
Metal-organic frameworks for
hepatocellular carcinoma
therapy and mechanism

Yingqi Feng*, Wei Wu and Muzi Li

Beijing Key Laboratory for Green Catalysis and Separation, Department of Environmental Chemical
Engineering, Beijing University of Technology, Beijing, China

In recent years, metal organic frameworks (MOFs) have attracted increasing

attention in cancer therapy, because they can enhance the anticancer efficacy

of photodynamic therapy (PDT), photothermal therapy (PTT), photoacoustic

imaging, and drug delivery. Owing to stable chemical adjustability, MOFs can be

used as carriers to provide excellent loading sites and protection for small-

molecule drugs. In addition, MOFs can be used to combine with a variety of

therapeutic drugs, including chemotherapeutics drugs, photosensitizers, and

radiosensitizers, to efficiently deliver drugs to tumor tissue and achieve desired

treatment. There is hardly any review regarding the application of MOFs in

hepatocellular carcinoma. In this review, the design, structure, and potential

applications of MOFs as nanoparticulate systems in the treatment of

hepatocellular carcinoma are presented.
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Introduction

Hepatocellular carcinoma (HCC), a disease with a high incidence rate, will lead to

41,260 new diagnoses and 30,520 new deaths in the United States in 2022, according to the

predictions of the National Cancer Institute. Accounting for 5% of all cancer deaths, the 5-

year survival period for HCC is only 20.8%. Currently, surgery, radiotherapy, and

chemotherapy based on targeted drugs are used to treat HCC (Chen et al., 2020;

Rinaldi et al., 2021). Many patients with HCC do not have obvious symptoms, are

usually diagnosed at an advanced stage, and are not suitable for surgery or transplantation

(Du et al., 2021). Under the circumstances, chemotherapy, radiation therapy, and other

treatment methods can effectively prolong the survival of patients and improve their

quality of life (Yang et al., 2020; Zheng et al., 2021). However, chemotherapy or

radiotherapy treatment faces many challenges, such as individual differences in HCC

patients, poor sensitivity to chemotherapy or radiation therapy, and drug resistance (Mao

et al., 2022). Furthermore, large doses of chemotherapy or radiotherapy can produce

serious side effects, resulting in poor compliance of patients (Feng Y et al., 2020).

Therefore, looking for new therapeutic methods with new mechanism, reducing the dose
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of drugs, and maintaining antitumor efficacy are urgent

problems that must be solved in the treatment of HCC (Hao

Y.N et al., 2021; Philips et al., 2021).

Metal organic frameworks (MOFs) are a new form of

coordination polymer developed in recent years, which are

self-assembled involving metal ions and organic molecules.

They have advantages such as porous structure, good

biocompatibility, large specific surface area, and easy

modification. They are widely used in the fields of catalysis

(Sadeghi and Sillanpää, 2021; Zhang et al., 2021), energy

storage (Downes and Marinescu, 2017; Jayaramulu et al.,

2021), separation (Li T et al., 2022), and biomedicine

(Carrillo-Carrión, 2020; Chen J et al., 2021). In cancer

treatment, MOFs can enhance the anticancer effects of PDT,

PTT, chemodynamic therapy (CDT), photoacoustic imaging,

and drug delivery (Chen J et al., 2021). Additionally, MOFs

have good chemical adjustability and can be used as carriers to

provide excellent loading sites and protection for small-molecule

drugs. MOFs can be combined with a variety of therapeutic

drugs, including chemotherapeutics, photosensitizers (Luo et al.,

2021; Zhao et al., 2021), and radiosensitizers, to efficiently deliver

drugs to tumor sites (Osterrieth and Fairen-Jimenez, 2021) and

achieve effective treatment (Carrillo-Carrión, 2020).

PDT is a novel tumor intervention approach that can replace

traditional antitumor methods (Lakshmi and Kim, 2019). The

mechanism of PDT produced by MOFs is to provide MOF

molecules (photosensitizers) with specific structures such as

porphyrins in tumor tissue and then locally irradiate the

tumor with light of specific wavelength to excite the

photosensitizer (Neufeld et al., 2021). The excited

photosensitizer will transfer its energy and electron to the

surrounding oxygen atoms, thereby generating singlet oxygen

and other reactive oxygen species (ROS), and then kill tumor cells

(Feng G et al., 2020; Chen D et al., 2021). Unlike

chemotherapeutics and radiotherapy, which can cause

systemic toxicity, oxygen substances produced during PDT

treatment have no toxic effect on the body. Due to a series of

advantages, such as noninvasive, small side effects, and accurate

administration, PDT has been widely used in the treatment of

superficial tumors and adjuvant treatment after surgical resection

of tumors (Yu et al., 2020).

