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Vancomycin-associated acute kidney injury (AKI) continues to pose a major

challenge to both patients and healthcare providers. The purpose of this study is

to construct a machine learning framework for stratified predicting and

interpreting vancomycin-associated AKI. Our study is a retrospective analysis

ofmedical records of 724 patients who have received vancomycin therapy from

1 January 2015 through 30 September 2020. The basic clinical information,

vancomycin dosage and days, comorbidities and medication, laboratory

indicators of the patients were recorded. Machine learning algorithm of

XGBoost was used to construct a series risk prediction model for

vancomycin-associated AKI in different underlying diseases. The vast

majority of sub-model performed best on the corresponding sub-dataset.

Additionally, the aim of this study was to explain each model and to explore

the influence of clinical variables on prediction. As the results of the analysis

showed that in addition to the common indicators (serum creatinine and

creatinine clearance rate), some other underappreciated indicators such as

serum cystatin and cumulative days of vancomycin administration, weight and

age, neutrophils and hemoglobin were the risk factors for cancer, diabetes

mellitus, heptic insufficiency respectively. Stratified analysis of the

comorbidities in patients with vancomycin-associated AKI further confirmed

the necessity for different patient populations to be studied.
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SHapley Additive exPlanation; TBIL, total bilirubin; WBC, white blood cells.
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Introduction

Acute kidney injury (AKI) is a common and severe renal

disease that increases the risk of morbidity and mortality (Hoste

et al., 2015). The basic strategy to address this disappointing

situation is to identify drugs or factors that may cause or induce

AKI in clinical practice to prevent subsequent AKI(Kan et al.,

2022). The use of drugs is a modifiable risk factor for AKI,

accounting for about 20%–40% of AKI in critically ill patients,

and antibiotics are the key trigger of AKI in all drugs (Morales-

Alvarez, 2020).

Vancomycin, a glycopeptide antibacterial agent, has

tremendous potential to significantly reduce the incidence and

severity of infections caused by methicillin-resistant

Staphylococcus aureus (MRSA) and other Gram-positive beta-

lactam-resistant bacteria over the past 50 years (Morales-Alvarez,

2020). In accordance with the guidelines for vancomycin therapy,

the target AUC0-24/MIC of vancomycin was 400–600 mg*hour/

L, and the steady-state trough concentration of vancomycin is

10–15 mg/L, those with severe infections maintain 10–20 mg/L

(He et al., 2020). In recent guidelines from the American society

of health-system pharmacists, trough-only monitoring with the

target between 15 and 20 mg/L is no longer recommended in

cases of serious infections caused by MRSA based on efficacy and

nephrotoxicity data (Rybak et al., 2020). However, the treatment

window for vancomycin was narrow and individual differences

were considerable. Nephrotoxicity was the most serious adverse

reaction to vancomycin, with 5%–43% of patients exhibiting

vancomycin-associated AKI (vanHal et al., 2013). Another meta-

analysis showed that the risk percentage of AKI attributable to

vancomycin was 59% (Sinha Ray et al., 2016). In addition, the

nephrotoxicity of vancomycin was usually closely related to the

higher vancomycin daily dosage, longer duration of therapy, and

elevated plasma concentrations of vancomycin (Fiorito et al.,

2018) (Selby et al., 2019). Other factors, such as creatinine

clearance (Ccr), blood urea (BU), alanine transaminase (ALT),

aspartate transaminase (AST), and serum albumin (ALB), have

also been reported to be associated with the risk of vancomycin-

associated AKI(Li et al., 2018). However, for complex and

variable real-world data, there is still a lack of effective

identification of early warning factors. Different patient-

specific explanations of underlying diseases, and the extent of

impact of these factors on AKI, are still unknown.

Fortunately, machine learning may be able to provide a

solution to this issue. It is widely acknowledged that machine

learning is the basis of medical artificial intelligence, which has

been used extensively in the field of medicine and healthcare

(Alanazi et al., 2017). With the application of machine learning,

models can be developed for early identification of disease risk,

diagnosis of disease, recommendation of an appropriate dosing

regimen, and visualization of data to interpret medical images

(Deo, 2015; Hohmann, 2022). Compared with traditional

methods, machine learning had the advantages of being more

flexible, accurate, rapid and scalable in clinical application

(Churpek et al., 2016; Ngiam and Khor, 2019). In previous

studies, machine learning was used to predict AKI after

cardiac surgery, in pediatric intensive care and cancer patients

(Tseng et al., 2020; Dong et al., 2021; Scanlon et al., 2021). In

addition, Kim et al. have developed a single-center vancomycin-

associated AKI risk scoring system (Kim et al., 2022), which

estimated of vancomycin area under the curve after vancomycin

administration based onmachine learning (Bououda et al., 2022).

