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Alterations to the EGFR (epidermal growth factor receptor) gene, which primarily

occur in the axon 18–21 position, have been linked to a variety of cancers, including

ovarian, breast, colon, and lung cancer. The use of TK inhibitors (gefitinib, erlotinib,

lapatinib, and afatinib) and monoclonal antibodies (cetuximab, panitumumab, and
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matuzumab) in the treatment of advanced-stage cancer is very common. These

drugs are becoming less effective in EGFR targeted cancer treatment and

developing resistance to cancer cell eradication, which sometimes necessitates

stopping treatment due to the side effects. One in silico study has been conducted

to identify EGFR antagonists using other compounds, databases without providing

the toxicity profile, comparative analyses, or morphological cell death pattern. The

goal of our studywas to identify potential lead compounds, andwe identified seven

compounds based on the docking score and four compounds that were chosen

for our study, utilizing toxicity analysis. Molecular docking, virtual screening,

dynamic simulation, and in-vitro screening indicated that these compounds’

effects were superior to those of already marketed medication (gefitinib). The

four compounds obtained, ZINC96937394, ZINC14611940, ZINC103239230, and

ZINC96933670, demonstrated improved binding affinity (−9.9 kcal/mol, −9.6 kcal/

mol, −9.5 kcal/mol, and −9.2 kcal/mol, respectively), interaction stability, and a

lower toxicity profile. In silico toxicity analysis showed that our compounds have a

lower toxicity profile and a higher LD50 value. At the same time, a selected

compound, i.e., ZINC103239230, was revealed to attach to a particular active

site andbindmore tightly to the protein, aswell as showbetter in-vitro resultswhen

compared to our selected gefitinib medication. MTT assay, gene expression

analysis (BAX, BCL-2, and β-catenin), apoptosis analysis, TEM, cell cycle assay,

ELISA, and cell migration assays were conducted to perform the cell death analysis

of lung cancer and breast cancer, compared to the marketed product. The MTT

assay exhibited 80% cell death for 75 µM and 100µM; however, flow cytometry

analysis with the IC50 value demonstrated that the selected compound induced

higher apoptosis in MCF-7 (30.8%) than in A549.
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1 Introduction

The epidermal growth factor receptor (EGFR) works through

attachment with the ligand and maintains cell growth through

autophosphorylation by activating different signal transduction.

The EGFR family consists of four different subgroups: erbB1,

erbB2, erbB3, and erbB4 (Bethune et al., 2010). Mutation in this

group of genes shows the development of several cancers in

humans, such as lung cancer, colorectal cancer, breast cancer,

liver cancer, pancreatic cancer, and ovarian cancer (Krasinskas

2011; Rahman et al., 2022). The most common cancer is non-

small-cell lung cancer caused by mutation of EGFR in exon 19 and

L858R positions (Yan et al., 2020). Mutation was also found at

positions E18, E19, E20, and E21 among male and female cancer

patients in the study conducted on 1,020 patients from 2010 to

2016 (Yoon et al., 2020). Currently, tyrosine kinase (TK) inhibitors

are available in themarket as first line of drugs such as gefitinib and

erlotinib to treat non-small-cell lung cancer (NSCLC), but the

tumors are going to be resistant against these drugs due to

secondary mutation in T790M. Second-generation drugs have

already shown negative results in clinical trial against the

T790M mutation, but third-generation drugs such as WZ4002,

rociletinib, and osimertinib are a better choice against T790M

mutated lung adenocarcinoma. A study showed that in colorectal

cancer, EGFR protein overexpressed from 25% to 82% and one

available drug was in the phase II clinical stage to treat patient

(Spano et al., 2005). A study conducted amongAmerican, Chinese,

and Korean triple negative breast cancer patients found EGFR

mutation, which has been identified in exon 21 for Americans and

exons 19 and 21 for both Chinese and Korean populations (Kim

et al., 2017). EGFR mutation in breast cancer patients is increasing

and identified using the Sanger sequencing process. Mutation in

T790M inNorwegian breast cancer patients has also been found by

the real time-polymerase chain reaction (RT-PCR) process

although they were not previously taking any cancer medicine.

Currently available TK inhibitors (gefitinib and erlotinib) for

breast cancer treatment did not show efficient treatment in

clinical trials (Bemanian et al., 2015; Nishikawa et al., 2018).

Gefitinib is known to be a well-tolerated drug, which showed

synergistic effects in combination with tamoxifen in breast cancer

treatment (Normanno et al., 2006). In lung cancer treatment, the

initial clinical response is satisfactory but eventually resistance is

developed due the mutation in EGFR (T790M) (Pao et al., 2005),

MET gene amplification, and the activation of NF- κB and TGF-β
(Engelman et al., 2007; Bivona et al., 2011; Huang et al., 2012).

MET is a tyrosine kinase receptor that contributes to produce
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hepatocyte and mutation of this gene causes to develop liver

carcinoma. For advanced hepatocellular cellular carcinoma,

erlotinib is a good choice for treatment, but it is growing to be

resistant in cases of hepatocellular carcinoma (HCC) and breast

cancer treatment (Bartholomeusz et al., 2011; Rahman et al., 2021).

Therefore, the development of alternative EGFR inhibitors is

necessary to overcome drug resistance and sensitivity for

EGFR-based targeted treatment in the lung, breast, liver, and

other organs (Shi et al., 2022). Our selected protein with its

attached ligand showed an increased safety profile in the in

silcio study than other first- and second-generation drugs and

was approved by the Food and Drug Administration (FDA) to

treat metastatic EGFR containing T790M mutation. The toxicity

profile evaluation of our selected four compounds indicated that

they had more binding energy and better toxicity results compared

to the control ligand and gefitinib.

The method for developing therapeutics against a specific

target with computer software is known as computer-aided

drug design (CADD), also known as in silico drug design. In

comparison to traditional drug design, modern CADD techniques

such as pharmacophore modeling, molecular docking, ADMET

(absorption, distribution, metabolism, excretion, and toxicity), and

molecular dynamics (MD) simulation can produce hits for lead

compounds more quickly (Valasani et al., 2014; Macalino et al.,

2015; Bommu et al., 2018; Opo et al., 2021). In traditional drug

development, collected blood samples from clinical trials or in vivo

experiments can be used to examine the ADMET parameters

(Beaumont et al., 2014). The CADD approach is a popular

alternative method that makes it simpler and more effective to

analyze the ADMET parameters. The methods can identify a wide

range of organ toxicity and other aspects, suggesting the possibility

of conflicting effects (Aljahdali et al., 2021). The second steps in

drug development were also articulated by molecular biologists,

who could likewise predict potential cell death at certain

concentrations. Different ligands and structure-based

computational studies were performed on different compounds

with a lack of toxicity, simulation analysis, and in-vitro studies

(Sangande et al., 2020). Utilizing in silico drug design, our work

sought to identify additional possible lead compounds against the

EGFR overexpressed protein and explore the possibility to

overcome the T790M mutation. However, extensive animal-

based experimental research studies are necessary to evaluate

the efficacy of these potential lead compounds.