PTT, characterized by low systemic toxicity and efficient

targeted local treatment, can ablate tumor cells with heat

generated by a specific MOF after near-infrared (NIR)

radiation. This approach is an extension of photodynamic

therapy, in which a photosensitiser is excited with specific

band light. This activation brings the sensitiser to an excited

state where it then releases vibrational energy (heat) and kills the

targeted cells (Xiong et al., 2021; Dai et al., 2022). Furthermore,

the combination of PDT and PTT can synergistically improve

antitumor efficacy and reduce side effects. The heat generated by

PTT can improve blood flow and oxygen supply, thus improving

the sensitivity of tumor cells to oxygen-dependent PDT.

Furthermore, ROS produced by PDT can interfere with tumor

physiology and change the microenvironment, thus improving

the thermal sensitivity of tumor cells (Sun X et al., 2021; Zeng

et al., 2021).

CDT is an effective strategy to inhibit tumor cells by

converting H2O2 into highly toxic •OH through Fenton or

Fenton-like reaction (Liu et al., 2021a). In the Fenton reaction

generated by MOFs, Fe2+ in MOFs acts as a catalyst to convert

H2O2 into highly toxic •OH. In addition to Fe2+, generated Cu2+,

Mn2+, and CO2+ can also catalyze the formation of •OH through

Fenton-like reactions. In view of the characteristics of •OH
produced during CDT, its combination with PDT can

enhance the efficacy of PDT through the O2 produced, and

the production of highly toxic •OH can also kill cells with O2,

further inhibiting tumor cells. In recent years, PDT/CDT

combination therapy has been methodically explored to

enhance tumor oxidative stress and obtain better antitumor

effect compared to monotherapy (Hao X et al., 2021; Tian

et al., 2021).

Due to the advantages of the MOFs structure, several studies

have attempted to utilize MOFs for anticancer applications. Such

MOFs often are exploited for phototherapy, imaging effects, and

drug loading functions. These studies have not only developed a

variety of antitumor drugs with different structures but have also

made remarkable achievements in drug delivery, loading and

targeting (Lawson et al., 2021; Ma et al., 2021).

MOFs-mediated PDT, PTT and CDT
treatment of HCC

Some MOFs with special structures can kill tumor cells

through PDT, PTT or CDT effect. Therefore, MOFs have
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been applied in tumors treatment (Sun X et al., 2021; Wang et al.,

2021; Zhou et al., 2021). Shi et al. (Shi et al., 2018) used a simple

method to assemble Mn2+ and ICG and constructed new self-

assembled nanoparticles (MINPs) under the protection of

polyvinylpyrrolidone (PVP). in vitro experiments, under laser

irradiation at 808 nm, MINPs achieved a clear inhibitory effect

on HepG2 cancer cells (Figure 1). The MINPs solution was

injected into the subcutaneous tumor model of mice, the

photoacoustic (PA) signal around the tumor tissue during a

12-h period was recorded. The intensity of the PA signal obtained

in the injection group was about three times higher than that of

the control group (ICG administration group). After injection of

MINPs, the positive signal of tumor magnetic resonance imaging

(MRI) was enhanced and the average signal intensity gradually

increased, indicating that MINPs achieved a time-dependent

tumor accumulation. The quantitative detection results

showed that the intensity of the MRI signal after 12 h of

injection was 1.8 times higher than before injection. The

results of in vitro PTT treatment and in vivo imaging revealed

that cell necrosis and tumor damage could be observed in the

tumor (HepG2 cells) treated by MINPs, while the control group

did not present any obvious tumor damage. These experiments

indicated that MINPs could be expected to become a highly

effective PTT therapeutic drug and could be applied for imaging-

guided PTT of HCC.

Fu et al. (2020) developed a new therapeutic agent ZIF-8@

Ce6-HA using a one-step method. In this therapeutic agent, ZIF-

8 was loaded with Chlorin E6 (CE6) and then modified with

hyaluronic acid (HA) ZIF-8@Ce6-HA exhibited a good

encapsulation rate, cell absorption, and biocompatibility. Mass

spectrometry test data showed that HA modification prolonged

the blood circulation time of these particles and decreased

toxicity (Figure 2). In vitro anticancer experiments showed

that after 5 min of irradiation at 660 nm, free CE6 exhibited

slight cytotoxicity at a higher concentration (3 mM), and

approximately 29.5% of HepG2 cells died due to ROS

generated by PDT. Free CE6 molecules tend to agglomerate in

the aqueous phase to reduce the efficiency of PDT, while ZIF-8@

Ce6-HA overcomes this problem. The ZIF-8@Ce6-HA group

showed greater cytotoxicity than the free CE6 group after

irradiation with death of all cancer cells (88.4%). That study

innovatively introduces a new therapeutic agent CE6 for PDT.