However, despite these advancements, all of these models were

globally, which could not analyse and evaluate vancomycin-

associated AKI in different underlying diseases specifically.

These global models may ignore important and unique

information specific to individuals with different underlying

disease. Furthermore, the lack of interpretation studies for

these models hinders their clinical application and basic research.

To achieve this, in this study, we proposed an AKI risk

prediction framework for patients receiving vancomycin based

on machine learning. Our framework focused on decision

support and model interpretation for subtype patients with

different underlying diseases. Firstly, based on XGBoost

algorithm and electronic medical records (EMR) data, we

built a series of machine learning models with good predictive

performance using grid searching and cross-validation (Chen

and Guestrin, 2016). Furthermore, the SHapley Additive

exPlanation (SHAP) values were used to explain these

prediction models from a global perspective for overcoming

the shortcomings of machine learning models (Lundberg

et al., 2018). The interpretative analysis revealed key clinical

features of the AKI risk for patients with different underlying

diseases. Finally, we conducted a stratified analysis from three

underlying disease: cancer, diabetes mellitus, heptic insufficiency.

The results have some implications for vancomycin-associated

AKI clinical practice. Our study enables accurate predictions of

the AKI risk in patients receiving vancomycin, the interpretation

of key variables can be interpreted better and more accurately to

support clinical decision making.

Materials and methods

Patient selection

The study was conducted at the Xijing Hospital of the Fourth

Military Medical University, and a total of 724 patients were
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included in the study between 1 January 2015 to 30 September

2020. There were 638 patients in the control group and

86 patients in the AKI group. Our study was approved by the

domestic ethics committee with the approval number

KY20162010-2. This study is a retrospective, observational

study design that does not require informed consent. It

should be noted that all the collected data were de-identified

and analyzed anonymously during the analysis process.

Data collection

Through extensive literature review and consultation with

health professionals, the following variables were selected for the

analysis. Demographic data: age, gender, weight, hospitalization

days and intensive care unit settings; Details on vancomycin

treatment: vancomycin trough level, single dosage, dosing

frequency, cumulative days, daily dosage and dosage;

Concomitant disease: cancer (malignant tumours, neoplasms,

leukemia, etc.), diabetes mellitus, hepatic insufficiency,

pancreatitis, etc; Concomitant medications: human albumin,

mannitol, loop diuretics (furosemide, torasemide and

bumetanide), other antibacterial drugs (aminoglycosides,

amphotericin B, piperacillin-tazobactam, meropenem,

imipenem-cilastatin), other nephrotoxic medications

(cyclosporine, tacrolimus, platinum compounds, dobutamine,

dopamine, epinephrine, isoproterenol, norepinephrine and

vasopressin); Laboratory indicators: white blood cell count

(WBC), absolute neutrophil value (NEUT#), creatinine (CRE),

creatinine clearance (Ccr), blood urea (BU), alanine

transaminase (ALT), aspartate transaminase (AST), and serum

albumin (ALB), etc.; Finally, we got 51 variables in total

(including derived variables). All variables were described and

classified in detail in the supplementary section (Supplementary

Tables S1, S2).

When the vancomycin dose was changed in the middle of

administration, the trough value measured before the dose

change was used if it was after 3 days from the start of

administration, and if not, the trough value measured after

3 days from the dose change was used (Izumisawa et al.,

2020). Daily dosage (mg/day) was calculated by Single dosage

(mg)*Dosing frequency (/day); Dosage (mg/day/kg) was

calculated by Daily dosage (mg/day)/Weight (/kg). Drugs

administered with vancomycin for >2 days were considered to

be concomitant medications.

Inclusion criteria and exclusion criteria

Study participants were patients who were hospitalized at

Xijing Hospital of Fourth Military Medical University from

1 January 2015, through 30 September 2020, and who

received vancomycin treatment for ≥48 h and whose

vancomycin trough concentrations were measured after the

third day after administration. The following patients were

excluded: 1) if they were under the age of 18; 2) if they

already suffered from renal diseases at the start of

vancomycin, because renal diseases interfered the judgment of

the main outcome-AKI. And renal diseases were diagnosed by

clinicians according to International Classification of Diseases-

10, including uremia or dialysis, kidney transplant, kidney

failure, chronic kidney disease and acute renal injury; 3) if

estimated creatinine clearance (Ccr) ≤45 ml/min, which has

been calculated using Cock Croft-Gault formula based on

baseline creatinine (CRE), weight, age and gender; 4) if

patients already had a rising CRE prior to or just before

starting vancomycin; 5) if vancomycin was administered orally

rather than intravenously; 6) if vital information, such as

vancomycin trough concentration, baseline and subsequent

CRE, had been omitted.