2 Materials and methods

2.1 Structure-based 3D-pharmacophore
modeling

2.1.1 Pharmacophore modeling
The crystal structure of epidermal growth factor receptor

protein (PDB ID: 6JXT) was obtained using the online RCSB

protein data bank (Berman et al., 2000). Ligands attached to the

selected protein were subjected to screening against a compound

library to get similar lead compounds. The widely used ligand

scout v4.4 advance tool was used to prepare structure-based

pharmacophore model based on the cooperation of inhibitors

(Wolber and Langer 2005). This software can be used for the

deletion or addition of any features for better screening,

including negative or positive ionization, hydrogen bond

acceptor, hydrogen bond donor, charge transfer, and the

addition of hydrophobic or hydrophilic regions. The overall

methodology for our research work has been provided by the

flow chart (Figure 1).

2.1.2 Pharmacophore model validation
In the structure-based pharmacophore preparation, the

interaction pattern of our ligand and its target molecule can

be obtained through ligand–target complexes. A set of

chemical compounds known as antagonists were identified

based on the ChEMBL database (Davies et al., 2015) and

through several literature searches had an IC50 value. The

directory of useful decoys enhanced (DUD-E) database was

used to identify the decoy compounds after getting the smile

file from chemical databases and shifted to the ligand scout

v4.4 software tool for making an “idb” file for further analysis

(Mysinger et al., 2012). We evaluated the accuracy of our

model based on early enrichment factor (EF). The early

enrichment factor indicated the availability of active

molecules from the decoy set analysis. Receiver operativing

curve (ROC) analysis showed how to get both active and

inactive compounds at a time; although inactive compounds

might have a similar structure, they are not generated in ROC

preparation.

2.2 Virtual screening based on the
pharmacophore model

2.2.1 Dataset generation
A freely assessable database, the ZINC database (https://

zinc15.docking.org/substances/home/), was used to identify

structurally novel and active molecules. It is a chemical

database having small molecules to large molecules, and

the desired compounds can be searched based on the

chemical structure, compound names with their targets,

chemical ID, and smile file also. In our study, compounds

were selected based on maximum matching features with our

desired pharmacophore features and for the possibility of easy

interaction with our selected protein (Irwin et al., 2012). The

compounds with a molecular weight of less than 500 kDa and

an RMSD value of less than or equal to 1 were obtained from

searching the natural products, natural derivatives, and

purchasable compounds of the ZINCPharmer database by

utilizing the selected ligand pharmacophore characteristics
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generated by the ligand scout v4.4 advance tool. The

maximum number of compounds is chosen based on the

highest number of features directly related to the query

pharmacophore. The identified compounds were further

subjected to analyze several features on the basis of

Lipinski’s rule of five. Selected molecules were saved and

proceeded for further validation.

2.2.2 Virtual screening
Structurally, similar lead compounds can be identified from

the diverse chemical database. These compounds can easily be

obtained from available commercial sources in the market for

further analysis (Pokhrel et al., 2021). A previously generated

dataset was subjected to screening based on using our selected

pharmacophore properties. Ligand Scout v4.4 advance software

FIGURE 1
Overall flow chart of our conducted research based on the computer-aided drug design and in-vitro analysis.
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was explored to generate the “idb” file using load screening

database features and submit it to the pharmacophore-data-

based bank. Hit was found as a scoring function. We selected

a high fit value as it indicates goodmatches, and compounds were

subjected for more authentication.

2.3 Docking-based virtual screening

2.3.1 Structural analysis of ligands and proteins
The crystal structure of protein was downloaded from the

protein data bank. EGFR protein attached with two ligands

YY3 and Cl− was selected from the RCSB protein data bank for

docking studies based on several parameters, i.e., source,

experimental methods, refinement resolution, release date,

IC50 value, and toxicity results of the attached ligand. The

resolution was 2.31 Å, with other parameters including

R-value free: 0.239, R-value work: 0.216, and R-value

observed: 0.218. Hetatm and other ligands were deleted

using the BIOVIA Discovery Studio v16.1.0. Auto dock

tools were used to add Kollaman charges, and Gasteiger

and PyRx v0.9 were used to minimize the energy for better

docking (Dallakyan and Olson 2015).

2.3.2 Binding site and grid selection
The drug’s efficiency depends on the proper binding to the

target area. Improper binding may cause drugs to produce less

efficacy, side effects, or toxic effects (Brylinski 2017). The active

site of a protein was identified based on the research article

analysis and using CASTp software v3.0. Binding affinities

depend on the number of H-bond donors or acceptors,

hydrophobic or hydrophilic interaction, positive and negative

ionization features, and the presence of chelation features (Meng

et al., 2011). We selected a binding site without any assumption

for better binding or any new binding site, known as blind

binding. Grid preparation was completed through the

selection of functional parts of the protein by PyRx software

v0.9 with the dimensions (X: 26.69, Y: 34.28, and Z: 31.14)

(Dallakyan and Olson 2015).

2.3.3 Molecular docking
Currently, molecular docking is being widely used to study

the interaction between proteins and ligands (Dain Md Opo

et al., 2022). Our desired protein was found by analyzing the

RCSB protein data bank (PDB ID: 6JXT). The docking areas of

proteins and compounds were identified through PyRx software

v0.9 (Dallakyan and Olson 2015). The water molecules were

removed by the BIOVA Discovery Studio Visualizer Tool

(v16.1.0), except the interacting one with the inhibitor, and

the chain was selected from our chosen protein. In our

experiment, Autodock Vina (Version 1.1.2) was used to

examine interactions between ligands and proteins (Trott and

Olson 2010). Protein energy was minimized before proceeding to

docking, and further selection was completed based on the

maximum negative value (binding energy).

2.4 Pharmacokinetic parameter (ADME)
and toxicity evaluation

2.4.1 Absorption, distribution, metabolism, and
excretion tests

ADME profile investigation is an important parameter to get

the possible effect of a drug on the body through administration.

Its pharmacokinetic profile and pharmacodynamic activities can

be evaluated (Nisha et al., 2016; Dain Md Opo et al., 2022). The

ADME profile analysis is necessary to overcome the failure of

drugs during the clinical trial phase. We used online Swiss

ADME (http://www.swissadme.ch/index.php). The drug

likeliness property and medicinal chemistry related

characteristics were also obtained from the server (Yadav et al.

, 2017; Opo et al., 2021).

2.4.2 Toxicity test
Early toxicity identification is a crucial component of drug

research and development in order to prevent late-stage drug

development failure (Hughes et al., 2011). The Toxicity

Estimation Software Tool (TEST) v4.2.1 and Protox II (http://

tox.charite.de/protox_II) were used to calculate the toxicity level

for most of our selected compounds, and it worked by scanning

the quantitative structure-activity relationship (QSAR)

methodologies (Banerjee et al., 2018). QSAR works on the

physical features and the structural behavior of the chemicals

(Martin et al., 2017). We evaluated the compounds’

mutagenicity, carcinogenicity, cardiotoxicity, oral toxicity,

hepatotoxicity, and respiratory toxicity. Several drug-related

properties such as 48-h D. magna LC50, 48-h T. pyriformis

IGC50, lethal dose 50, bioaccumulation factor, developmental

toxicity, and mutagenicity have been calculated.

