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Liver cancer is the third most common cause of cancer-related deaths in the

world and has become an urgent problem for global public health. Bioactive

substances are widely used for the treatment of liver cancer due to their

widespread availability and reduced side effects. This review summarizes the

main pathogenic factors involved in the development of liver cancer, including

metabolic fatty liver disease, viral infection, and alcoholic cirrhosis, and focuses

on the mechanism of action of bioactive components such as polysaccharides,

alkaloids, phenols, peptides, and active bacteria/fungi. In addition, we also

summarize transformation methods, combined therapy and modification of

bioactive substances to improve the treatment efficiency against liver cancer,

highlighting new ideas in this field.
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1 Introduction

Liver cancer is the third most common cause of cancer-related deaths in the world

(Sällberg and Pasetto, 2020) and is divided into primary and secondary liver cancer.

Primary liver cancer includes hepatocellular carcinoma (HCC), cholangiocarcinoma and

mixed liver cancer. Secondary liver cancer is when the primary tumor originates in other

parts of the body and thenmetastasizes to the liver through the blood or other routes. This

includes liver metastasis from intestinal cancer, breast cancer and others. Besides, primary

lymphoma, hepatoblastoma, angiomyolipoma, etc. Are also common malignant tumors

of the liver. Studies have shown that the estimated incidence of liver cancer will exceed

1 million cases by 2025, with HCC being the most common form, accounting for 90% of

all cases. This condition is a significant economic and public health burden for the whole

world (Llovet, 2003). Therefore, it is urgent to find more efficient and economical

treatments.

There are some similarities in the pathogenesis of the various forms of liver cancer.

The main risk factors are long-term infection with hepatitis B virus (HBV), hepatitis C

virus (HCV), hepatitis D virus (HDV), alcoholic cirrhosis, nonalcoholic steatohepatitis

(NASH), obesity/type 2 diabetes, autoimmune hepatitis, and eating aflatoxin B1-
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contaminated food (Gingold et al., 2018). In addition, the

geographic region, gender, and age may also be related to the

occurrence of liver cancer (Qiu et al., 2019; Sayiner et al., 2019).

There are various treatment methods for liver cancer, but the

main treatment method at present is still surgical treatment. Even

if the liver cancer is radically removed, there are still problems

such as postoperative liver cancer metastasis, high recurrence

rate and poor prognosis. In addition, surgery has caused certain

psychological and physical trauma to patients, which not only

reduces the patient’s living index, but also poses a huge challenge

to prolonging the survival period of liver cancer patients (Man

et al., 2021). For advanced HCC patients who are not suitable for

transplantation or fail local and regional therapy, first-line drugs

such as sorafenib and lenvatinib are more clinically selected

(Pinter et al., 2009), but their use is hindered by drug

resistance. Studies have shown that sorafenib is only effective

in 35%–43% of patients, and most patients have disease

progression within 6 months, along with side effects of

diarrhea and skin reactions on the hands and feet (Dika and

Abou-Alfa., 2017). Therefore, exploring a therapeutic approach

with curative effect on liver cancer and low side effects has

become a new direction for cancer treatment in the future.

At present, bioactive substances have been very eye-catching

in the treatment of liver cancer. Of a total of 185 small molecule

anti-cancer compounds approved for clinical use, only 29

(15.7 percent) are reported to be classified as fully synthetic,

with the remaining 156 (84.3 percent) being either natural

products themselves or inspired by natural products (Newman

and Cragg, 2020). Biologically active substances have the

characteristics of diverse structure, low toxicity and wide

range of sources, and have unique advantages and great

potential in the treatment of liver disease (Shan et al., 2019).

Many studies have shown that many bioactive substances such as

paclitaxel and curcumin have significant anti-tumor efficacy and

have fewer side effects than other chemotherapy drugs

(Choudhari et al., 2020). In addition, some bioactive

substances can not only enhance the cytotoxicity of

chemotherapy drugs in cancer cells, but also protect healthy

cells from adverse reactions caused by chemotherapy drugs

through various pathways such as antioxidant, anti-

inflammatory, and anti-apoptosis (Arora et al., 2019; Abd

Rashid et al., 2021). Therefore, exploring the mechanism of

biologically active substances in the treatment of liver cancer

is of great significance for the development of the field of cancer

treatment. At present, the phase I human clinical trial of urtic

acid nanolipids (CTR20160681) and the phase I clinical trial of

chlorogenic acid for injection in subjects with advanced cancer

(CTR20130586) of phase I clinical trials (CTR20130586) have

been approved for clinical trials. In this review, we focus

especially on the therapeutic mechanisms by which bioactive

substances (such as polysaccharides, alkaloids, phenols, peptides,

and active bacteria/fungi) target liver cancer in the preclinical

stage. We highlight the advantages brought by these active

substances, aiming to provide new ideas for the treatment of

liver cancer and further promote bioactive substances into

clinical trials.