Patients in this study were divided into two groups based on

their AKI status: the control group and the AKI group. It was

established in the derivation cohort and independently validated

in the validation cohort. Additionally, data were collected by the

same investigators, typically using the same predictors and

outcome definitions and measurements. An overview of the

selection process for patients can be found in Figure 1.

Criteria of vancomycin-associated AKI

All the blood samples were collected by nurse according to

medical orders and measured by the laboratory in 1 day. In order to

obtain vancomycin trough concentrations, samples were collected

half an hour prior to administration of the drug. The main outcome

was incidence of AKI during the period of vancomycin treatment,

which was defined as an increase in serum creatinine of ≥0.5 mg/dl

(44.2 μmol/L) or a 50% increase from baseline on two or more

consecutive measurements (Rybak et al., 2009; Aljefri et al., 2019).

Preprocessing and imputation of clinical
variables

The clinical variables could be divided into numerical and

categorical variables based on their clinical significance. For

longitudinal variables containing multiple measurement, only

the most recent measurement before blood concentration

monitoring was kept. Then, the categorical variables were

converted into one-hot vectors. A detailed description and

classification of all variables can be found in the

supplementary section (Supplementary Table S2). Variables

which had more than 20% missing values were deleted.

Multivariate imputation by chained equations (MICE) were

used to impute missing values while loss rates of variables less

than 20%. Finally, we got 34 variables in total.
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Model algorithm

XGBoost (eXtreme Gradient Boosting) is a scalable tree

boosting system, which is versatile, and efficient gradient

enhancement framework developed by Chen et al. (Chen and

Guestrin, 2016). To create boosted, DT-type models, XGBoost

employs the ensemble of weak DT-type models. In addition to

handling sparse data, XGBoost can be used to solve a lot of data

science problems efficiently and accurately. In many machine

learning challenges, it has been widely used by data scientists to

obtain state-of-the-art results. The equations were as follow:

L(∅) � ∑n

i
l(ŷi, yi) +∑k

j
Ω(fj) (1)

Here, Loss function l represents the difference between the

prediction ŷi and the target yi. The Ω penalizes the complexity of

the model. Here, all XGBoost models were implemented by using

XGBoost (version 1.5.1). All code was implemented using Python 3.7.9.

Evaluation metrics

To evaluate the performance of XGBoost models, the

averaged performances of accuracy (ACC), area under the

receiver operator characteristics curve (AUROC), and area

under the precision recall curve (AUPRC) for each model

were calculated and compared.

Interpretation algorithm

SHAP were used to interpret the results from the models of

XGBoost. SHAP is a framework for interpretation of model

prediction based on Shapley values, which is a sum of

individual features influencing the model. In order to quantify

the relative importance of each parameter, Shapley values were

aggregated as follow:

g(z′) � ∅0 +∑M

i�1∅iz
′
i (2)

Where z′ ∈ {0, 1}M,M is the number of simplified input feature,

and∅i ∈ R .∅0 and∅i is the interpretation model constant and

the predicted mean value of all training samples respectively.

Statistical analysis

In this study, a series of kernel density estimation (KDE)

plots are used to analysis observations. In a KDE plot,

observations are visually displayed and smoothed with a

Gaussian kernel, resulting in a continuous density estimate.

Violin plots shown the broken line indicates are upper

quartile, median and lower quartile. Statistical analysis was

performed using two independent-sample t-tests, with

significance defined as a p-value of less than 0.05. All

statistical analyses were performed using Scipy 1.7.2.

FIGURE 1
Flowing chart of population enrollment.
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TABLE 1 Characteristics of patients at baseline and clinical outcomes.