2.5 Molecular dynamic simulation

The protein binding interaction of our selected molecules

and ligands containing EGFR protein were evaluated by the

working Desmond module of Schrödinger Release 2020-3

(Academic version) based on the Linux system to confirm the

structural integrity of the protein complex (Bowers et al., 2006;

Dain Md Opo et al., 2022). For better binding complex

identification, we carried out 100ns of simulations using the

optimized potentials for liquid simulations (OPLS) 2005 force

field, maintaining pH 7.4. The chosen protein and selected

complex were first solvated with water molecules, and

boundaries were provided to the complex with an

orthorhombic box. Na+ and Cl− charges were adjoined to

nullify charges, keeping salt concentration at 0.15M. The
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simulation was completed at 1.01325 bar pressure with a 300K

constant temperature through the mainlining recording interval

of 5ps. A protein root mean square deviation (RMSD) value was

calculated and determined based on the selected atom. The

stability of the ligand protein complex was identified by

RMSD, RMSF, and SSE values. Ligand interactions with

different atoms also determined each trajectory frame. From

the trajectory file, the radius of gyration analysis indicated the

structural compression during the 100ns simulation.

2.6 Compound purchased and stock
preparation

Briefly, 5 mg of the compound was obtained from the S

Molecules (Q-11505, Supplementary Table S1), and the tyrosine

kinase inhibitor, gefitinib, was obtained from a renowned

pharmaceutical company of Bangladesh. Tablets were

purchased from a local pharmacy outlet of Dhaka. The tablets

were crushed in the autoclaved mortar and pestle. As the tablet

contained several excipients, we calculated the total active

amount necessary from the whole tablet by measuring the

total tablet weight. A 10 mM stock was prepared for both the

compounds.

2.7 In-vitro studies with A549 and MCF-7

2.7.1 Cell culture and subculture
Breast cancer (MCF-7) and lung cancer (A549) cells were

collected and thawed using a 37 C water bath. The cells were

transferred to the 15 ml falcon tube for centrifugation for

4 min at 1200rpm. The pellets were collected by discarding

the supernatant and resuspended with 2 ml of DMEM media.

A small number of cells were collected and transferred to the

T25 cm2 cell culture flask (SPL, South Korea). When the cell

number reached the optimum density, they were then

trypsinized, centrifuged at 1200 rpm, and the flask was

kept in a CO2 incubator, maintaining a specific

temperature (37 C).

2.7.2 Cell toxicity assay
It is the most popular assay to determine the cell inhibition

rate in the presence of an inhibitor. A specific number (1 × 104) of

cancer (MCF-7, A549) cells were counted and seeded in a 96-well

plate and the plate was transferred to a CO2 incubator for 24 h.

The cells were mixed with the our selected compounds and

marketed drugs with the same concentrations for 48 h. The old

culture medium was removed, and a fresh culture medium

containing MTT chemicals was added. The plates were

incubated until a purple color appeared, and the absorbance

was determined by a microplate (ELISA) reader at 570 nm

wavelength (Rahman et al., 2021).

2.7.3 Cell morphological change analysis
Cancer cells (MCF-7 and A549) were plated at 5 × 105 in

numbers in the 25 cm2
flask and incubated for 24 h for their

attachment. After the optimal growth cells were treated by the

several IC50 concentrations of marketed drugs and our selected

antagonist, the flasks were kept in the CO2 incubator for a specific

time period, and cell morphology, cell proliferation, and cell

death were evaluated. Photos were taken by a fluorescence

microscope at different (×4, ×10) magnifications. Untreated

cell lines were considered the control.

2.7.4 Transmission electron microscopy analysis
All cancer (MCF-7 and A549) cells were used to find the

morphological changes and cell death based on the drug

concentration based on IC50. Previously cultured cancer cells

were treated using the selected antagonist and kept in incubation

for 48 h in the incubator at 37 C, whereas untreated cancer cells

were used as controls. The cells were attached to the carbon-

coated grid through a tiny drop for 15 min. The cells containing

grids were air-dried before being analyzed by TEM.

2.7.5 Apoptosis assay by flow cytometry
Previously counted (1×105) fixed numbers of cancer cells

(MCF-7 and A549) were plated in a flask of 25 cm2 and incubated

for 24 h in the CO2 incubator at 37 C. After 24 h of incubation,

cancer cells were treated by gefitinib and our selected compound

with IC50 concentrations. These flasks were kept for 48 h to see

the effect of cell death, and untreated cells were considered as the

control. All of the cells were collected including the death cells in

the tube and other cells detached by trypsinization. These cells

were washed with 1X Annexin V binding buffer and centrifuged

for 5 min at 600 x g. Then, 5 ul of fluorochrome-conjugated

annexin was used to stain cells before incubation for 15 min. All

of the cells were again counterstained by PI (1 mg/ml) solution. A

cell-containing flow cytometry tube was kept in the dark for a

specific time period at a fixed temperature of 4 C before being

analyzed by the BD FACSCanto ™ Flow cytometer (Rahman

et al., 2021).

2.7.6 Cell cycle assay
FACS is the most popular tool nowadays to identify cell cycle

inhibition caused by any inhibitor. A total 1 × 105 number of cells

were seeded in different ratio in six-well plates and kept in

incubators for attachment. Before treating cancer cells (MCF-

7) with the marketed drugs and our selected antagonists, we

washed the cells with warmed phosphate buffer saline (PBS). All

of the flasks were treated with the different IC50 concentrations

and kept for 48 h. Then, the cells were collected and centrifuged

for 5 min and Next, 700 ul of ice-cold ethanol were used to fix the

cells with continuous vortexing. The tubes were kept at −20 C

overnight, and the next day, the cells were washed. A total of

500 ul of RNAse and 500ul of propidium iodide were added in

each tube and kept in the dark at room temperature. All of the
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tubes were analyzed using the BD FACSCanto™ Flow cytometer,

and the results were calculated through FACSDiva software

(Demir et al., 2018).

2.7.7 Apoptotic gene identification
A qRT-PCR analysis was performed to find the apoptotic

gene expression in the extracted RNA sample. Total RNA was

isolated using the Purelink RNA mini kits, Thermo Scientific,

United States. Before extraction, the cells were treated with the

marketed as well as selected drugs and kept for 48 h of

incubation. The samples were then mixed with R1 and R2 and

moved to the spin column for centrifugation at 4 C. The RNA

was collected and the quality was determined using the

NanodropTM spectrophotometer at a wavelength of A260/

A280. A revert aid cDNA synthesis kit (Thermo Scientific)

was used for cDNA synthesis based on the manufacture’s

protocol. The expressions of antiapoptotic genes (BCL-2,

BAX, and β-catenin) were determined in the case of treated

cells and nontreated cells using the BioRad qRT-PCR machine.