Liu et al. (2017) constructed MOFs with biocompatible Zr

ions and Meso-Tetra (4-carboxyphenyl) porphine (TCPP), then

loaded doxorubicin (DOX) to build a new nanoparticle (NP),

DOX@NPMOF. The content of DOX loaded on the particles was

as high as 109%. In an in vitroHepG2 cell model, DOX@NPMOF

administration with a 655 nm laser showed good inhibitory

ability (IC50 = 67.72 μg/ml) and the lethality of HepG2 cells

FIGURE 1
Synthesis and application of MINP. The schematic pieces were provided by Smart Medical Art and adapted [http://www.servier.com]. Servier
Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

FIGURE 2
Synthesis of ZIF-8@Ce6–HA.
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was as high as 90%. Subsequently, a mouse subcutaneous tumor

model was used to investigate the anticancer effect of DOX@

NPMOF. The experiment was divided into four groups, namely,

the saline group, the PDT treatment group, the chemotherapy

group, and the combined treatment group (DOX@NPMOF), to

compare the results. First, the fluorescence intensity of the cancer

area was recorded by imaging. After the accumulation of

NPMOF reached its maximum, the tumor tissues of mice in

each group were irradiated with a 655 nm laser (180 J/cm2) for

15 min. Subsequently, the size of the tumor in different groups

was monitored. The experimental results showed that the

combined treatment group achieved the best effect. After

2 days of treatment, the tumors of mice were significantly

reduced and gradually completely eradicated. The effects

obtained were superior to that of the chemotherapy group

and the PDT treatment group, and no skin/tissue damage was

observed in any mice.

Ding et al. (2020) constructed FeMOFs nanoparticles (NPs)

with TCPP (Fe) and zirconium clusters, then loaded the

hydrophobic chemotherapeutic drug camptothecin (CPT),

and in situ, grew small gold (Au) NPs on its surface to gain

novel NPs PEG-Au/FeMOF@CPT NPs. The Au NPs externally

anchored were further modified by 1-dodecyl mercaptan

(C12SH) and methoxypolyethylene glycol mercaptan (PEG-

SH) (Figure 3). The MTT assay was used to evaluate the

anticancer effects of CDT on HepG2 cells. The half

maximum inhibitory concentration (IC50) of CPT

monotherapy was 206 ± 22 μg/ml. Although the amount

encapsulated in CPT was only 7.7%, the IC50 value of the

chemokinetic treatment group (PEG-Au/FeMOF-NPs) still

reached 3.51 ± 0.26 μg/ml. Conversely, the IC50 value of the

combined chemotherapy and chemokinetic treatment group

(PEG-Au/FeMOF@CPT NPs) was the lowest (0.31 ± 0.04 μg/

ml). This indicates that the combination of CDT and CPT may

achieve a good synergistic activity and can effectively inhibit

tumor growth.

MOFs for synergistic cancer
treatment

Chemotherapy, one of the main methods for treating tumors,

uses chemical synthetic drugs to kill cancer cells. Some

chemotherapeutic drugs, such as DOX and CPT can be

combined with MOFs to overcome the problems of poor drug

release, side effects of systemic administration, and drug resistance,

to enhance the antitumor effect. MOFs achieve high drug loading by

changing the binding sites and porosity, promoting accumulation in

the tumor, and prolonging the drug release by appropriate

modification. Therefore, MOFs achieve good synergistic effects

with chemotherapy drugs to achieve antitumor goals.

Xiao et al. (2020) designed a biomimetic MOF particle (CDZ)

loaded with dihydroartemisinin (DHA) based on the ZIF-8 structure.

They first prepared Fe2+ doped ZIF-8NPs using a simplemethod and

loaded DHA into the NPs to form DZs. The DZs were then inserted

into the shell prepared with cancer cell membrane to obtain CDZs,

which able to accumulate and be released into the tumor tissue.

When Fe2+ in particles combine with DHA, the hydrogen peroxide

bridge will fracture reductively and oxygen center free radicals will be

generated, which will lead to rearrangement of carbon center free

radicals and induce DHA toxicity. DHA influences the

mitochondrial-dependent apoptosis pathway and can inhibit the

activation of the nuclear factor kB (NF-kB) signaling pathway,

thus promoting tumor cell apoptosis (Figure 4).

