupted, thereby exacerbating ferroptosis. Accordingly,

changes in iron content in brain tissue reflect the degree of

BBB dysfunction (Degregorio-Rocasolano et al., 2019). Iron

accumulation accompanies the entire pathological process,

and iron metabolism is considered an important

pathophysiological factor involved in secondary injury after

ischemic stroke (Waldvogel-Abramowski et al., 2014;

Roemhild et al., 2021).

Amino acid metabolism and ischemic
stroke

As the brain’s most abundant excitatory neurotransmitter,

glutamate is a critical regulator in maintaining neural function

(Zhou and Danbolt, 2014). NVU damage and death caused by

excessively high extracellular glutamate concentration is known

as excitotoxicity (Yang et al., 2019). In ischemic stroke, when the

brain is in a state of ischemia and hypoxia due to metabolic

disorders, glutamate release is increased, and reuptake is

hindered, resulting in a rapid increase in glutamate levels in

the ischemic area of the brain (Castillo et al., 1996). Subsequent

activation of glutamate receptors leads to abnormal activation of

several signaling pathways and iron deposition to stimulate cell

death (Griesmaier and Keller, 2012; Willard and Koochekpour,

2013). Therefore, glutamate excitotoxicity is widely thought to be

one of the mechanisms of ferroptosis (Zhang et al., 2021c).

Indeed, glutamate excitotoxicity after cerebral ischemia,

described as ferroptosis, can be effectively suppressed by the

ferroptosis inhibitor Fer-1 (Xie et al., 2022).

As mentioned above, system Xc− has a positive effect on

inhibiting ferroptosis; however, the increase of extracellular

glutamate content caused by cerebral ischemia is mainly

caused by system Xc− (Ikeda et al., 1989), and inhibiting the

expression of system Xc− can hinder ferroptosis, thereby

reducing cerebral ischemia damage (Vespa et al., 1998).

Domercq et al. showed that system Xc− was upregulated in

astrocytes and microglia in a rat model of stroke, while its

inhibition reduced inflammation and attenuated CIRI (Matute

et al., 2006; Martin et al., 2018). It can be concluded that the

increased expression of System Xc− during cerebral ischemia does

not inhibit but promote the occurrence of ferroptosis, which may

be due to the upregulated expression of System Xc−, leading to the

excitotoxic effect caused by glutamate release exceeding its own

antioxidant protective effect (Polewski et al., 2016).

In addition, GSH, as an endogenous inhibitor of ferroptosis,

is reportedly related to ischemic stroke (Zhang et al., 2021b).

Enhancing the expression of GPX4 and GSH synthesis can

inhibit ferroptosis and reduce ischemic stroke injury (Zhang

et al., 2021b). Increased lipid peroxidation levels and decreased

GSH levels have been detected in an MCAO model (Liu et al.,

2020b). Moreover, Edaravone has been proposed to counteract

ferroptosis in various conditions, especially in cystine deficiency

leading to decreased GSH content, and has been clinically

approved for the treatment of acute ischemic stroke (Kikuchi

et al., 2009; Matsumoto et al., 2018b). In addition, selenium (Se)

can effectively enhance and maintain the activity of GPX4

(Ferguson et al., 2012; Liu et al., 2021). After ischemic stroke,

Se supplementation can effectively inhibit GPX4-dependent

ferroptosis and endoplasmic reticulum (ER) stress-induced cell

death and improve NVU function by promoting

GPX4 expression (Alim et al., 2019). In recent years, much
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emphasis has been placed on understanding the direct effects of

GPX4 and GSH on stroke.

Lipid metabolism and ischemic stroke

Lipid peroxidation is a key driver of ferroptosis, stimulated by

oxidative stress (Lee et al., 2021). ROS can accumulate to toxic

levels during oxidative stress, leading to cellular damage and

dysfunction, whereas antioxidants can prevent cellular damage

by converting ROS into harmless molecules (Conrad et al., 2018).

ROS are produced in large quantities during ischemic stroke,

along with decreased levels of endogenous antioxidants, leading

to oxidative stress (Cadenas, 2018). For example, the 1,2,4-

triazole derivative compound 11 can exert a neuroprotective

effect by promoting the expression of Nrf2 and SOD to induce an

antioxidant effect (Lao et al., 2022). During a stroke, AA and AdA

on the cell membrane can generate lipid peroxides through a

series of reactions (Mccall et al., 1987; Nishizawa et al., 2021).