GAPDH was used as a reference gene in the case of all cancer cell

lines. The gene expression analysis was evaluated by working

with TB Green ™ Premix Ex Taq (TAKARA BIO INC.). The

Livak (2−ΔΔCT) method was used to quantify each gene’s

expression.

2.7.8 Enzyme-linked immune sorbent assay test
to determine the epidermal growth factor
receptor expression

Specific numbers (1 × 105) of cancer cells (A549 and MCF-7)

were cultured and treated with our selected compounds

(ZINC103239230), gefitinib, or a combination of both

ZINC103239230 and gefitinib. The treated cell line was kept

in the incubator for 48 h, and the untreated (control) cells were

kept for 48 h, 72 h, and 96 h. The supernatant was collected

through centrifugation and shifted to the purchased antibody-

coated ELISA plate (Solar Bio, China). A total of 100 µl of

standards or samples was provided in each well and incubated

for 90 min. It was washed four times, and the biotin conjugate

antihuman EGFR antibody was added to each well and again

incubated for 1 h. A streptavidin working solution was provided

to each well, incubated, washed, and 100 µl of substrate was

provided for each well. Finally, 50 ul of stop solution was added

to each well and the optical density (OD) value was read by the

ELISA reader.

2.7.9 Wound healing assay
Both MCF-7 and A549 cells were cultured in six-well plates,

and the middle of each well was scratched with a yellow tip in

each well. Then, previously prepared antagonists were

introduced at IC50 concentrations, and the rate of cell

migration was then determined.ImageJ software examined the

outcomes.

2.8 Statistical analysis

The standard error of the mean (SEM) was used to express all

data. GraphPad prism, version 7.0 software, was used to perform

a one-way analysis of variance to determine how the groups

differed from one another. Duncan’s multiple range test (DMRT)

was used for the individual comparisons. When p < 0.05, values

were deemed statistically significant.

3 Results

3.1 Pharmacophore modeling based on
structure

A 3D pharmacophore model was identified based on several

parameters, i.e., source, experimental methods, refinement

resolution, release date, and the toxicity result of attached

ligands from the protein data bank. EGFR protein (PDB ID:

6JXT) attached with two ligands YY3 and Cl− was selected for

docking studies. Protein interactions with ligands were evaluated

by the X-ray diffraction method with the resolution, 2.31 Å;

R-value free, 0.239, which is significantly less than the standard

value of 0.25; R-value work, 0.216; and R-value observed, 0.218.

To determine the better inhibitor than YY3, the ligand scout

v4.4 advance software was applied to identify main chemical

features depending on the pharmacophore model. We detected

total 20 features including three hydrophobic (H) interaction

features, one positive ionizable (PI) area, three hydrogen bond

acceptors (HBAs), and 14 excluded volume features that were not

indicated in Figures 2A,B.

The derived crystal structure of our selected protein depicted

that the hydrogen bond predominates the interaction of protein

and ligand (Supplementary Figure S1). Hydrophobic interactions

were formed where benzene rings participated in bond formation

with the VAL726, LEU844, ALA743, and ASP800 amino acid

residues. A total of three HBAs were formed, the nitrogen of the

benzene ring participated with MET793 and HOH1219 residues

with the oxygen of the side chain, and the carbon of another

benzene ring with ASP800 residues. A positive ionizable

pharmacophore feature was also connected to the amino acid

ASP800.

3.2 Model validation

Our obtained pharmacophore model was subjected to

validation using 32 active-known EGFR antagonists

(Supplementary Table S2) with the 8,846 decoy molecules

obtained through the enhanced DUDE database. After

screening completion, the EF value was observed along with

the AUC value (Figure 3).
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3.3 Virtual screening based on the
pharmacophore model

3.3.1 Dataset generation
Based on the virtual screening, we can identify active and

structurally similar compounds from the ZINC database. This

freely accessible database, which has more than 200 million

purchasable compounds and substances, can be used for

biological assays (Wang et al., 2010; Dain Md Opo et al.,

2022). In our study, the structure and other characteristics of

the chosen ligands were also determined using this database. This

database is enriched with 2D and 3D structures and their boiling

points, melting points, molecular weights, crystal structures,

toxicity data, and safety precautions. Possible hits were chosen

based on the similarity of maximum features. Initially, we

searched the ZINC database of natural products, natural

derivatives, and purchasable compounds, and a total of

6,000 compounds were retrieved for further screening. Most

of the obtained hit compounds were saved for further screening

(Irwin et al., 2012).

3.3.2 Virtual screening
Previously obtained compounds were screened using

structurally validated pharmacophore features. The generated

features from protein ligand interactions were applied to the

prepared “idb” format file of natural compounds and shifted to

the database. We omitted one feature at the time of starting

screening by the ligand scout v4.4 advanced software and

retrieved 36 potential hits with a pharmacophore fit score of

65.82 to 55.29, except gefitinib was 74.53. It is not necessary to

match all features at the time of screening, and our selected

protein had fewer features than others; therefore, the fit score was

comparatively low. Usually, the pharmacophore fit score shows a

good geometric fit of features to the structure-based

pharmacophore model. Based on the obtained pharmacophore

fit score, we arranged compounds for further validation (Dain

Md Opo et al., 2022).

FIGURE 2
Structure-based pharmacophore model generation. (A) 3D structure-based pharmacophore model of protein (PDB ID: 6JXT) in complex with
the YY3 ligand was identified from the protein data bank. (B) Complex features were merged using ligand scout v4.4 advance tools, three
hydrophobic features indicated by a yellow spherical shape , one positive ionizable by a blue star shape , three hydrogen bond acceptors by a
red spherical or red arrow shape and retrieved excluded volume are not shown in figure.

FIGURE 3
Generated ROC curve based on the active to the target
molecule have found 32 actives, and 8,846 decoy compounds
were observed.
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3.4 Molecular docking-based virtual
screening

3.4.1 Binding site and grid generation
Binding site identification is an essential part of efficient

docking and virtual screening. Proteins typically have

multiple pockets that are compatible in size, shape, and

suitability for ligand attachment (Yun et al., 2007; Dain

Md Opo et al., 2022). The BIOVIA Discovery Studio

Visualizer Tool (v16.1.0) was applied to identify the

binding site attached with two ligands to the EGFR

protein, and the CASTp server was also used to identify

the active site of the protein (Supplementary Figure S2).

This tool showed that the YY3 ligand of EGFR formed

nine van der Waals bonds (ALA859, LEU858, LEU862,

TYR869, ALA722, PRO877, VAL876, ARG841, and

THR790) and two conventional hydrogen bonds with

ASN842 and ASP855. By interacting with the ligand YY3,

another amino acid residue, LYS875, formed a carbon

hydrogen bond. Moreover, one pi-cation bond with the

LYS745 residue, one pi-anion bond with ASP837, one pi-

sigma bond with the Val726 residue, one pi–pi T-shaped with

PHE723, one alkyl bond with ALA743, and one pi-alkyl bond

with LEU844 were formed (Supplementary Figure S2B).