In vivo antitumor effects of CDZs were evaluated in a mouse

subcutaneous tumor model. In this experiment, tumors in both

FIGURE 3
Synthesis and application of PEG-Au/FeMOF@CPT NPs. The schematic pieces were provided by Smart Medical Art and adapted [http://www.
servier.com]. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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the normal saline group and the Fe/ZIF-8 (CZ) treatment group

showed similar growth without inhibition. Treatment with DZs

resulted in a 56.9% reduction in tumor volume, while a

significant 90.8% reduction in tumor volume was observed

after treatment with CDZ. Thus, CDZs had a marked anti-

HCC effect and the efficacy of CDZs was significantly

superior to that of DZS. The homogeneous aggregation of

NPs induced by the cell membrane and the improvement of

the stability of the NPs minimize drug loss and promote the

antitumor efficacy of CDZs.

Fytory et al. (2021) constructed new types of MOFs based on

Zr ion and UiO-66- NH2, which loaded DOX, and their surfaces

were successively modified with folic acid (FA), lactonic acid

(LA) and glycyrrhetinic acid (GA). Compared to the control

group, treatment of HepG2 cells with DOX loaded in NMOF

could stimulate cell death. The apoptosis rates of the single-

ligation group (LA) and the double-ligation group (LA+GA)

were 30.1% and 29%, respectively. The in vitro inhibitory activity

experiment in HepG2 cells showed that the inhibitory ability

(IC50) of the free DOX group, the NMOF group, the FA-NMOF

group, the LA-NMOF group, the GA-NMOF group and the LA-

GA-NMOF group were 1.200, 5.982, 1.887, 0.641, 0.986, and

0.520 µM, respectively. The experiment showed that the

apoptosis rate of HepG2 cells induced by double ligation

NMOF was higher than in the DOX treatment group. The

results of this study further demonstrated the superiority of

dual connectivity NMOFs as a drug delivery system for the

treatment of HCC.

Liu et al. (2022) developed amultifunctional DOX loading NPs

UiO-66/Bi2S3@DOX using a one-step solvothermal method, the

particle could simultaneously achieve a photothermal effect and pH-

triggered DOX release. The combination of transcatheter arterial

chemoembolization (TACE) and PTT significantly inhibited tumor

growth. Histopathological analysis showed extensive necrosis,

decreased regulation of angiogenesis, and increased apoptosis in

treated HCC. These results indicate that the nanosystem platform

UiO-66/Bi2S3@DOX is a promising therapeutic agent to improve

the TACE treatment of HCC.

The anticancer properties of UiO-66/Bi2S3@DOX were

investigated in N1S1 tumor-bearing rats. MRI showed that

there were no significant differences in preoperative tumor

volume among seven treatment groups (total of 55 rats) in

the study. On day 10 after the operation, the tumor volumes in

the phosphate buffered saline solution (PBS), PBS+NIR, DOX,

UiO-66/Bi2S3, UiO-66/Bi2S3@DOX, UiO-66/Bi2S3+NIR, and

UiO-66/Bi2S3@DOX+NIR treatment groups were 8136 ±

799.5, 8043 ± 736.0, 4740 ± 954.9, 8461 ± 788.5, 4729 ±

658.3.0, 5219 ± 770.5, and 2826 ± 842.3 mm3, respectively.

The tumor growth rate in the PBS group, the PBS+NIR group,

and the UiO-66/Bi2S3 group on day 10 was higher than in the

other four treatment groups, showing a poor inhibitory capacity

of tumor volume. There were no significant differences between

the DOX, UiO-66/Bi2S3@DOX, and the UiO-66/Bi2S3+NIR

group, but tumor suppression in the UiO-66/Bi2S3@

DOX+NIR group was significantly better than any other

group. Moreover, compared to other groups, the average

tumor weight in the UiO-66/Bi2S3@DOX+NIR group was

the lowest, further demonstrating that the combination

achieved better tumor inhibition. In conclusion, this in vivo

antitumor study confirmed that simultaneous PTT and

chemotherapy produce synergistic enhancement effects that

cannot be achieved with a single treatment approach.

Samui et al. (2019) developed a NH2-MIL-53(Al)NMOF

modified with LA and loaded with DOX. HepG2 cell line has

high expression of the asialoglycoprotein receptor (ASGPR), and

LA has strong binding affinity to this receptor, thus NMOF

modified with LA achieves better anti-HCC activity. In their

study, MTT analysis showed that NH2-MIL-53(Al)NMOF

achieved stronger cytotoxicity against the HepG2 cell line

compared to the normal cell line.