Categories Variables Total (n = 724)

Basic information Age (years) [median (IQR)] 51.0 (39.0–63.0)

Male [No. (%)] 454 (62.7%)

Weight (kg) [median (IQR)] 70.0 (55.0–70.0)

Hosp (days) [median (IQR)] 33 (16.0–42.0)

ICU [No. (%)] 222 (30.7%)

Surgery [No. (%)] 342 (47.2%)

Vancomycin administration Trough level (mg/L) [median (IQR)] 8.7 (4.8–14.7)

Dosing frequency (/day) [median (IQR)] 2.0 (2.0–3.0)

Single dosage (mg) [median (IQR)] 1,000 (500–1,000)

Daily dosage (mg/day) [median (IQR)] 2000 (1,500–2000)

Dosage (mg/kg/day) [median (IQR)] 28.6 (25.9–36.4)

Cumulative days (days) [median (IQR)] 6.0 (4.0–10.0)

Concomitant diseases Cancer [No. (%)] 188 (26.0%)

Diabetes mellitus [No. (%)] 68 (9.4%)

Hypertension [No. (%)] 150 (20.7%)

Heptic insufficiency [No. (%)] 107 (14.8%)

Pancreatitis [No. (%)] 23 (3.2%)

Shock [No. (%)] 33 (4.6%)

Heart Failure [No. (%)] 8 (1.1%)

Concomitant medications Human albumin [No. (%)] 382 (52.8%)

Mannitol [No. (%)] 243 (33.6%)

Loop diuretics [No. (%)] 420 (58.0%)

Other antibacterial drugs [No. (%)] 383 (52.9%)

Other nephrotoxic medications [No. (%)] 45 (6.21%)

Laboratory Indicators WBC(×10̂9/L) [median (IQR)] 8.3 (5.2–12.4)

NEUT# (×10̂9/L) [median (IQR)] 6.1 (3.2–10.0)

NEUT% [median (IQR)] 0.8 (0.6–0.8)

LYMPH# (×10̂9/L) [median (IQR)] 1.2 (0.7–1.7)

MONO# (×10̂9/L) [median (IQR)] 0.5 (0.3–0.8)

RBC (×10̂12/L) [median (IQR)] 3.4 (2.9–3.9)

PLT (×10̂9/L) [median (IQR)] 209.5 (103.8–292.0)

HGB (g/L) [median (IQR)] 102.0 (86.0–116.0)

ALT (IU/L) [median (IQR)] 33.0 (18.0–58.3)

AST (IU/L) [median (IQR)] 27.0 (17.0–44.2)

ALP(IU/L) [median (IQR)] 86.0 (66.0–118.0)

GGT (IU/L) [median (IQR)] 50.5 (29.0–95.1)

TBIL (μmol/L) [median (IQR)] 11.3 (7.7–18.2)

CRE (μmol/L) [median (IQR)] 75.0 (63.0–92.0)

BU (mmol/L) [median (IQR)] 5.4 (3.7–8.4)

BU/ CRE [median (IQR)] 18.0 (12.1–25.4)

CCr (ml/min) [median (IQR)] 88.0 (64.7–110.7)

CysC (mg/L) [median (IQR)] 1.0 (0.8–1.3)

ALB (g/L) [median (IQR)] 32.8 (30.1–35.4)

(Continued on following page)
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Results

General information

A total of 724 patients were eventually enrolled in this study,

and the baseline demographic characteristics of the study

patients are shown in Table 1. There were 62.7% (n = 454)

males and 30.7% (n = 222) admitted to the ICU. The median age

and weight of the study population were 51.0 years (IQR

39.0–63.0 years) and 70.0 kg (IQR 55.0–70.0 kg), respectively.

As indicated by the median serum creatinine level and creatinine

clearance, respectively, they were 75 μmol/L (IQR

63.0–92.0 μmol/L) and 88.0 ml/min (IQR 64.7–110.7 ml/min).

The most common complication was cancer (n = 188, 26.0%),

followed by hypertension (n = 150, 20.7%) and heptic

insufficiency (n = 107, 14.8%), and diabetes mellitus (n = 68,

9.4%). The incidence of vancomycin-associated AKI was 11.88%

(86 of 724 patients).

In addition, we used the KDE to display bivariate

distributions of the key indicators reported in the previous

literatures (CRE, Ccr, CysC and trough level). As shown in

Figure 2, it was found that a single indicator was difficult to

define the risk of vancomycin-associated AKT. Therefore, it is

necessary to construct a machine learning model for

predicting more risk factors of vancomycin-associated AKI.