3.4.2 Molecular docking
The most active compounds from the screening of natural

compounds were further subjected to docking to get the best

binding results. Our epidermal growth factor receptor has a chain

with a sequence length of 331 and two unique ligands attached to

it. The nucleotide binding positions vary from 718 to 726 and

790 to 791 (Yun et al., 2007; Jura et al., 2009). The filtered

molecules were docked by Autodock Vina (version 1.1.2), and

before docking, protein as well as ligand molecules were prepared

using AutoDockTools. The binding energy obtained after

docking depicted the binding activity between our screened

molecules and the EGFR protein. The top four compounds

were chosen for the next experimental analysis depending on

their binding scores, from −9.9 kcal/mol to −9.2 kcal/mol. We

obtained the molecular docking score of our chosen compounds

(Table 1). When compared to the selected antagonists,

compound gefitinib (ZINC19632614) had a lower binding

energy (−7.8 kcal/mol).

3.4.3 Interpretation of protein–ligand binding
interaction and pharmacophore modeling

Different pharmacophore fit scores were obtained and a few

were excluded depending on the Lipinski rule of five and toxicity

analysis. A total of four compounds (ZINC96937394,

ZINC14611940, ZINC103239230, and ZINC96933670) showed

better binding energies of −9.9 kcal/mol, −9.6 kcal/

mol, −9.5 kcal/mol, and −9.2 kcal/mol, respectively, through

molecular docking. The van der Waals bonds and hydrogen

bonds were the most predominant types of interactions among

all of the selected compounds (Supplementary Table S3).

Gefitinib, an EGFR tyrosine kinase inhibitor, has also

demonstrated favorable protein interactions (Supplementary

Figure S3).

The most abundant type of interaction was pi-alkyl

interaction, interaction of the pi electron cloud over an

aromatic group, and the electron group of an alkyl group. At

the same time, van der Waals forces exist for each ligand and

protein interaction (Figures 4, 5). All of the natural compounds,

ZINC96937394, ZINC14611940, ZINC103239230, and

ZINC96933670, were shown to exist as conventional hydrogen

bonds and carbon hydrogen bonds with several amino acids,

except ZINC96937394, which had a conventional hydrogen

bond. In a study of pharmacophore features analysis

(Supplementary Figure S4), all compounds were found to

have better pharmacophore properties than the selected

ligands (Pub Chem ID: 71496458). The 2D features obtained

through compound analysis have been mentioned in

Supplementary Figure S5.

3.5 Pharmacokinetic profile analysis

3.5.1 ADME profile evaluation
Pharmacokinetic parameters are important to determine the

drug’s efficacy and toxicity prediction based on drug

concentration. The interaction of drug molecules with the

target compounds depends on the amount of drug entering in

TABLE 1 Four selected compounds including gefitinib based on the docking score and pharmacophore fit score.

Number Zinc ID Molecular weight
(g/mol)

Docking score
(kcal/mol)

Fit score XlogP3 Molecular formula

1 ZINC96937394 389.8 −9.9 66.42 4.3 C21H16ClN5O

2 ZINC14611940 433.5 −9.6 66.27 3.1 C23H23N5O4

3 ZINC103239230 463.6 −9.5 65.82 3.8 C25H33N7O2

4 ZINC96933670 455.5 −9.2 66.13 3.6 C25H25N7O2

5 ZINC19632614 446.9 −7.8 74.53 4.3 C22H24ClFN4O3
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the plasma (Saghir and Ansari 2018) The bioavailability of a drug

before going to clinical evaluation can be predicted using

software-based analysis (Swiss ADME). The lipophilicity of

ZINC103239230 was in the highest position among the other

natural compounds that indicated that the compounds could

easily diffuse into the body (Table 2).

3.5.2 Toxicity result prediction
In modern drug discovery, toxicity analysis is an important

parameter for getting efficient treatment. Computer-based

toxicities are a good choice for the accuracy and cost-

effectiveness of the drug and are able to pass the animal

model. We used the freely accessible TEST tool v4.2.1 and the

ProTox-II server to get these toxicity data (Table 3). The

compound ZINC96937394 was able to produce hepatic and

immune toxicity and belonged to toxicity class 4. This means

that it might not be suitable for oral delivery until there is a

modification in dosage form. Again, immunotoxicity and

mutagenicity have been identified in the case of natural

compounds ZINC96933670 and belong to class 4.

3.6 Molecular dynamic simulation

RMSD measurement: the root mean-square deviation of a

protein was used to determine structural similarity through the

superimposition of two structures and a mathematical

movement of a particular atom compared to the standard

frame. To evaluate the RMSD of protein, we calculated the Cα
backbone, side chain, and heavy atoms of protein based on the

FIGURE 4
3D structure interaction of (A) ZINC96937394, (B) ZINC14611940, (C) ZINC103239230, and (D) ZINC96933670 with the binding site of EGFR
protein. The amino acid participation in the interaction are shown in black.

Frontiers in Pharmacology frontiersin.org10

Opo et al. 10.3389/fphar.2022.1027890

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1027890


FIGURE 5
2D interaction with selected ligand (A), ZINC96937394 (B), ZINC14611940 (C), ZINC103239230, and (D) ZINC96933670. Bond types are shown
in several colors such as blue, red, purple, light pink, deep pink, and green.

TABLE 2 Prediction of the pharmacokinetic properties of our selected five hit compounds. The drug’s likeliness profile and GI absorption indicated
that all can be easily absorbed in the body and have the possibility to produce a quick onset of action.

Property ZINC96937394 ZINC14611940 ZINC103239230 ZINC96933670

Physico-chemical properties MW (g/mol) 389.8 433.5 463.6 455.5

Heavy atoms 28 32 34 34

Rotatable bonds 5 6 10 8

H-bond acceptors 4 6 7 7

H-bond donors 3 2 4 2

Molar refractivity 112.52 126.74 132.75 134.94

Lipophilicity Log Po/w 2.89 2.81 3.89 2.66

Water solubility Class Poorly soluble Poorly soluble Poorly soluble Poorly soluble

Pharmacokinetics GI absorption High High High High

Drug likeliness Lipinski, violation Yes Yes Yes Yes

Medi Chemistry Synthetic accessibility 3.00 3.78 4.29 3.54
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selected attached ligand with the reference time (100ns). We used

the most popular equation to calculate RMSD for frame x (Eq. 1).

RMSDx �
��
1
N

√ ∑N

i�1(r′i (tx)) − ri (tref))2. (1)

3.6.1 Protein, ligand rootmean-square deviation,
root mean-square fluctuations, and radius of
gyration analysis

An RMSD value was calculated depending on our selected

atom, and this value indicated the structural pattern at the time of

simulation. Fluctuations of 1–3 Å were acceptable and an upper

value of more than this indicated the instability of the protein.

Our protein ligand docking complex simulation results fall

within the range of 1–3 Å, with the exception of

ZINC96933670, which showed instability from 20 ns to 50 ns

but showed stability after 70 ns. The control compound was

shown to have instability from 60ns to 90ns and again gradually

come down to 3 Å with reliable stability. From the simulation

results, three compounds, ZINC14611940, ZINC96937394, and

ZINC103239230, showed better stability than the apo-protein.