2 Pathogenic factors

2.1 Metabolic fatty liver disease

Nonalcoholic fatty liver disease (NAFLD) (which in 2020 an

international panel of experts recommended to be renamed

metabolic dysfunction associated fatty liver disease (MAFLD))

(Eslam et al., 2020) is a well-known risk factor for HCC

(Yamamoto et al., 2021) and encompasses a range of

pathological changes, including steatosis, NASH, fibrosis, and

cirrhosis (Samuel and Shulman, 2018). Its global incidence rate is

about 25.2% in the adult population, and has become the most

common chronic liver disease. Because of its high prevalence

rate, nonalcoholic fatty liver disease is now the fastest-growing

cause of liver-related mortality in the world, and it is becoming

an important cause of end-stage liver disease, including primary

liver cancer. A frequent outcome of this condition is liver

transplantation. Approximately 3%–15% of obese patients

with NASH develop cirrhosis each year, and 2.4%–12.8% of

patients with non-alcoholic liver cirrhosis develop primary liver

cancer (mainly HCC). However, in the absence of cirrhosis,

patients with NASH can also develop HCC from the

beginning. Approximately 4%–27% of NASH patients with

cirrhosis develop HCC (Dhamija et al., 2019; Selby et al.,

2020). In view of the high prevalence of obesity-related

nonalcoholic fatty liver disease, many experts predict that

nonalcoholic fatty liver disease will soon become the main

cause of HCC, especially in the United States and other

Western countries (Sayiner et al., 2019).

Nonalcoholic fatty liver disease is currently the second

leading cause of end-stage liver disease and the second most

common cause of primary liver cancer in adults awaiting liver

transplantation in the United States (Powell et al., 2021). NAFLD

is associated with 14.1% of HCC cases, and the incidence of

NAFLD-related HCC is increasing by 9% per year (Kanda et al.,

2020). A recent modelling study estimated that by 2030, the

prevalence of NASH will increase by 63% in the United States,

resulting in a 168% increase in NASH-related decompensated

cirrhosis, a 137% increase in HCC, a 178% increase in liver-

related death, and an estimated 800,000 excess liver deaths

(Younossi et al., 2019). In Latin America, MAFLD affects 31%

of the population, including 35.2% in Brazil, 23% in Chile, 17% in

Mexico, and 26.6% in Colombia (Méndez-Sánchez and Diaz-

Orozco., 2021). Also in Europe, non-alcoholic fatty liver disease

now accounts for 8.4% of all transplants performed annually, and

among all recipients of liver transplants, hepatocellular

carcinoma was found more frequently in those with non-

alcoholic fatty liver disease (39.1%) than in those without it
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(28.9%) (Powell et al., 2021). A study in Britain showed that one

of every three HCC patients had NASH, indicating that NAFLD

may have become the main cause of HCC in that country

(Augustin et al., 2017). The main mechanisms underlying the

development of liver cancer in metabolic fatty liver disease are

shown in Figure 1.

2.2 Viral infection

A risk factor for primary liver cancer is chronic inflammation

leading to chronic necrotizing inflammation (Kanwal et al.,

2018). This is caused by viral infections, including HBV,

HCV, HDV and other factors (Anwanwan et al., 2020).

Among these, hepatitis B is the most prevalent form of viral

hepatitis in the world (Lin et al., 2020). The mechanisms

underlying hepatitis virus-induced liver cancer include

integration of hepatitis B virus DNA into the host cell

genome, metabolic reprogramming due to viral infection (Tu

et al., 2017), the immune response, viral proteins affecting

signaling pathways, cellular stress response pathways and

inflammatory responses. The main mechanisms underlying

viral-induced liver cancer are shown in Figure 2.