Stratification analysis

There was highly heterogeneous response to vancomycin-

associated AKI, and the severity of the presentation varies by

subpopulation. Therefore, when the discussion was stratified

by comorbidities (cancer, n = 188; diabetes mellitus, n = 68;

heptic insufficiency, n = 107), we found significant differences

between groups as well as within groups in the following

aspects, as illustrated in Figure 3: On the one hand, patients

with cancer, diabetes mellitus, and heptic insufficiency

showed significant differences in CRE, Ccr, CysC, and PLT,

and these differences were statistically significant (p < 0.05 or

p < 0.01). On the other hand, an intra-group analysis showed

that the levels of CRE, Ccr, CycC, BU, PLT and NEUT were

different in diabetic patients with AKI (p < 0.05 or p < 0.01),

whereas for cancer patients, the levels of CRE, Ccr, CycC and

BU were statistically different (p < 0.01), while NEUT# and

RBC were significantly different in patients with heptic

insufficiency (p < 0.05 or p < 0.01).

Model optimization and performance

To overcome the high heterogeneity of vancomycin-

associated AKI in patients with different underlying

diseases, we built respective sub-models with different

underlying diseases. The workflow of XGBoost machine

learning algorithm is shown in Figure 4. In addition to

the three diseases mentioned above, two new

classifications of ICU patients and non-initial patients

have been added to the sub-model. Patients who have

been dose-adjusted during treatment and whose

vancomycin concentration was not at its initial trough are

referred to as non-initial patients.

The global data was divided according to underlying

diseases of patients, and then the global data set and the

underlying disease data set were further divided into five parts,

respectively. One of the five sets was selected as test set, the

rest four sets were selected as training set. To optimize each

XGBoost models, different hyperparameters were explored

through grid search, including the maximum depth, the

number of estimators and learning rate. We considered the

maximum depth with 2, 4, 8,10, 16, 20 and 32, the number of

estimators with 2, 4, 8, 10, 16, 20, and 32, the learning rate with

0.01, 0.02, 0.05, 0.1, 0.2, 0.25, 0.3 and 0.5. The best

hyperparameters were selected according to the mean

performance based on cross validation.

In addition, the ACC, AUROC and AUPRC of mean

performance of 5-fold cross validation were displayed in

Table 2. The results shown that the vast majority of sub-

model performed best on the corresponding sub-dataset.

TABLE 1 (Continued) Characteristics of patients at baseline and clinical outcomes.

Categories Variables Total (n = 724)

FIB (g/L) [median (IQR)] 4.0 (3.2–4.6)

TT(s) [median (IQR)] 16.9 (16.2–17.8)

D-Di (mg/L FEU) [median (IQR)] 3.7 (2.0–5.0)

PCT (ng/ml) [median (IQR)] 1.5 (0.3–1.9)

IL-6 (pg/ml)) [median (IQR)] 147.6 (32.5–152.7)

CRP (mg/L) [median (IQR)] 31.2 (11.4–88.3)

SAA (mg/L) [median (IQR)] 97.2 (28.5–206.5)

ESR (mm/h) [median (IQR)] 47.0 (27.2–73.5)
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Model interpretation: Importance of
clinical variables for different underlying
diseases

Although the vast majority of sub-model can achieve good

predictions performance, the lacking of interpretation limits the

application in clinical practice and further differentiation

analysis. In order to facilitate interpretation of each sub-

models, the Shaply values have been introduced, which can

indicate the positive or negative relationship of clinical

variable with prediction.

According to the importance and impacts of variables on model

prediction, a bee swarm plot was formed for each feature. As shown

in Figure 5, a series bee swarm plots were listed in their order of

FIGURE 2
KDE plots of key indicators for vancomycin-associated AKI (on the diagonal). Scatter plot analysis (above the diagonal). KDE plots of conditional
distributions with 2D Gaussian (under the diagonal).
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importance. In global model, we found that patients with high CRE

(red) had a higher risk of developingAKI than patients with lowCRE

(blue). Similarly, patients with higher CysC, lower Ccr, and lower

urea nitrogen/creatinine ratio (BU/CRE) had a higher risk of

developing AKI. Moreover, patients who used diuretic and

human albumin solution had a higher risk of mortality than

those who not used. Liver function indicators (eg, ALT, GGT,

ALP, and AST) also showed different risk of AKI, Figure 5A

shows the specific trends. Among the sub-model of disease

classification, CysC and Ccr had the highest impact on model

output in cancer and diabetes patients, respectively. In heptic

insufficiency, ICU and non-initial patients, CRE had the highest

impact on model output. While several laboratory features (eg, BU,

PLT, NEUT, WBC, GGT and HGB), and concomitant medications

(eg, human albumin) were also highly ranked. The result is shown in

Figures 5B–F. Notably, in ICU patients, high TBILmay be a high risk

factor for AKI.