The control ligand (CID: 71496458) showed fluctuations

between 60 ns and 90 ns and then came to a stable position

(Figure 6A).

The stability of the ligand was rigorously identified through

binding with the respect of protein and with the binding pocket.

The RMSD of all of the leading compounds, including the

control, showed an excellent value with no variations (< 3 Å).
Pub Chem ID 71496458 indicated small fluctuations at 80 ns but

not more than 3 Å. All of the selected ligands showed stability

with respect to the protein and its binding pocket (Figure 6B).

Fluctuations revealed that the ligand was capable of diffusing

away from the protein binding site. Analysis of RMSF showed

the attachment stability of binding with the amino-acid

sequence with a specific time period such as the ligand

RMSF indicated the interaction of the ligand with the

protein residue. Higher peaks showed us the lower amount

of stability with the binding residue. Fluctuations are more

common at the starting and ending tail positions of N- and

C-terminals compared to the other positions. Analysis of the

data showed that control compounds showed fewer

fluctuations from the start of the N terminal compared to

the selected compounds (ZINC103239230 and

ZINC96937394), but the fluctuation was high in contrast to

the other at 54 ns. ZINC96933670 (green) has shown the

highest fluctuations in 166 positions near about although

most of the compounds had shown fluctuation at this

position except the control. Most of the compounds

showed the maximum fluctuations between positions 53-56

(SER, PRO, LYS, and ALA) and 165-173 (ALA, ALA, ALA,

GLU, TYR, HIS, ALA, GLU, and LYS). The maximum

stability of ZINC103239230 (dark blue) was observed when

compared to the other selected compounds in most of the

positions. The stability of all compounds was good with slight

variations of ZINC96933670 at positions 53 (SER 752) and 166

(ALA 866). Attached ligand (Pub Chem ID: 71496458) showed

the least fluctuations in the C-terminal region, and

ZINC14611940 (gold) provided the highest fluctuations

compared to the other compounds (Figure 6C). The radius

of gyration analysis showed that all of the compounds were

TABLE 3 Toxicity screening of our four selected compounds. ZINC14611940 and ZINC103239230 have shown low toxicity in comparison to other
compounds.

Endpoint Target ZINC96937394 ZINC14611940 ZINC103239230 ZINC96933670

Organ toxicity Hepatotoxicity Active Inactive Inactive Inactive

Toxicity endpoints Carcinogenicity Active Inactive Inactive Inactive

Immunotoxicity Active Inactive Active Active

Mutagenicity Inactive Inactive Inactive Active

Cytotoxicity Inactive Inactive Inactive Inactive

LD50 (mg/kg) 300 3,200 1,190 660

Toxicity class 3 5 4 4

Tox21-nuclear receptor signaling
pathways

Androgen receptor (AR) Inactive Inactive Inactive Inactive

Aryl hydrocarbon receptor (AhR) Inactive Inactive Inactive Inactive

Tox21-stress response pathway Heat-shock factor response
element

Inactive Inactive Inactive Inactive

Fathead minnow LC50 (96 h) mg/L 2.67E-02 N/A 0.16 8.76E-03

48-h Daphnia magna LC50 mg/L 0.24 1.70 53.82 1.31

Developmental toxicity Value 0.79 0.48 0.41 0.79

Oral rat LD50 mg/kg 2349.00 1373.71 1420.37 872.02

Bioaccumulation factor Log10 0.68 0.65 0.82 N/A
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compressed at 100 nns of simulation time.

ZINC103239230 indicated a decrease in compression from

89 nns to 92 nns and again compressed to 100 nns. Usually,

the radius of gyration reveals the structural deformation and

formation process throughout the simulation time (Figure 6D).

3.6.2 Formation of bond between proteins and
ligands

The most common types of bonds in protein–ligand

interactions were hydrogen bonds, hydrophobic bonds, ionic

bonds, and water bridges. The existence of H-bond influence in

pharmacokinetic and pharmacodynamics properties in drug

design, ionic bond formation between two oppositely charged

ions, which are not usually involved in the H bond (Yunta 2017).

In the control, the H bond was predominant in the

GLN791 position, but in ZINC14611940, it was the position

in ASP837. In ZINC103239230, most existing bonds were

hydrophobic in position PHE723. A total of four bonds were

present in ZINC96937394 with the amino acid TYR869 position,

and ZINC96933670 showed the existence of predominant H

bonds and hydrophobic and water bridges at position ARG748

(Supplementary Figure S6).

3.7 Analysis of cell death bymorphological
changes

The number of cancer cells was decreased, and they died by

changing their shape and through damage to membrane

integrity. In lung cancer treatment, ZINC103239230 alone and

both gefitinib and ZINC103239230 showed similar structural

changes, but gefitinib alone was shown to induce cell death with

different structural alterations (Supplementary Figure S7). In

MCF-7, gefitinib kills the cell through necrosis. Together,

gefitinib and ZINC103239230 were shown to induce cell

death. Apoptosis cell death was observed for both A549 and

MCF-7 under transmission electron microscopy (Figure 7).

3.8 Cell death measurement

The cytotoxicity of our selected drugs (ZINC103239230,

gefitinib, and their combinations) was determined using several

concentrations to measure 50% cell death of each product. The

IC50 for gefitinib (15.6206 µM), ZINC103239230 (14.8102 µM),

and for the combination of gefitinib and ZINC103239230 (13.3082

FIGURE 6
RMSD, RMSF, radius of gyration value of apo-protein, selected ligand (CID71496458) and also the selected four compounds in the complexwith
EGFR protein. In molecular dynamic simulation, protein RMSD analysis (A), the ligand RMSD (B), RMSF value analysis (C), and radius of gyration (D)
were analyzed for selected four compounds at 100ns. The simulation was conducted by SchrodingerMaestro software with academic version 2020-
3. Different colors indicated several compounds, i.e., apo-protein (blue), CID71496458 (orange), ZINC96937394 (gray), ZINC14611940 (gold),
ZINC103239230 (dark blue), and ZINC96933670 (green).
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µM) in MCF-7 treatment was determined (Figures 8D–F). The

maximum inhibition (ZINC103239230: 86.91%) of cell death was

observed in comparison to gefitinib and its combination. The

inhibition of our selected compound, ZINC103239230, was shown

to have more effects compared to the marketed drug. In the case of

MCF-7 inhibition, the combination of gefitinib and

ZINC103239230 also demonstrated a synergistic effect. In the

inhibition of A549 lung cells, ZINC103239230 compound showed

50% cell death (IC50) at 10 µM and gefitinib showed cell death at

13.062 µM. The combination of ZINC103239230 and gefitinib was

shown to be 12.738 µM (Figures 8A–C). Graphpad Prism v9.0 was

used to calculate the IC50 value.

3.9 Gene expression analysis

The expression of several antiapoptotic genes was identified

by qRT-PCR analysis. Treatment of A549 and MCF-7 by our

selected antagonist (ZINC103239230) with IC50 concentration

showed the best results compared to gefitinib and its

combination. The expression of these genes demonstrated the

induction of apoptosis with the presence of all our compounds.