2.2.1 Gene regulation
HBV infects and integrates only into hepatocytes (Chen et al.,

2020) and is the only hepadnavirus that utilizes viral DNA

integration to induce genomic instability. This can lead to the

production of fusion gene products and alter the expression of

oncogenes or tumor suppressors. HCV does not encode

oncoproteins or integrate its genome into host chromosomal

DNA. The mechanism underlying HCV-associated HCC

carcinogenesis is mainly indirect, due to viral regulation of

host cellular processes, resulting in hepatocyte steatosis,

inflammation, oxidative stress, immune responses, etc. HDV

can co-infect with HBV or be acquired through superinfection

FIGURE 1
The main mechanism of hepatic carcinoma caused by
metabolic fatty liver disease.

FIGURE 2
The main mechanism of viral infection-induced
hepatocellular carcinoma.
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by horizontal transmission in chronic hepatitis B patients

(Ringelhan et al., 2017; D’souza et al., 2020).

MicroRNAs (miRNAs) are a class of short endogenous non-

coding RNAs that bind to target mRNAs and inhibit their

expression through sequence-dependent mechanisms and play

an important role in gene regulation (Ghafouri-Fard et al., 2021).

Multiple studies have confirmed that miR-221, miR-210, miR-

223, miR-21, miR-155, miR-455, as well as miR-145 andmiR-194

are involved in HCC (Song et al., 2019). miR-148a, miR-602,

miR-143, miR29a, miR-152, miR-373, miR-16, miR-101, and

miR-661 are associated with HBV-mediated HCC (Chaturvedi

et al., 2019). miR-340-5p is a miRNA identified as a tumor

suppressor gene. HBV can enhance the expression of activating

transcription factor 7 (ATF7) by downregulating miR-340-5p,

which in turn interacts with heat shock protein family A member

1B (HSPA1B), promoting cell proliferation and inhibiting

apoptosis, which in turn affects the development of liver

cancer (Ghafouri-Fard et al., 2021). In liver tissue with HBV-

associated cirrhosis and HCC, the expression of microRNA-210

(miRNA-210) is increased, and the content of EGR3 is decreased.

Li et al. confirmed that silencing miRNA-210 can inhibit

HepG2 by up-regulating EGR3 to promote apoptosis (Li X.

et al., 2020). In tissues with HBV-associated HCC, miR-1271-

5p was down-regulated and AQP5 was up-regulated (Li Z. et al.,

2021). miR-122 can specifically bind to the 3′-untranslated
region (3′UTR) of apolipoprotein B mRNA editing enzyme

catalytic subunit 2 (APOBEC2) mRNA and inhibit its

expression. miR-122 targets the 3′UTR of APOBEC2 mRNA

and can induce HCC (Li et al., 2019).

HBV covalently closed circular DNA (cccDNA) is critical in

the development of hepatocellular carcinoma. The integration of

HBV DNA into host hepatocyte genes plays a key role in reverse

transcription and replication of the virus and in the production of

HBV X (HBx) or preS2/S proteins, which contribute to

tumorigenesis by interfering with gene expression or

activating oncogenic signaling pathways (Chaturvedi et al.,

2019). Feng et al. showed that long non-coding RNA

(lncRNA) PCNAP1 enhanced HBV replication by regulating

the miR-154/PCNA/HBVcccDNA signaling pathway.

PCNAP1 enhanced PCNA by acting as a sponge for miR-154,

targeting the PCNA mRNA 3′UTR and PCNAP1/PCNA

signaling pathway to drive hepatocarcinogenesis (Feng J. et al.,

2019). In addition, transforming growth factor beta-activated

long non-coding RNA (lncRNA-ATB), a novel oncogenic

lncRNA stimulated by transforming growth factor β, was

increased in advanced metastatic tumors and liver cancer

tissues, and was also significantly associated with HBV

infection (Zhang Y. et al., 2020).

2.2.2 Immunomodulation
Chronic infection with hepatitis viruses is a major risk factor

for liver injury and HCC. In chronic viral hepatitis, the

development of fibrosis, cirrhosis, and HCC is associated with

the immune response against the infected liver (Zambam de

Mattos et al., 2021). Disturbances in the function of virus-specific

T cells are a major factor underlying the incapacity of the

immune response to clear infected cells on the one hand, and

on the other hand, it influences the development of the disease

(Healy et al., 2020). Cytotoxic CD8+ T cells are key immune

effectors against tumors. The mechanism by which immune cells

promote HCC is mainly through the secretion of cytokines and

growth factors, which enhance the proliferation and inhibit the

apoptosis of tumor cells (Llovet, 2003).