Growing evidence suggests that ACSL4 and LOX, especially 12/

15-LOX, are increased in ischemic stroke (Jin et al., 2008; Singh

and Rao, 2019).

LOX is a key enzyme that causes lipid peroxidation and

induces ferroptosis (Shintoku et al., 2017). It has been reported

that 12/15-Lox gene deletion can reduce the infarct size after

stroke (Singh and Rao, 2019). Additionally, 12/15-LOX were

highly expressed in a cerebral ischemia model, and their

inhibitors could inhibit the damage of ferroptosis to NVU

cells (Jin et al., 2008). For example, the specific inhibitor

ML351 has been reported to exert a protective effect against

CIRI (Tourki et al., 2021). Moreover, ACSL4 participates in the

synthesis and remodeling of PEs, thus affecting the synthesis of

lipid peroxides, and upregulation of its expression can contribute

to ferroptosis (Kuwata et al., 2019). It has been shown that in

ischemic stroke, ACSL4 is upregulated and mediates neuronal

death, ultimately leading to stroke injury (Li et al., 2019).

Moreover, the ACSL4 inhibitor rosiglitazone can inhibit

ferroptosis and protect brain function (Li et al., 2019). Cui

et al. found that knockout of ACSL4 protects mice from

cerebral ischemia, whereas its overexpression can exacerbate

brain damage (Cui et al., 2021). Other studies have found that

the accumulation of Fe2+ and ROS decreased, the expression of

ACSL4 and TFR decreased, and GPX4 and FTH1 increased in

MCAO model cells treated with safflower flavin thus inhibiting

neuronal ferroptosis in MCAO (Li et al., 2021).

These findings suggest that both ACSL4 and LOX involved in

lipid metabolism can serve as innovative therapeutic targets for

ischemic stroke (Cui et al., 2021), inhibiting ferroptosis by

reducing ROS accumulation and lipid peroxidation, providing

new ideas for the treatment of ischemic stroke (Li et al., 2021).

Additionally, mounting evidence suggests that Nrf2 is an

important regulator of the cellular antioxidant defense system

(Abdalkader et al., 2018), and its moderate activation is beneficial

in alleviating cerebral ischemic injury (Lao et al., 2022). Although

little evidence is available that changes in Nrf2 levels directly

affect ferroptosis in stroke, several studies have suggested that the

Nrf2 pathway can alleviate stroke injury (Shih et al., 2005; Liu

et al., 2018; Lao et al., 2022). It has also been shown that

Epicatechin can regulate oxidative stress through the

Nrf2 pathway via penetrating the BBB, thus protecting against

transient cerebral ischemic injury (Chang et al., 2014).

Treatment of ischemic stroke by
targeting ferroptosis

With the gradual recognition of the role of ferroptosis in

ischemic stroke, treating ischemic stroke by inhibiting ferroptosis

has become a research hotspot. As the pathological stimulus

signals of ischemic stroke, ischemia, hypoxia and hypertension

can all lead to brain damage (Khoshnam et al., 2017), during

which local brain tissue metabolism changes, such as the

reduction of GSH, GPX4 and tau proteins, and the increase of

lipoxygenase (LOX) and BBB permeability, specifically

manifested as iron overload and the enhancement of lipid

peroxidation, that boost the generation of ROS and ultimately

trigger ferroptosis-related cell death (Magtanong and Dixon,

2018). In addition, the restoration of normal blood circulation

after ischemic stroke for a period of time will lead to CIRI (Lo and

Rosenberg, 2009). Cerebral ischemia-reperfusion will lead to the

activation of a variety of cell death pathways, including

ferroptosis (Chen et al., 2021b). The phenomenon of

increased lipid peroxidation and increased intracellular iron

levels contribute to amplify the cerebral oxidative stress and

inflammatory response, that further aggravate neuronal injury

during reperfusion. Therefore, ferroptosis mediates and

aggravates ischemic stroke injury (Figure 4). Major

therapeutic advances include ferroptosis inhibitors, iron

homeostasis regulators, lipid peroxidation pathway inhibitors,

and ROS generation inhibitors. Table 2 summarized some key

factors related to regulating ferroptosis, as well as therapeutic

reagents in stroke and their functional mechanisms.