In further differential analysis, we found that ALT was a

risk factor for diagnosing AKI in the vancomycin patient

population, but this indicator was not as important in

cancer or diabetes patients (Figure 6A). In contrast, for

patients with cancer, CysC and the cumulative of days of

FIGURE 3
Violin plot for stratified analysis in different underlying diseases.
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TABLE 2 The ACC, AUROC, and AUPRC of global model and sub-model.

Model Global ACC Cancer ACC Diabetes mellitus ACC Heptic insufficiency ACC ICU ACC Non-initial ACC

Global 0.912 ± 0.014 0.928 ± 0.036 0.907 ± 0.042 0.864 ± 0.048 0.901 ± 0.013 0.955 ± 0.026

Cancer 0.884 ± 0.019 0.936 ± 0.043 0.875 ± 0.015 0.876 ± 0.057 0.848 ± 0.018 0.886 ± 0.059

Diabetes mellitus 0.869 ± 0.026 0.905 ± 0.047 0.915 ± 0.046 0.869 ± 0.018 0.871 ± 0.041 0.896 ± 0.046

Heptic insufficiency 0.866 ± 0.027 0.885 ± 0.062 0.739 ± 0.155 0.882 ± 0.047 0.858 ± 0.033 0.87 ± 0.046

ICU 0.899 ± 0.018 0.916 ± 0.046 0.79 ± 0.125 0.909 ± 0.026 0.905 ± 0.03 0.91 ± 0.03

Non-Initial 0.906 ± 0.016 0.893 ± 0.049 0.903 ± 0.042 0.917 ± 0.023 0.889 ± 0.03 0.957 ± 0.012

Model Global AUROC Cancer AUROC Diabetes mellitus AUROC Heptic insufficiency AUROC ICU AUROC Non-Initial AUROC

Global 0.879 ± 0.039 0.676 ± 0.294 0.848 ± 0.092 0.788 ± 0.142 0.87 ± 0.093 0.927 ± 0.044

Cancer 0.776 ± 0.051 0.794 ± 0.192 0.845 ± 0.093 0.653 ± 0.158 0.808 ± 0.068 0.86 ± 0.108

Diabetes mellitus 0.678 ± 0.091 0.678 ± 0.259 0.857 ± 0.103 0.527 ± 0.164 0.723 ± 0.118 0.847 ± 0.114

Heptic insufficiency 0.696 ± 0.065 0.669 ± 0.201 0.818 ± 0.223 0.866 ± 0.128 0.833 ± 0.038 0.718 ± 0.204

ICU 0.773 ± 0.048 0.577 ± 0.149 0.845 ± 0.069 0.781 ± 0.197 0.877 ± 0.078 0.917 ± 0.042

Non-Initial 0.757 ± 0.039 0.574 ± 0.177 0.854 ± 0.073 0.616 ± 0.226 0.808 ± 0.046 0.939 ± 0.04

Model Global AUPRC Cancer AUPRC Diabetes mellitus AUPRC Heptic insufficiency AUPRC ICU AUPRC Non-Initial AUPRC

Global 0.829 ± 0.014 0.885 ± 0.098 0.596 ± 0.144 0.842 ± 0.038 0.774 ± 0.053 0.781 ± 0.091

Cancer 0.817 ± 0.016 0.895 ± 0.066 0.648 ± 0.092 0.855 ± 0.054 0.784 ± 0.06 0.823 ± 0.079

Diabetes mellitus 0.815 ± 0.032 0.891 ± 0.093 0.677 ± 0.159 0.856 ± 0.057 0.73 ± 0.026 0.821 ± 0.088

Heptic insufficiency 0.825 ± 0.022 0.902 ± 0.075 0.668 ± 0.077 0.867 ± 0.024 0.78 ± 0.05 0.84 ± 0.066

ICU 0.797 ± 0.017 0.901 ± 0.082 0.614 ± 0.094 0.851 ± 0.061 0.785 ± 0.058 0.802 ± 0.083

Non-Initial 0.809 ± 0.005 0.894 ± 0.053 0.67 ± 0.108 0.863 ± 0.039 0.782 ± 0.046 0.854 ± 0.062
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vancomycin administration were specific and important

indicators (Figure 6B). In addition, age and weight were

key factors in determining whether AKI occurs for diabetic

patients (Figure 6C). In patients with hepatic insufficiency,

their NEUT#, HGB, WBC and MONO# need to be concerned

(Figure 6D). In addition, it is worth mentioning that PLT was

a class of clinical indicators that had been previously usually

overlooked but are quite important in most patient

populations. For patients in intensive care unit, CRE, TBIL,

NEUT% and BU were specific and important indicators

(Figure 6E). In patients with non-initial patients trough,

their CRE, BU, CysC and CCr need more attention

(Figure 6F).