The expression of all genes (BAX, BCL-2, and β-catenin)
indicated the apoptotic cell death of MCF-7 cells and the

intracellular BCL-2 downregulation, selected compound

showed the best result in comparison to the others (gefitinib,

gefitinib + ZINC103239230). In the case of BAX expression,

gefitinib and gefitinib + ZINC103239230 indicated the same

expression compared to ZINC103239230 that showed less

expression. In a comparison of gefitinib and

ZINC103239230 treated MCF-7 cell lines, both gefitinib and

ZINC103239230 combination treatments showed a slightly

upregulated catenin. The induction of apoptosis by the

treatment of gefitinib, ZINC103239230, and both gefitinib and

ZINC103239230 were defined by BAX, BCL-2, and β-catenin
gene against the A549 cell line. The BAX gene was upregulated in

ZINC103239230, compared to gefitinib and both. The Bcl-2

expression was downregulated for all treatments, but slightly

less for both gefitinib and ZINC103239230. Our selected

compound showed that the overall apoptotic gene expression

was high in comparison to themarketed product gefitinib and the

combination of both (Figure 9).

FIGURE 7
TEM analysis of A549 and MCF-7 cells after 48 h of treatment. Cancer cells were treated by ZINC103239230, gefitinib. (1) Indicates the
attachment of drug to the membrane and the penetration, (2) breakdown of the membrane integrity and rupture of the membrane, and (3)
breakdown and coming out of nucleus from the cell.
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FIGURE 8
Cell death analysis byMTT assay. In lung cancer cells, ZINC103239230 showed themaximumcell death overall to gefitinib and a combination of
both (A–C). In the case of breast cancer (MCF-7), ZINC103239230 showed higher cell death in comparison to the other. The overall cell death (A549,
MCF-7) ZINC103239230 > combination > gefitinib.

FIGURE 9
Expression of apoptotic genes in two different cell lines: A549 (A–C) and MCF-7 (C–E). Bax expression was slightly lower in gefitinib (B) and
combination (C) compared to ZINC103239230 (A). In MCF-7, apoptotic genes showed better expression of ZINC103239230 (D) in contrast to
others (E,F).
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3.10 Epidermal growth factor receptor
expression measurement

An enzyme-linked immunosorbent assay was used to detect

the EGFR protein expression with our treated drugs. The results

indicated a decrease in EGFR expression compared to the control

(Figure 10). The control protein concentration (A549) was

increased with the increase of time: 48 h (169.3043 pg/ml),

72 h (274.7391 pg/ml), and 96 h (214.5217 pg/ml).

ZINC103239230 was shown to reduce 78.13043 pg/ml and

59.6087 pg/ml at two different concentrations (10µM and

20 µM). The combination (ZINC103239230 + gefitinib)

decreased EGFR concentration to 74.6087 pg/ml (20 µM), and

gefitinib was shown to decrease the concentration to 89.695 pg/

ml (20 µM). In MCF-7, ZINC103239230 showed a maximum

reduction of 37.7826 pg/ml (20 µM). The combination of both

expressed more efficient reduction of EGFR at 47.8913 pg/ml

(20 µM), whereas the gefitinib 20 µM reduced 68.434 pg/ml. The

EGFR control graph has been provided in Supplementary

Figure S8.

3.11 Cell death measurement by flow
cytometry

This method involves detecting phosphatidylserines in

apoptotic cells and assessing them as annexin V-FITC binds

to phosphatidylserine (Lee et al., 2013). The total cell death in

A549 (Figures 11A,B) was measured at 1.9% in the case of the

untreated control. In ZINC103239230, the early apoptosis was

increased (5.4%) using the IC50 concentration after 48 h, and

meanwhile, gefitinib showed a higher late apoptosis (3.8%),

whereas the early apoptosis was 1.7% after 48 h treatment

with the same concentration. In contrast, the percentage of

cells entering into early apoptosis was reduced to 3.6% in

comparison to ZINC103239230 alone used using the IC50

concentration. However, the early apoptotic cell death was

higher in the case of our selected antagonist

(ZINC103239230). In the MCF-7 cell line, compound

ZINC103239230 showed the that early apoptosis was 10.5%,

whereas the marketed drug (gefitinib) showed the half of early

apoptosis (5.8%) after 48 h of incubation (Figures 11C,D). For

combination treatment, early apoptosis was 6.4% and late

apoptosis was 12.7%. Therefore, the apoptosis for

ZINC103239230 was sharply increased (31.9%) in comparison

to both gefitinib (17.1%) and combination treatment (21.3%).

3.12 Analysis of cell cycle

The cell cycle analysis revealed that our compound was more

active against the MCF-7 cell line and had a lower effect on the

cell cycle death of the A549 cell line. The SubG1 phase (9.46%)

was higher in ZINC103239230, and the accumulation of cells

increased in the S phase in comparison to the G0/G1 phase. The S

phase for combination treatment was also more than the gefitinib

used alone (Figures 12A,B).

3.13 Cell migration analysis

In our study, the untreated (control) group (MCF-7, A549)

migrated the scratched blank area more rapidly in comparison to

the treated group (Supplementary Figure S9). In MCF-7

(Figure 13B), the selected compound ZINC103239230 has

shown the lowest migration (ZINC103239230 > Gefitinib >

FIGURE 10
Quantitative sandwich-based ELISA for lung cancer (A549) and breast cancer (MCF-7) cell lines. (A) EGFR concentration determination in
A549 and (B) EGFR measurement in MCF-7 supernatant.
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ZINC103239230 + Gefitinib). At the same time, ZINC103239230

also showed a lower migration rate to the scratch area but not

more than the MCF-7 cell line in case of the A549 cancer cell

treatment (Figure 13A). The overall migration rate was decreased

in the lung cancer cell line through the incubation of 24h and 48h

based on our compounds' treatment alone or in combination.

4 Discussion

EGFR plays an important role in the progression and

development of several cancers in humans, on an average

50–60% of lung adenocarcinoma, colon cancer, and breast

carcinoma (Pabla et al., 2015; Sigismund et al., 2018). Many

medications are permitted alone or in combination with

chemotherapy for colorectal cancer, non-small-cell lung

cancer, and breast cancer due to the success of EGFR-

targeting in the treatment of cancer (Wykosky et al., 2011;

Chan et al., 2017; Thomas and Weihua 2019). The majority of

the mutations belonged to nonsmokers and the incidence rate is

higher among the females than males in the occurrence of lung

carcinoma (Fukuoka et al., 2011). In lung cancer eradication,

gefitinib binds with the EGFR tyrosine kinase pocket through

competitive inhibition to produce the inhibitory activity (Morin

2000). Gefitinib is the good choice for the initial start of the EGFR

mutated lung cancer treatment, although 50% of lung cell

carcinomas showed resistance to gefitinib at the time of

7–12 months of treatment through mutations L858R and

T790M and indicated the upregulation of EGFR activity

(Balak et al., 2006; Yun et al., 2008; Chan et al., 2020; Han

et al., 2021). Erlotinib, gefitinib, afatinib, and lapatinib are

examples of first-generation drugs, also known as kinase

inhibitors, that have been shown to be effective against several

carcinomas. Due to their effective clinical results against breast,

colon, and lung cancer, first-generation EGFR kinase inhibitors

continue to be the most widely used medications (Yan et al.,

2020). These first-generation TK inhibitors (TKIs) were found to

be effective in the treatment of advanced non-small-cell lung

FIGURE 11
Apoptosis cell death wasmeasured by flow cytometry. BD FACSDiva software was used to calculate the cell death for both A549 (A) andMCF-7
(C) cell lines. (B,D) Cell death analysis data that accurately quantify the fraction of cells in each phase.