Current evidence suggests that ferroptosis inhibitors Fer-1 or

Lip-1 can effectively reduce brain damage after reperfusion in a

mouse model of ischemic stroke (Tuo et al., 2017; Feng et al.,

2019), and Edaravone can be used to treat patients with acute

ischemic stroke (Enomoto et al., 2019; Kobayashi et al., 2019).

Mechanistic studies have suggested that Edaravone can scavenge

free radicals and inhibit lipid peroxidation, thereby inhibiting

oxidative damage (Kikuchi et al., 2013). Moreover, the

intravenous administration of Edaravone after I/R in rats

prevented the progression of cerebral edema and cerebral

infarction, alleviated the accompanying neurological

symptoms, and inhibited delayed neuronal death (Watanabe

et al., 2018). In recent years, iron chelation therapy has been

shown to suppress ferroptosis in a CIRI model (Cappellini et al.,
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2006; Grignano et al., 2020). Deferoxamine (DFO), a high-

affinity iron chelator with the ability to bind to free iron ions

to form stable complexes that weaken the Fenton response, has

been approved by the U.S. Food and Drug Administration (FDA)

for the treatment of iron overload-related diseases (Hanson et al.,

2009; Tevlin et al., 2021). The ferroptosis inhibitor deferoxamine,

which also acts as an iron chelator, improved cognitive

impairment after stroke in diabetic rats with MCAO (Hanson

et al., 2009). In addition, CoQ10 was found to possess beneficial

effects in a rat MCAO model and improved the prognosis of

neurological impairment in patients with acute ischemic stroke

(Nasoohi et al., 2019). Therefore, as an endogenous lipid-soluble

antioxidant, CoQ10 can effectively inhibit lipid peroxidation and

is expected to be a drug that hinders ferroptosis (Littarru and

Tiano, 2007; Rizzardi et al., 2021). Another drug inhibiting

ferroptosis during ischemic stroke is Se (Ramezani et al.,

2021). Alim et al. found that Se supplementation activates

GPX4 homeostatic transcription in vivo, inhibiting cellular

ferroptosis and improving neurological function (Alim et al.,

2019). Octreotide has anti-inflammatory and antioxidant effects

and protects the brain from cerebral ischemic injury by activating

the Nrf2/ARE pathway (Wang et al., 2015). In patients with

cerebral ischemic injury, melatonin has been reported to reduce

nerve cell ferroptosis by increasing Nrf2, and significantly

improve the learning, memory and cognitive abilities (Koh,

2008).

Intriguingly, several traditional Chinese herbal medicines

have also been shown to inhibit ferroptosis in ischemic stroke.

The monoterpenoid phenol carvacrol has been reported to

effectively reduce ROS expression, reduce iron deposition and

elevate GPX4 levels, thereby protecting hippocampal neurons

from CIRI (Friedman, 2014; Li et al., 2016). Galangin inhibition

of ferroptosis by activating SLC7A11/GPX4 can reportedly

attenuate CIRI (Guan et al., 2021). In addition, Naotaifang

extract has been reported to inhibit neuronal ferroptosis by

downregulating TFR1/DMT1 and upregulating the SCL7A11/

GPX4 pathway, thereby improving neurological function in post-

ischemic rats (Lan et al., 2020).

Although these traditional Chinese medicines have not been

clinically validated to improve the condition of ischemic stroke

FIGURE 4
Possiblemolecularmechanisms of ferroptosis and potential therapeutic targets in ischemic stroke. The decrease of GSH, GPX4, tau protein, and
the increase of lipoxygenase (LOX), and BBB permeability, can lead to the occurrence of ferroptosis in ischemic stroke. Iron chelators like
deferoxamine (DFO), ciclopirox (CPX) and 2,2-bipyridyl (2,2-BP) can inhibit ferroptosis; Lipoxygenase inhibitors like Baicalein, Vitamin E, ML351 and
Zileuton can suppress LOXs activity to rescue cells from ferroptosis; Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) inhibit radical-trapping
antioxidants which activate LOXs to prevent ferroptosis in cells.
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patients, their safety and lack of toxicity may facilitate their

clinical translation (Fung and Linn, 2015).