Model interpretation: Personal and
population explanations stratification
analysis for different underlying diseases

Regarding local interpretation, the SHAP force plots can provide

a visualized explanation for personal and population stratified

prediction, which can assist clinicians to analyze individual

patient so that personalized interventions can be targeted.

Figure 7A illustrates the results of analysis to individualize

treatment using our model to predict the risk of vancomycin-

associated AKI in patients with cancer, diabetes and heptic

insufficiency, respectively. The key parameters and their the

risk of developing AKI was quantified. For example, in a

heptic insufficiency patient, the fact that the WBC and

NEUT# were high, pushed the predicted severity score higher

even if the CRE was in normal range. In the case of diabetes

mellitus patients, most parameters being outside the normal

range (such as a patient had a high weight and PLT, and high

NEUT% and BU/CRE), the probability of vancomycin-

associated AKI was increased.

Figures 7B–D is a series of population explanation

analysis. A collection of all individual analysis samples (like

Figure 7A) is listed, then clustered and sorted by sample

similarity. These are used to analyze the characteristics of

the patient population using vancomycin. The visualization

showed the key risk factors in the risk determination of AKI

for the samples in different underlying diseases groups.

Patients with cancer were judged to be at high risk of AKI

usually due to high CysC, CRE and BU (Figure 7B). Diabetic

mellitus patients were at high risk of AKI due to older, high

CCr and RBC (Figure 7C). Patients with hepatic insufficiency

were at high risk of developing AKI due to higher CRE,

NEUT#, WBC, and HGB (Figure 7D). Additionally, all

effects in the model only describe the model’s behavior and

are not causal in the real world.

Discussion

Vancomycin-associated AKI remains a major challenge

for patients and clinicians. Therefore, it is of great significance

to predict the risk factors of AKI using vancomycin in

critically ill patients. In this study, we assessed the risk

factors of 724 patients with monitoring of vancomycin

plasma concentration, included 86 vancomycin-associated

AKI and 638 control group. The incidence of vancomycin-

associated AKI in this study was 11.88%, which was lower than

the incidence reported in the literature without monitoring

blood concentration (Gaggl et al., 2020), suggesting that

monitoring vancomycin may reduce renal injury. In this

study, we established a series of machine learning models

focused on different underlying diseases for AKI incidence

risk of vancomycin. Compared to global model, the vast

majority of sub-model achieved the best performance in

ACC, AUROC, and AUPRC on the corresponding sub-

FIGURE 4
Overall flowchart of the study.
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dataset. Furthermore, the SHAP values were introduced to

assist in determining whether there is an association between

clinical variables and risk of AKI, as well as to evaluate the

importance of clinical variables in predicting AKI risk. Finally,

analyses stratified based on the three underlying diseases

(cancer, diabetes mellitus and hepatic insufficiency)

provided a visual interpretation of each prediction. The

experimental results showed that the prediction and

interpretation framework had good prediction and

interpretation performance and was expected to provide

effective support for clinical decision making.

Clinical risk estimation models are commonly trained as

global models. This study found that global models were

significantly associated with patient heterogeneity and did not

work equitably well across subpopulations. Therefore, the

underlying disease-based prediction model were established

and stably applied to the prediction of vancomycin-associated

AKI. Patients with cancer have been reported to have a higher

renal clearance, which could result in insufficient exposure to

vancomycin when the drug was administered at conventional

dosage rates (Zhang and Wang, 2020). Consequently, there may

be an increase in resistance and a failure to respond to treatment,

which can result in a higher rate of infection-related morbidity

and mortality. Despite the fact that systemic inflammatory

response syndrome and malignancy may both be risk factors

for the development of vancomycin-associated AKI, this

phenomenon and its causal consequences have rarely been

considered in most studies (Song and Wu, 2022). These

results suggest that early monitoring of vancomycin

concentration in these patients may be critical for maintaining

desired effects without the occurrence of side effects. (Nakayama

et al., 2019; Izumisawa et al., 2020). Other studies have shown

that diabetes mellitus and heptic insufficiency are independent

risk factors for vancomycin-associated AKI (Chambers et al.,

2020; Wang et al., 2021). It is well known that diabetes mellitus

can cause kidney disease. Studies have shown that the survival

rate of patients with diabetic nephropathy was much lower than

that of patients without diabetic nephropathy. It is therefore

possible that diabetic patients who take nephrotoxic drugs may

be at greater risk of developing nephrotoxicity (Chen et al., 2017).