Frontiers in Pharmacology frontiersin.org17

Opo et al. 10.3389/fphar.2022.1027890

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1027890


cancer (NSCLC) in somatic activating mutations (Martinez-

Marti et al., 2019). Gefitinib works against breast cancer

through attaching to the ATP-binding site of the EGFR

protein (Masuda et al., 2012). The use of gefitinib along with

tamoxifen was able to treat metastatic breast cancer and was

effective in killing tamoxifen-resistant tumor cells (Zhang et al.,

2015). Aspirin combined with gefitinib or osimertinib was shown

to able to induce apoptosis of lung cancer cells, and the breast

cancer cell percentage was also decreased when aspirin and

tamoxifen were combined in-vitro and in-vivo (Li et al., 2020).

The second-generation of EGFR tyrosine kinase inhibitors,

such as afatinib and dacomitinib, are effective against EGFR-

mutated breast and lung cancer, but ineffective against T790M-

mutated cancer (Abourehab et al., 2021). As a result, third-

generation EGFR kinase inhibitors such as WZ4002, CO-1686,

and AZD9291 are in clinical trials to target the T790Mmutation.

The study showed that the EGFRm + sensitizing and T790M

resistance mutations are both effectively and selectively inhibited

by new oral compound AZD9291 (Yan et al., 2020). The use of

TK inhibitors resulted in significant toxicities such as gastro-

intestinal disorder, skin rash, diarrhea, and other complications

(Hirsh 2011). Bommu et al. (2019) identified potential lead

compounds through a computer-aided drug approach against

EGFR protein based on the QASR modeling. Several studies were

also carried out to identify potential lead EGFR antagonists using

computer-aided drug design, and one in-vitro study was

conducted with different databases screening without any

comparative analysis with the currently available drugs in use

for treatment, as well as without evaluating the toxicity profile,

protein–ligand stability analysis via dynamic simulation

FIGURE 12
Effects of ZINC103239230, gefitinib and combination blocked the S phase of the cell cycle in the MCF-7 cell line.

FIGURE 13
Cell migration analysis for both lung cancer and breast cancer cell line. ImageJ software was used to calculate the migration area.
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(Sangande et al., 2020;Weng et al., 2022). For the identification of

lead compounds against a specific target, computer-based drug

design has emerged as a powerful technique due to the ability to

determine the stereochemical quality, toxicity, ligand selectivity,

and screening of compound libraries (Song et al., 2009; Baig et al.,

2016). In the present study, we investigated the discovery of

potential lead compounds using computational drug discovery

based on molecular dynamic simulation, toxicity analysis, and

determining the binding affinity. The toxicity profile was assessed

using the Protox II, Swiss ADME, and the Test Tool. Initially, a

pharmacophore feature was generated using the ligand scout

v4.4 advanced software. The selected ligand features have been

shifted to the ZINCPharmer database and the provided library

was screened based on the molecular weight (500 kDa), RMSD

less than or equal to 1, to get the structurally similar compounds.

The ZINCPharmer database is reached with the natural product

library, natural derivative library, and purchasable compound

library with more than 18 million compounds (Koes and

Camacho 2012). All of the obtained compounds have been

shifted to the ligand scout v4.4 advanced software, and a total

of 36 antagonists were identified with a maximum fit score of

65.82. The compounds were selected based on the docking score

and the toxicity class. Current third-generation inhibitors,

osimertinib, belong to class 3 (LD50:100 mg/kg) with active

immunotoxicity, and first-generation gefitinib belongs to class

5 (LD50:2935 mg/kg); both are being widely used as TK inhibitors

in Asia (Rahman et al., 2022). These drugs also have

hepatotoxicity and immunotoxicity and are active in binding

aryl hydrocarbon receptors. Our selected compound belongs to

class 4 (LD50:1190 mg/kg) and was only active in

immunotoxicity.

The morphological study of MCF-7 and A549 revealed that

the cancer cell died through breakdown of the membrane with

our selected compound and also with the currently used drugs,

but both in different ways. The maximum number of cell deaths

was observed with the increase of concentration (75 µM and

100 µM) and the IC50 showed that the maximum number of cell

deaths (30.8%) was observed in the case of MCF-7 by flow

cytometry. The EGFR protein concentration was also reduced

in breast cancer (MCF-7) more than in the lung adenocarcinoma

cell line (A549). Cell migration to the scratch area has been

reduced using ZINC103239230 and also a combination of

gefitinib and ZINC103239230. Previous studies have been

conducted to overcome the resistance of the EGFR targeted

drugs, but our study showed the potential to find new lead

compounds to overcome the EGFR-TKI mutation (T790M)

(Bommu et al., 2017). The pharmacophore model-based drug

discovery together with the molecular lab-based studies might be

useful to facilitate extensive research for other scientists on EGFR

mutation through targeting other EGFR-related carcinomas and

can be able to find new candidates with a lower toxicity profile.

Current potential lead compounds identification based on the in

silico and in-vitro studies for EGFR overexpressed carcinoma that

may have more robust pharmacological effects than currently

available marketed drugs. Our novel compounds could target

EGFR-related cancers and can reduce the severity of several

cancers, including lung and breast cancer. Further in-vitro

studies and clinical trials may be necessary to develop this

potential lead compound against carcinoma.

5 Conclusion

Structure-based drug design is becoming increasingly

important, effective, and necessary to identify inhibitory drugs

against a certain biological target. Based on in-silico drug design,

scientists are attempting to find more effective compounds

against the EGFR protein with the goal of overcoming current

mutations in the case of observed carcinoma treatment. In our

study, we identified a potential lead compound against EGFR

protein using pharmacophore model-based drug design and

molecular biology experimental analysis. The cytotoxicity and

flow cytometry studies revealed that our selected antagonist

(ZINC103239230) had more antitumor effects in in-vitro

studies at several concentrations and with an observed IC50

value. The EGFR protein concentration in the serum of a

cultured cell line revealed the decrease of target protein

concentration in comparison to the marketed drug gefitinib.

Through an electron microscopy study, the structural changes

of both MCF-7 and A549, as well as their death pattern, were

expressed using a specific concentration. According to ADME

analysis, our compound has better orally bioavailable drug-like

properties and lower toxicities than third-generation TK

inhibitors. All these findings show that in the future, this

selected compound may have better anticancer properties for

EGFR-targeted treatment in breast cancer and lung cancer.
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