Autophagy, an important defense and protection mechanism

ubiquitous in eukaryotic cells, is related to the body’s innate and

adaptive immunity and plays a key role in the regulation of liver

physiology and homeostasis. Impaired autophagy can explain the

pathogenesis of various liver diseases, such as hepatitis. The role

of autophagy in liver cancer is dual. In the early stage of

tumorigenesis, autophagy acts as a tumor suppressor,

preventing genomic instability by removing damaged

organelles and proteins; in later stages of tumor development,

transformed cancerous and stromal cells utilize autophagy to

produce nutrients in the tumor microenvironment, promoting

the progression and progression of established liver tumors. In

addition, autophagy in tumor cells and the host, as well as in the

surrounding microenvironment, promotes tumorigenesis and

cancer development (Chao et al., 2020).

In chronic hepatitis caused by viruses, T cells are

continuously stimulated by the persistence of viral antigens.

Programmed cell death protein 1 (PD-1) and CD4+Foxp3+

regulatory T cells (Tregs) are immune activating and

suppressive factors which play an important role in

maintaining the balance. HBV is genetically stable but its viral

antigens persist, leading to immune activation followed by loss of

energy or dysfunction. HBV surface antigen (HBsAg) particles

are overproduced and secreted, and viral particles whose surface

is mainly composed of PreS1 and PreS2 can escape from

antibodies and infect new cells. While HCV is constantly

changing, it persists by evading B and T cells (Sällberg and

Pasetto, 2020).

2.2.3 Regulation of signaling pathways by viral
proteins

The regulation of cellular signaling pathways by viral

proteins is one of the mechanisms by which HBV, HCV and

HDV drive hepatocarcinogenesis (D’souza et al., 2020). HBx, one

of the HBV gene products, plays a key role in the occurrence and

metastasis of liver cancer. HBx can induce the up-regulation of

male-specific lethal (MSL2) in stably transfected HBx hepatoma

cell lines and HBx transgenic mice by activating yes-associated

protein (Yap)/FoxA1 signaling, forming a positive feedback loop

(HBx/MSL2/cccDNA/HBV) that regulates HBV cccDNA and

promotes hepatocarcinogenesis (Gao et al., 2017). HBx promotes

actin polymerization and hepatoma cell migration by regulating

the protein calmodulin (CaM) (Kim et al., 2021). Zhou et al.
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proposed that the HBV X protein captures protons and chloride

ions and induces collagen expression in the liver, forming strong

hydrogen bonds with the captured protons, and that the HBV X

protein and collagen locally accumulate HCl, triggering cirrhosis

in some patients The disease progresses to liver cancer (Zhou

et al., 2017). HBx can modulate biological processes in

HepG2 cells and accelerate the development of HCC by

activating the XB130-mediated phosphatidylinositol 3-kinase

(PI3K)/AKT pathway (Huang et al., 2021). HBx increases the

expression of Smad-interacting protein 1 (SIP1) and recruits it to

the promoter of E-cadherin to repress the transcription of

E-cadherin, and the consequent decrease in E-cadherin

expression blocks intercellular adhesion and attachment,

thereby promoting tumor invasiveness (Ye et al., 2019). After

HBx vector transfection, the expression levels of lncRNA-ATB

and transforming growth factor-β (TGF-β) increased in

HepG2 cells, accompanied by increased autophagy, which

may be a potential mechanism by which HBV can induce

HCC (Zhang Y. et al., 2020).

Large HBV surface proteins (LHBs) contain an intact pre-S1

domain that binds to the HBV receptor sodium taurocholate

cotransport polypeptide on hepatocytes to facilitate viral entry.

Pre-S2 mutant LHBs are important viral oncoproteins. For

example, the pre-S2 variant surface protein binds to JAB1 and

induces nuclear translocation of JAB1, thereby activating the

p27/retinoblastoma/Cdk2/cyclin A pathway and promoting cell

cycle progression (Lin et al., 2020).