FIGURE 4
Synthesis and application of CDZs. The schematic pieces were provided by Smart Medical Art and adapted [http://www.servier.com]. Servier
Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.
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In another study, Chen et al. (2022) used ZIF-8 as the

backbone and loaded with arsenic trioxide (ATO) to develop

the NPs As@ZIF-8. These NPs were then encapsulated in

COOH-PEG-COOH to obtain As@ZIF-8/PEG NPs, which

improved their pharmacokinetic properties (Figure 5). A

mouse subcutaneous tumor model was used to test the

activity of As@ZIF-8/PEG. Mice were randomly divided into

four groups (five mice in each group) until tumors grew to

200–400 mm3. The first group was the control group with only

insufficient radiofrequency ablation (IRFA) treatment. The

second group was treated with IRFA and free ATO. The third

group was treated with IRFA+As@ZIF-8/PEG NPs and the

fourth group with IRFA+ZIF-8 NPs. The tumor growth curve

shows that the inhibitory effect of the As@ZIF-8/PEG NPs-

treated group on residual tumor growth was the most

obvious, while that of the ZIF-8 nanocarrier was almost

negligible. It should be noted that ATO also partially delayed

tumor growth, but the antitumor effect of ATO was lower than

that of the control group As@ZIF-8/PEG NP. The anatomical

image of the tumor tissue on day 21 showed that the tumor

volume in the As@ZIF-8/PEG NP group was lower than in the

other groups, and the tumor volume of the free ATO group was

lower than that of the control group, but much larger than that of

the As@ZIF-8/PEG NP group. This experiment indicated that

As@ZIF-8/PEG NPs combined with IRFA could significantly

improve the therapeutic effects of IRFA.

Cheng et al. (2019) prepared magnetic nanocomposite

Fe3O4-ZIF-8 carrying DOX for the treatment of HCC. The

Cell Counting Kit-8 (CCK-8) assay and flow cytometry were

used to determine the inhibitory effects of Fe3O4-ZIF-8, DOX

and DOX@Fe3O4-ZIF-8 on MHCC97H cells. The results of the

CCK-8 assay showed that Fe3O4-ZIF-8 was not toxic to

MHCC97H cells, DOX@Fe3O4-ZIF-8 had an obvious

inhibitory effect on MHCC97H cells. The cell uptake test

showed that DOX@Fe3O4-ZIF-8 accumulated in the

cytoplasm and nucleus, possibly because nanoscale DOX@

Fe3O4-ZIF-8 can easily cross the cell membrane. Furthermore,

due to effective drug accumulation, DOX@Fe3O4-ZIF-8 can

induce apoptosis of MHCC97H cells. In sum, compared to

free DOX, DOX@Fe3O4-ZIF-8 had a stronger effect on HCC

cells, indicating that it has the potential to become a

chemotherapeutic drug for HCC.

Li Z et al. (2022) developed a triptolide (TPL)-loaded MOF

(TPL@CD-MOF) based on the cyclodextrin (CD) structure,

which improves the solubility and bioavailability of TPL, thus

enhancing its inhibitory effect on HCC. In the Huh-7

subcutaneous xenograft tumor model, the antitumor

activity of TPL@CD-MOF was investigated. The results

showed that compared to the normal saline group or the

free TPL group, the TPL@CD-MOF group produced better

antitumor efficacy and the tumor volume and tumor weight of

this group were lower.

Bieniek et al. (2021) prepared a pocket wheel framework

(PPF) based on Zn (NO3)2•6H2O and TCPP and loaded it with

sorafenib (SOR) to obtain SOR@PPF. In different proportions

of ethanol aqueous solutions, SOR was deposited on PPF in two

different sizes with different resolution rates, i.e., slow released

(SR) and fast released (FA). In the in vitro anti-HCC cell

activity assay, the concentration for 50% of maximal effect

(EC50) of SOR alone was 13.8 μM and 10.0 mΜ after 24- and

72-h administration, respectively. In contrast, the EC50 of

SOR@PPF was 1.6 µΜ and 1.81 µΜ after 24 and 72 h of

administration, respectively. In in vivo experiments,

compared to the control group, both SR-SOR@PPF and FR-

SOR@PPF effectively inhibited distant metastasis and in situ

cancer recurrence after operation. Compared to the control

group, in rats treated with SR-SOR@PPF, the odds ratios (OR)

of distant metastasis and in situ recurrence were 0.26 and 0.38,

respectively. In the rats treated with FR-SOR@PPF, the OR

values of distant metastasis and in situ recurrence were 0.56 and

FIGURE 5
Synthesis and application of As@ZIF-8/PEG NPs. The schematic pieces were provided by Smart Medical Art and adapted [http://www.servier.
com]. Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License.

Frontiers in Pharmacology frontiersin.org06

Feng et al. 10.3389/fphar.2022.1025780

http://www.servier.com
http://www.servier.com
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1025780


0.63, respectively. These results indicated that the antitumor

effect of SOR@PPF improved significantly compared to free

SOR. In addition, by controlling PPF degradation and sorption,

the antitumor effect of SOR in vitro and in vivo can be

regulated.