FIGURE 5
Importance of clinical variables for different underlying diseases. In a bee swarm plot, each point corresponding to a sample of data set. The
position of each point on the horizontal axis indicated the effect of that feature on the model prediction, and the color of a point reflected the
eigenvalue of the case. Variables were ranked in descending order of importance in terms of their impact on themodel predictions, with the variable
on top being the most important.

Frontiers in Pharmacology frontiersin.org11

Mu et al. 10.3389/fphar.2022.1027230

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1027230


FIGURE 7
Examples of using SHAP values to explain the prediction results. The features pushing higher the predicted probability of AKI are shown in red,
and those pushing the prediction lower are shown in blue. Additionally, the length of the bars corresponds to the contribution of each factor.

FIGURE 6
Differential manifestations analysis. The number in cycle means the rank number of clinical variables in different underlying diseases.
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Therefore, this study can better predict the occurrence of AKI by

establishing different comorbidity sub-model, which was also

verified by the results of model establishment.

Additionally, the most obvious finding to emerge from the

analysis above was that CRE, ALT, CysC, BU, GGT, PLT, Ccr and

BU/CRE and other indicators were risk factors for the development

of vancomycin-associatedAKI, whichwas consistent with the results

of previous studies (Frazee et al., 2017; Griffin et al., 2019). In our

globalmodel, loop diuretics and human albuminwere also identified

as risk factors for vancomycin-associated AKI. For example, human

albumin is excreted by the kidney during kidney injury, so

supplementing with human albumin can aggravate kidney injury,

resulting in further damage to already damaged kidneys, a worsened

glomerular basement membrane charge barrier and mechanical

barrier, as well as an increase in protein leakage, which may be a

risk factor for vancomycin-associated AKI (Kimura et al., 2021). In

addition, combined use of diuretics and vancomycin, both

nephrotoxic agents, has been reported to result in renal damage

(Wu et al., 2014). Therefore, the accumulation of these biomarkers

can be used as an important indicator of decreased renal clearance

and was of great significance for the prediction of AKI. More

importantly, for vancomycin users with different comorbidities,

the frequency and risk factors of AKI are different (Figure 3). As

for cancer patients, CysC is clinically ranked as the first predictor of

AKI, several studies suggest that cancer patients should measure

their CysC level before vancomycin administration, which can

effectively ensure safe and effective dose (Zhang and Wang,

2020). In addition, age and weight were also critical for the

prediction of AKI risk in patients with diabetes, which was

consistent with previous reports. As for patients with hepatic

insufficiency, this model suggests that, neutrophils, hemoglobin,

white blood cell andmonocytes all need to be concerned. To sumup,

stratified analysis of comorbidities (cancer, diabetes mellitus, hepatic

insufficiency) in patients with vancomycin-associated AKI further

confirms the need for studies targeting different patient populations.

This retrospective study still had several limitations. Firstly, this

was a single-center study, which limits the generalizability of our

findings. Secondly, we restricted our risk estimates for AKI to the

duration of hospitalization, and previous studies have shown that

important predictors may vary between time windows, and the

baseline important factors that acute physiology and chronic health

evaluation II scores, sequential organ failure assessment scores,

could not be evaluated. In future works, our model should be

futher optimized in multi-centric real world clinical data and

other public clinical database. Thirdly, with the emergence of

more evidence-based evidence, the latest consensus guideline

advocated clinicians should monitor the efficacy and

nephrotoxicity of vancomycin by calculating the AUC/MIC ratio

rather than trough-only monitoring, but in this study we were

unable to complete the collection of this potential factor due to the

absence of more monitoring sites for vancomycin concentration

data. Last but not least, all conclusion only described the behavior of

models and are not causality in the real world, and expanding the

sample population in the futuremay be one of the effectivemeasures

to reduce such biases. In conclusion, we developed a global and

disease-stratifiedmethodological risk predictionmodel to quantified

the risk of vancomycin-associated AKI. This prediction model and

individualized interpretation framework can help clinicians make

informed decisions to adjust vancomycin administration to reduce

the risk of AKI.

Conclusion

In summary, machine learning algorithm of XGBoost was

used to construct a series risk prediction model for vancomycin-

associated AKI in different underlying diseases. The vast majority

of sub-model achieved the best performance in ACC, AUROC,

and AUPRC on the corresponding sub-dataset. Additionally,

stratified analysis of the comorbidities (cancer, diabetes mellitus,

heptic insufficiency) in patients with vancomycin-associated AKI

further confirmed the necessity for different patient populations

to be studied.
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