2.2.4 Oxidative stress and endoplasmic
reticulum stress

Oxidative stress and endoplasmic reticulum stress (ERs) have

been observed in chronic inflammatory liver disease induced by

hepatoviral infection and with oncogenic potential, resulting in

the production of a large number of cytokines and chemokines.

Endoplasmic reticulum stress in macrophages activates the pro-

inflammatory GSK-3β, nuclear factor kappa B (NF-κB) and

mitogen-activated protein kinase (MAPK) pathways, and

stress signals can propagate to individual hepatocytes through

potent mediators. This activates the unfolded protein-mediated

cell death response in nearby non-parenchymal cells (Li X. et al.,

2021). Expression of viral LHBs in chronic HBV carriers also

triggers a sustained ER overload response, leading to activation of

ER stress signaling pathways. Pre-S mutant-induced protein

misfolding triggers the unfolded protein response (UPR) and

endoplasmic reticulum stress-mediated signaling, including

IRE1/p38-mediated activation of NF-κB and COX-2, calcium

efflux, calpain cleavage and cyclin A overexpression, leading to

centrosome overduplication (Lin et al., 2020).

2.2.5 Inflammation
HCC is a well-known example of a tumor induced by

inflammation, and a variety of immune and inflammatory

factors, including T cells, cytokines, etc., play crucial roles in

the development of HCC, including interleukin-6 (IL-6),

interferon-α (TNF-α), TGF-β, and other cytokines

(Chaturvedi et al., 2019). HBV-related HCC is induced mainly

by the host’s immune and inflammatory responses (Yuan et al.,

2021), and oncogenic transformation in related cancers is often

accompanied by long-term inflammation and cirrhosis

(Chaturvedi et al., 2019). Serum IL-6 and interleukin-1β (IL-

1β) levels are abnormally elevated in HCC patients, and there are

many collagen fibers in liver cancer tissue. Interfering with c-X-c

motif chemokine receptor 3 (cXcr3) can inhibit cell proliferation

and migration. It can also reduce the expression levels of the

α1 chain of collagen type I and proteins in the Tlrs/

Myd88 pathway, promoting apoptosis in HBV-lX-2 cells

(Yuan et al., 2021).

2.3 Alcohol

The liver is the main organ involved in alcohol metabolism

(Hyun et al., 2021). Excessive alcohol consumption can result

in fatty liver, acute/chronic hepatitis, liver fibrosis and

cirrhosis, ultimately leading to HCC (Seitz et al., 2018).

Studies have shown that approximately 154,700 cases of

hepatocellular carcinoma in 2020 were associated with

alcohol consumption (Rumgay et al., 2021b). Related

studies have also found that there is a linear dose-response

relationship between alcohol consumption and the risk of

cirrhosis and HCC. The odds ratio (OR) value for cirrhosis

increased when alcohol intake was 30–50 g/day, while the OR

value for HCC increased when alcohol intake was >60–100 g/
day (Matsushita and Takaki, 2019). A World Cancer Research

Fund (WCRF) analysis showed that for every 10 g of alcohol

consumed per day, the risk of HCC increases by 14% (RR 1.14

(95% CI 1.04–1.25)) (Rumgay et al., 2021a).

Underlying alcohol-induced liver cancer is the process of

alcohol metabolism. Ethanol is first oxidatively degraded into

acetaldehyde by alcohol dehydrogenase (ADH) in the cytoplasm

of hepatocytes, and then acetaldehyde is oxidized to non-toxic

acetic acid by acetaldehyde dehydrogenase 2 (ALDH2) and

coenzyme NAD or NADP, for excretion (Wang W. et al.,

2020). Under conditions of excessive ethanol intake,

cytochrome P450 2E1 (CYP2E1) in the endoplasmic reticulum

and catalase in peroxisomes also become involved in the

metabolism of ethanol, catalyzing the conversion of ethanol

into acetaldehyde, and generating reactive oxygen species

(ROS) (Matsushita and Takaki, 2019). Therefore, excess

ethanol will generate toxic by-products such as acetaldehyde

and ROS, which accumulate in the liver. Acetaldehyde interferes

with DNA repair and promotes lipid peroxidation, adduct

formation, mitochondrial damage and DNA mutagenesis,

ultimately contributing to hepatocarcinogenesis (Taniai, 2020).