Zhang et al. (2021) mixed one-dimensional Au nanorod

(AuNR) with PAA, aqueous ammonium hydroxide solution

(NH3•H2O), and isopropanol (IPA) to obtain AuNR/PAA

JNPs. Zinc nitrate and imidazole (Hmim) were then added to

form ZIF-8 on the PAA side of AuNR/PAA JNPs and AuNR/

ZIF-8 JNPs were obtained. Finally, the exposed side surface of

AuNR was modified with LA to obtain the LA-AuNR/ZIF-

8 JNPs targeting HCC (Figure 6). These NPs could load about

30 wt% DOX and achieved better and faster drug release under

the NIR laser and pH 5.3. In vivo studies using mice

xenografted with H-22 tumor cells showed that the

JNPs+laser group (808 nm) caused more cancer cell death

than the pure JNPs group, which indicated that JNP could act

as a photothermal agent to effectively kill cancer cells under

NIR laser irradiation. The tumor inhibition rate of the

JNP+DOX+laser group was as high as 93%, which was

higher than that of the JNP+DOX and JNP+laser groups.

These findings indicated that LA-AuNR/ZIF-8 JNPs,

combined with drugs and lasers, could cause synergistic

chemotherapy and PTT effects, thus achieving better

therapeutic effects.

Liu et al. (2021b) loaded the ferroptosis inducer SOR,

which is used to treat advanced HCC, onto the Fe metal

organic framework [MIL-101 (FE)] to prepare MIL-101(Fe)

@SOR NP. After 60 h of administration, the drug release of

these NPs reached approximately 35% at pH 5.5 and only 10%

at pH 7.4. These NPs significantly induced ferroptosis in

HepG2 cells and decreased the concentration of glutathione

and glutathione peroxidase 4 (GPx-4). The results of in vivo

experiments showed that MIL-101(Fe)@SOR NPs could

significantly inhibit tumor progression, reduce the

expression level of GPx-4, and the long-term toxicity was

negligible. Subsequently, to enhance the nanodrug tumor

targeting and penetration capabilities, an iRGD peptide

(amino acid sequence: CRGDK/RGPD/EC) was introduced

containing a tumor-homing motif (RGD) and a tissue

penetration motif (CendR).

In vivo, mice with implanted H-22 tumor cells exhibited

extremely rapid tumor growth in the control group and MIL-

101(Fe) NPs group, while in other groups, the growth was slow.

In the MIL-101(Fe)@SOR+iRGD group, the tumor was the

smallest. Compared to other groups, mice treated with MIL-

101(Fe)@SOR+iRGD had the highest tumor inhibition and

significantly reduced tumor weight. Additionally, during the

treatment period, the weight of the mice in the MIL-101(Fe)

@SOR+iRGD group did not decrease significantly. Tumor

sections were stained and imaged to compare with other

groups, the necrosis area of tumor tissue in the MIL-101 (Fe)

@SOR+iRGD group was the largest, and the number of GPX-4

FIGURE 6
Synthesis of NPsLA-AuNR/ZIF-8 JNPs.

FIGURE 7
Synthesis of (DOX+ACE)@ZIF-8.
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positive cells was the lowest. These experimental results show

that MIL-101(Fe)@SOR+iRGD has relatively optimal tumor

inhibition.

Jing et al. (2021) prepared a nanocarrier zeolite

imidazoline framework (ZIF-8) by the one-pot method and

loaded DOX and acetazolamide (ACE) simultaneously to

obtain (DOX+ ACE)@ZIF-8. The DOX and ACE drug

loading efficiencies were 7.29% and 4.62%, respectively

(Figure 7). In vitro cell inhibitory activity experiments

showed that the inhibitory rate (IC50) of blank ZIF-8 in the

human normal liver cell line HL7702 was greater than 100 μg/

ml, which indicates that the cytotoxicity of ZIF-8 is low. The

antitumor effect of (DOX+ACE)@ZIF-8 was dose dependent

and the inhibitory capacity (IC50) against Walker 256 cells was

2.36 μG/ml and 0.66 μG/ml (corresponding to ace and DOX),

respectively. The safety of (DOX+ACE)@ZIF-8 in vivo was

experimentally evaluated. The hemolytic potential of

(DOX+ACE)@ZIF-8 in 50–200 μG/ml is negligible (<5%).

Rats injected with (DOX+ACE)@ZIF-8 by a single

intratumoral dose or intravenous injection showed little

damage to normal tissues or adverse hematological effects,

which preliminarily demonstrated the high biocompatibility

of (DOX+ACE)@ZIF-8.