Outlook

Ischemic stroke is a common disease that seriously endangers

human health, and its incidence has increased in recent years

(Sacco et al., 2013). Its complex pathological process and related

mechanisms have become a research hotspot (Peisker et al., 2017;

Yang et al., 2019). Thrombolytic therapy for cerebral ischemic

injury has been limited by the narrow therapeutic time window,

CIRI induction, and a high risk of hemorrhagic transformation,

emphasizing the need for new treatments (Ringleb et al., 2002;

Schellinger and Warach, 2004).

As the concept of NVU was proposed, researchers began to

assess the feasibility of treating ischemic stroke from multiple

approaches and perspectives (Cai et al., 2017; Zhao et al., 2020a).

Stroke caused by different causes was regarded as a reactive

injury process involving brain NVU (Yenari et al., 2010; Hu et al.,

2017; Iadecola, 2017). In the treatment after brain injury, it has

been transformed from single neuron protection to more

comprehensive and in-depth protection of NVU (Wang et al.,

2021b). The pathophysiological changes of NVU are typically

characterized by tissue hypoxia, inflammation, activation of

angiogenesis, and complex interactions between various

components of NVU, which together lead to increased BBB

permeability, brain edema, neuronal dysfunction and injury

(Stanimirovic and Friedman, 2012). Cerebral ischemic injury

is an inflammatory stimulus response, and all cellular

components and matrix components of NVU are involved

and make related responses (Ishikawa et al., 2004). The

research and development of traditional drugs is limited to a

certain pathological link in the pathological process of NVU, so

the effect is not ideal. Therefore, during the treatment, the overall

structure of NVU should be targeted, and the dynamic changes of

each component should be coordinated to reduce nerve damage

and promote repair. Ferroptosis is a new cell death mode

discovered in recent years, with the continuous research, it

has been recognized that ferroptosis plays an important role

in a wide range of biological processes, including normal

physiology and various pathological conditions (Stockwell

et al., 2017). At present, the morphology, biology, and

mechanism pathways of ferroptosis are partially understood,

but the process of ferroptosis involves a variety of

mechanisms, which are precisely regulated by signaling

pathways. Questions remain as to how ferroptosis is related to

the occurrence of diseases and whether it is associated with other

modes of cell death to mediate the progression of diseases.

Therefore, further in-depth study of the mechanism of

ferroptosis and its role in different disease types is of great

significance for finding therapeutic targets for related diseases

and the development of targeted drugs.

The pathogenesis of ischemic stroke is complicated, current

evidence suggests that ferroptosis plays an important role in the

progression of ischemic stroke, inhibiting ferroptosis can

alleviate ischemic stroke injury (Li et al., 2019; Liu et al.,

2020b; Zhang et al., 2021b). When ischemic stroke occurs,

iron ion aggregation in neurons leads to iron overload, which

causes ROS aggregation through Fenton reaction, and GSH level

TABLE 2 Pharmacological research progress on ferroptosis in ischemic stroke.

Characteristics Regulations Reagents and mechanisms

Morphological characteristics: Mitochondrial volume
decreases, membrane density increases, and mitochondria
decrease or disappear

Positive regulators: ACSL4,
Hmox1, NCOA4

Inducers Mechanism

Erastin Inactivates and decreases the level of GSH.

RSL3 Inactivates GPX4 and causes accumulation of lipid
hydroperoxides

Inhibitors

Deferoxamine As an iron chelator, it can prevent iron-dependent
lipid peroxidation

Liproxstatin-1 Inhibits mitochondrial lipid peroxidation and
restores the expression of GSH, GPX4 and FSP1

Biochemical characteristics: Ferroptosis is manifested as
GSH depletion, GXP4 inactivation, and lipid peroxide
accumulation

Negative regulators: GPX4,
Nrf2, HSPB1, SLC7A11, FSP1

Selenium Protects GPX4 and upregulates GPX4 expression

Ferrostatin-1 Prevents glutamate-induced neurotoxicity and
inhibits lipid peroxidation