At the same time, accumulation of ROS contributes to the

development of HCC by inducing DNA damage, genomic
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vulnerability in hepatocytes and suppressing T lymphocytes

(Ogunwobi et al., 2019).

Interference with normal immune system function is another

important mechanism of alcohol-induced liver cancer. Chronic

alcohol consumption can impair immune system function and

exacerbate infections (Little et al., 2019). Natural killer cells (NK)

make up 30%–50% of liver lymphocytes and play an important

role in tumor surveillance (Male et al., 2017). Long-term alcohol

consumption may cause NK cell dysfunction. Alcohol intake not

only decreases the cytotoxic function of NK cells, but also

decreases the number of NK cells (Male et al., 2017;

Matsushita and Takaki, 2019). Yan et al. investigated the

immunological mechanisms underlying ethanol-associated

tumor progression and found that ethanol not only

aggravated liver tumor progression, but also decreased the

number of antitumor CD8+ T cells (Yan et al., 2017).

Furthermore, hepatic stellate cell-macrophage interactions

may contribute to the induction of myeloid-derived

suppressor cells (MDSCs), thereby inhibiting tumor

surveillance by immune cells and promoting a tumorigenic

microenvironment in the early and late stages of HCC

(Matsuda and Seki, 2020).

In addition to the two previously mentioned mechanisms,

alcohol-induced liver cancer may also be closely related to lipid

metabolism (Ganne-Carrié and Nahon, 2019), intestinal flora

disturbances (Akkız, 2021), DNA methylation (Udali et al.,

2015), and others. The main mechanisms underlying alcohol-

induced liver cancer are shown in Figure 3.

3 Therapeutic effect of bioactive
substances on liver cancer

Polysaccharides, alkaloids, phenols, polypeptides, and active

bacteria/fungi are the main bioactive substances showing

therapeutic potential against liver cancer. Bioactive substances

can play a positive role in the treatment of liver cancer through

the following four pathways: 1. By regulating related signaling

pathways, inducing apoptosis and autophagy; 2. By inhibiting the

proliferation and migration of liver cancer cells; 3. By regulating

the cell cycle and inhibiting the growth of liver cancer cells; 4. By

regulating immunity. The main mechanisms underlying the

therapeutic effects of bioactive substances against liver cancer

are shown in Figure 4 and Table 1.

3.1 Polysaccharides

Polysaccharides are polymeric carbohydrates composed of

10 or more monosaccharides linked by glycosidic bonds. They

are common in animals, plants, microorganisms, and other

organisms. Because of their low toxicity and side effects, they

are widely used in the food and medicine industries (Zhang et al.,

2021). Polysaccharides have a wide range of biological functions.

They are used as a source of energy, are a basic component of the

body, and also participate in the process of recognition between

cells, the regulation of energy supply to the immune system, the

transport of intercellular substances, the transformation of cells,

and the apoptosis of tumor cells. Research on the antitumor

activity of polysaccharides has been the focus of increasing

attention. The anti-tumor mechanisms of some plant, animal,

marine and fungal polysaccharides are described below

according to the source.

3.1.1 Plant polysaccharides
The liver is important for storing iron in the human body,

and several studies have shown that iron overload in the liver is

positively related to the risk of HCC. Hepcidin (Hepc) is a

regulator of iron metabolism. Hepc inhibits the transport of

iron ions by binding to membrane iron transport proteins (FPN)

located on the plasma membrane of cells (macrophages) on the

outer basal side of the intestinal gut. Transporters are eventually

degraded in lysosomes, preventing the export of iron ions, which

FIGURE 3
The main mechanism of alcohol-induced liver cancer.
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are sequestered in the cell. Ren et al. found that 200 mg/L of

dandelion polysaccharide (DP) significantly reduced the

expression levels of Hepc protein and mRNA in hepatoma

cells and proved that the mechanism of action may be related

to inhibition of the JAK-STAT signaling pathway induced by IL-

6 (Ren F. et al., 2021). Basil polysaccharide (BPS) extracted from

Ocimum basilicum L., which has both pharmacologic and

nutrient properties, has been found to induce epithelial-

mesenchymal transition (EMT) by blocking hypoxia-inducible

factor-1α (HIF1α) under hypoxia, thus producing an anti-

metastatic effect. In vivo and in vitro experiments (with the

hepatoma cell line MHCC97H) also proved that BPS increased

mRNA and protein levels for the epithelial markers E-cadherin

and vesicular protein 1(VMP1), while inhibiting mRNA and

protein levels for the interstitial markers N-cadherin (CDH2),

vimentin and β-catenin (β-catenin). BPS offers a novel approach
for the clinical treatment of malignant tumor metastasis and