Application of MOF in tumor imaging

Some MOFs have specific photosensitive properties and can

shine under excitation at a specific wavelength, enablingMOFs to

possess the ability of tumor imaging, which is a very important

property in identifying and treating tumors (He et al., 2019;

Huang et al., 2021).

Sun et al. (Sun Q.X et al., 2021) preparedMOF-RB by loading

rhodamine B (RB) into a common MOF structural unit UiO-66-

NH2 (Zr-MOF). MOF-RB was used to perform confocal laser

scanning microscopy (CLSM) fluorescence imaging and

FIGURE 8
Synthesis of HCPT@NMOFs-RGD.

TABLE 1 Key characteristics of the MOFs involved in this article.

MOFs Metal Component Drug Surface
functionalization

Ref

MINPs Mn2+ porphyrin, ICG — — Shi et al. (2018)

ZIF-8@Ce6–HA Zn2+ 2-Methylimidazole Ce6 HA Fu et al. (2020)

DOX@NPMOF Zr2+ TCPP DOX — Liu et al. (2017)

PEG-Au/FeMOF@CPT Zr2+ TCPP CPT Au NPs,C12SH,PEG-SH Ding et al. (2020)

CDZs Fe2+, Zn2+ 2-Methylimidazole DHA Cancer cell membrane Xiao et al. (2020)

LA-GA-NMOF Zr4+ UiO-66-NH2 DOX FA, LA, GA Fytory et al. (2021)

UiO-66/Bi2S3@DOX Bi3+ UiO-66 DOX — Liu et al. (2022)

NH2-MIL-53(Al)NMOF Al3+ 2-Aminoterephthalic acid DOX LA Samui et al. (2019)

As@ZIF-8/PEG Zn2+ 2-Methylimidazole ATO COOH-PEG-COOH Chen et al. (2022)

DOX@Fe3O4-ZIF-8 Fe2+, Zn2+ 2-Methylimidazole DOX — Cheng et al. (2019)

TPL@CD-MOF K+ CD TPL — Li Z et al. (2022)

SOR@PPF Zn2+ TCPP SOR — Bieniek et al. (2021)

LA-AuNR/ZIF-8 Zn2+ 2-Methylimidazole DOX Au nanorod, LA Zhang H et al. (2019)

MIL-101(Fe)@SOR Fe3+ 2-Aminoterephthalic acid SOR — Liu et al. (2021b)

(DOX+ACE)@ZIF-8 Zn2+ 2-Methylimidazole DOX, ACE — Jing et al. (2021)

MOF-RB Zr2+ UiO-66-NH2 RB — Sun Q.X et al. (2021)

HCPT@NMOFs-RGD Zr4+ TCPP HCPT RGD peptide Shang et al. (2022)

FA-NPMOF Gd3+ TCPP FA — Chen et al. (2019)
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inductively coupled plasma mass spectrometry (LA-ICPMS)

laser ablation under elemental imaging on the same group of

HepG2 cells in the designated area. This dual-mode imaging

strategy helps visualize the migration of copper transporter 1

(CTR1), while providing clear information on the migration and

redistribution of CTR1 during exposure to divalent copper/

cisplatin through joint imaging of CLSM and LA-ICPMS on

the same group of HepG2 cells. This dual-mode imaging strategy

provides extremely valuable information to elucidate biological

processes related to CTR1.

Shang et al. (2022) prepared a zirconium porphyrin metal

organic framework (NMOFs) and then loaded 10-

hydroxycamptothecin (HCPT) into the pores of the NMOFs

and wrapped it with arginine glycine aspartic acid (RGD) peptide

to obtain a new nanocomposite HCPT@NMOFs-RGD

(Figure 8). In a mouse tumor model with xenograft, the

antitumor activity of HCPT@NMOFs-RGD was evaluated.

NMOFs-RGDs had low toxicity, good biocompatibility, and

strong imaging ability. In a zebrafish HCC model, specific

binding of HCPT@NMOFs-RGD with the integrin αvβ3 and

enrichment in tumors lead to a reduction in tumor volume. In the

mouse xenograft tumor model, after 12 days of HCPT@NMOFs-

RGD treatment, the tumor size of the NMOFs group (PDT

treatment) and the HCPT group (chemotherapy) was smaller

than that of the blank control group. Importantly, tumors in the

HCPT@NMOFs-RGD group were significantly reduced and

even disappeared in one sample. Tumor weights in the

NMOF group, the HCPT group, and HCPT@NMOFs-RGD

all decreased significantly. These data prove the advantage of

synergistic antitumor of HCPT@NMOFs-RGD.

Chen et al. (2019) synthesized a new type of NPs, namely,

folic acid nanoscale gadolinium porphyrin metal organic

frameworks (FA-NPMOF), based on a gadolinium porphyrin-

based MOF and then combined with folic acid (FA).