Ceruloplasmin Oxidizes ferrous ions to less toxic ferric forms

N-Acetylcysteine
(NAC)

Maintains intracellular GSH level and lower
endogenous oxidant level

Vitamin D An antioxidant and a regulator of iron metabolism

Vitamin E inhibits LOX activity by competing at the substrate-
binding site and by scavenging hydroxyl group
radicals

Frontiers in Pharmacology frontiersin.org14

Wei et al. 10.3389/fphar.2022.1020918

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1020918


is significantly reduced and lipid peroxidation increase in

ischemic stroke mouse model (Liu et al., 2020b), indicating

that ferroptosis is also a way of neurons death during the

pathophysiological process of ischemic stroke. Ferroptosis

inhibitors and iron chelators can effectively reduce the

damage of neurons during ischemic brain death, suggesting

that there are potential targets in the ferroptosis pathway to

regulate ischemic stroke and its inhibition during ischemia has

huge prospects for clinical application (Zhou et al., 2021).

However, investigating the role of ferroptosis in ischemic

stroke is still in its preliminary stages, and many questions

remain to be answered. For example, during ischemia and

hypoxia, different cell types of NVU in brain tissue (Wang

et al., 2021b), including neurons, microglia, astrocytes,

oligodendrocytes, etc., are stimulated and damaged (Cai et al.,

2017), and ferroptosis occurs in these different cell types,

although its role remains to be elucidated (Doll et al., 2017;

Jiang et al., 2021; Lee et al., 2021; Nishizawa et al., 2021),

warranting further studies. In the field of basic research, there

is a lack of effective biomarkers for ferroptosis, such as caspase

activation in apoptosis or autolysosome formation in autophagy

(Earnshaw et al., 1999; Hundeshagen et al., 2011). Accordingly,

exploring specific biomarkers of ferroptosis is urgent. Over the

years, studies of the molecular mechanisms of ferroptosis in

ischemic stroke have mostly focused on cell and animal models,

indicating that more clinical studies on patients with ischemic

stroke are required. In addition, drug development targeting

ferroptosis in ischemic stroke is an important aspect of research.

Among the ferroptosis inhibitors, only one drug, Edaraavone, is

used to treat patients with acute ischemic stroke (Enomoto et al.,

2019; Kobayashi et al., 2019). Other drugs have been found to be

effective in animal and cell models of stroke (Hanson et al., 2009;

Narayan et al., 2021). Therefore, there is an urgent need to

develop and validate effective drugs in clinical treatment,

including traditional Chinese medicine.

Although ferroptosis, as a new mode of cell death, plays a key

role in ischemic stroke and is expected to become a new

therapeutic target to improve the outcomes of this patient

population, ischemic stroke is regulated by a variety of cell

death pathways. Both ferroptosis and other programmed cell

death modes (including cell apoptosis, necroptosis and

autophagy) play an important role in the pathological process

of ischemic stroke. More andmore evidence has shown that there

are interacting signaling pathways between these cell death

modes with similar initial signals and molecular regulators.

For example, p53, not only induces apoptosis, but also

regulates ferroptosis (Hong et al., 2017). In the relationship

between ferroptosis and necroptosis, iron overload leads to the

opening of the mitochondrial permeability transition pore

(MPTP), which exacerbates RIP1 phosphorylation and leads

to cell necroptosis (Tian et al., 2020); HSP90 induces

necroptosis and ferroptosis by promoting

RIP1 phosphorylation and inhibiting GPX4 activation (Wang

et al., 2018). In addition, research have shown that ferroptosis is

an autophagic cell death process (Gao et al., 2016). Knockdown

of autophagy-related Atg5 and Atg7 genes can limit Erastin-

induced ferroptosis by reducing intracellular iron and lipid

peroxidation, and knockdown of NCOA4 can inhibit ferritin

degradation and prevent ferroptosis (Lu et al., 2017), however,

the specific mechanism of autophagy mediated ferroptosis needs

to be further explored. This evidence suggests a strong crosslink

between them, combination therapy targeting different cell death

pathways may be the most effective strategy for the treatment of

ischemic stroke.
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