Subsequently, the biological toxicity and imaging ability of

FA-NPMOF were measured using HepG2 cells, zebrafish

embryos and larvae. In vitro cell experiments, HepG2 cells

were found to have significant apoptosis after treatment with

PDT (655 nm) with FA-NPMOF. In in vivo experiments in

zebrafish, HCC cells were necrotic and triggered inflammatory

reactions. However, enhanced green fluorescent protein (EGFP)

fluorescence, thermal imaging, and tumor shrinkage also verified

its therapeutic effect. These experiments showed that FA-

NPMOF achieved a good therapeutic effect on HCC in vitro

and in vivo. The key information of the MOFs mentioned above

is listed in Table 1.

Challenges of MOF in cancer
treatment

Although theoretically a variety ofmetal ions can be used inMOF

assembly, in fact—after excluding toxic metal ions—only a few ions

are suitable; these includeZr (Wang et al., 2021), Fe (Wang et al., 2019;

Yao et al., 2022), Zn (Farhadi et al., 2021; Wan et al., 2021), Mn (Lan

et al., 2018; Li et al., 2018), and Cu (Lan et al., 2018; Li et al., 2018),

which limits the diversification of MOFs types. In addition to the

limitation of the metal ion type, the cytotoxicity caused by the

physicochemical properties of the MOFs is also an important

factor limiting the application of MOFs (Xia et al., 2021; Xie et al.,

2021). These key physicochemical properties, including size

distribution, shape, and surface hydrophobicity, affect the solubility

of MOFs. To overcome these problems, a large number of studies

have been carried out in recent years to modify the surface of MOFs

with hydrophilic groups or prepare MOFs as liposomes (Zhang D

et al., 2019; Bao et al., 2020; Wang et al., 2021). These works are of

great practical value.

Another problem that restricts the use of MOFs in anti-HCC

treatment is drug loading and drug release (Gharehdaghi et al., 2021;

Jiang et al., 2021). The drug loading and release properties of these

nanodrug delivery platforms depend on both the structure of the

MOFs and the properties of the loaded drugs. It is challenging to

overcome this dilemma. The structure of MOFs needs to be

chemically modified according to the different types of loaded

drug to match the carrier and drug and achieve a more suitable

dissolution. MOFs have a large molecular weight, and in vivo

metabolic limitations resulting from mass drug administration are

also a problemworthy of follow-up research (Lakshmi andKim, 2019;

Chen J et al., 2021).

Conclusion

The application of MOFs in breast cancer (Qin et al., 2020;

Xu et al., 2020; Alves et al., 2021; Zhou et al., 2021) and cervical

cancer (Sava Gallis et al., 2017; Zhao et al., 2018; Rao et al., 2022)

is relatively mature, while in HCC it is still in its infancy. This is

mainly because the pathogenesis of HCC is complex and there

are less drugs available for HCC treatment. In this paper, we

reviewed the latest progress of MOFs in HCC therapy, including

the latest research progress in direct use of MOFs as anti-HCC

treatment and in combination with other drugs. As a porous

material, theMOF not only has photodynamic and photothermal

properties but also has the advantages of high porosity, adjustable

structure, versatility, and biocompatibility. Through synergistic

treatment of photodynamic and photothermal effects, MOFs has

shown outstanding effects in various solid tumor treatment. On

the basis of the macroporous structure of the MOFs,

chemotherapy drugs such as DOX, CPT, and SOR have been

used to construct drug-loaded NPs with MOFs to cooperate with

photodynamic, photothermal, chemical dynamics, and other

methods to treat HCC. According to the reported cases, ZIF-

8, UiO-66 and porphyrin MOFs are the most common materials.

PorphyrinMOFs possess PDT and PTT effects, while MOFs such

as ZIF -8 and UiO-66 mainly be used as the drug delivery

platform to HCC treatment.
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In HCC chemotherapy, the most problem is drug resistance and

toxicity caused by excessive administration. MOFs can be

administered through TACE technology to create new possibilities

of local drug delivery and controlled release, while avoiding the

toxicity of chemotherapeutics drugs. In addition, the new

therapeutic mechanisms of PDT, PTT and CDT can resolve the

problem of drug resistance. It is hoped that some stimuli-responsive

(pH, sound and thermal) MOFs will be applied to HCC treatment in

the future, so as to diversified treatment strategies. Most of the

reported MOFs are constructed with known ligand structures

because the application of MOFs is still in the exploratory stage.

With further research, more advanced structures will be used to

construct different MOFs. It is expected that these new developments

will bring a new situation to HCC treatment.
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