invasion caused by hypoxia (Feng B. et al., 2019). Alkali-soluble

polysaccharide (ALP) and water-soluble polysaccharide (WAP),

isolated from the leaves of Aloe arborescens, showed direct

toxicity against HepG2. WAP can enhance phagocytosis by

macrophages, while ALP enhances the activation of

lymphocytes to increase the release of cytokines such as

interleukin -2 (IL-2), interleukin -12 (IL-12), interferon-

gamma (IFN-γ) and TNF-α, which together induce the

necrosis and apoptosis of tumor cells (Nazeam et al., 2017).

3.1.2 Animal polysaccharides
Su et al. extracted a new type of polysaccharide (SNP) from

Sipunculus nudus, and the anti-tumor mechanism of SNP was

also investigated. The mechanism of action of SNP is complex,

andmay include the following: 1. Up-regulation of the expression

levels of cytokines in serum, such as IL-2, IFN-γ and TNF-α; 2.
Up-regulation of the protein kinase R-like endoplasmic

reticulum kinase (PERK)/eukaryotic initiator 2α(elF2α)/
activated transcription factor 4 (ATF4)/transcription factor

FIGURE 4
Diagram of the main mechanism of bioactive substances in the treatment of liver cancer.
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TABLE 1 Anti-hepatoma mechanism/effect table of active substances (↑ increase/enhance, ↓ decrease/inhibit).

Kind Active substance Mechanism/Effect Research model References

Polysaccharides Dandelion polysaccharide ↓The protein/mRNA expression level of Hepc;
↓JAK/STAT

HepG2, Huh7, Hepa1-6, H22 cells Ren et al. (2021a)

Basil polysaccharide ↑E-Cadherin/VMP1 mRNA/protein expression
level; The mRNA/protein expression level of
N-cadherin/Vimentin↓; ↓ β-catenin

MHCC97H cells, MHCC97L cells Feng et al. (2019a)

Alkaline-soluble polysaccharide/
water-soluble polysaccharide

Phagocytosis of macrophages↑; IL-2, IL-12,
TNF-γ, TNF-α↑

PC3 human prostate cancer cells,
HepG2, MCF-7 human breast cancer
cells

Nazeam et al. (2017)

Sipunculus nudus polysaccharide ↑IL-2, IFN-γ, TNF-α; ↑DDIT3; ↓Cyr61, Hsp90,
Gene expression level of VEGF; ↑caspase-3,
caspase-8, caspase-9, Bax

Human hepatocyte cells (LO2), Male
athymic NU/NU mice

Su et al. (2021)

Exopolysaccharide 11 Migration of cancer cells↓; ↓The mRNA/protein
expression level of CD99

Huh7.5, HepG2 and Bel-7402 liver
cancer cells, B16F-10 cells

(Wang et al., 2019d;
Liu et al., 2021a)

Exopolysaccharides 364 ↓FGF19-FGFR4 signaling axis; ↑ROS; ↓Growth
and adhesion of cancer cells

Huh7.5, HL-7702, Bel-7402 cells Wang et al. (2021a)

N-dihydrogalactochitosan ↑Sensitivity of tumor cells to radiation 4T1 triple-negative murine breast
cancer cells

Wang et al. (2019a)

Water-soluble yeast β-D-glucan ↑PH of lysosome; ↓Cathepsin activity of
lysosome; ↑ROS

Huh7, SMMC-7721, LM3, HL-7702
cells

Wang et al. (2020a)

Ganoderma lucidum
polysaccharide

↑M1 macrophage; ↓M2 macrophage; PI3K/AKT
pathway↓; ↑ Bax, Bad, Bak, Noxa

Mouse H22 cells Song et al. (2021)

Dictyophora polysaccharide Hepatocellular carcinoma cell growth↓ HCC-LM3 human hepatocellular
carcinoma cells

Song et al. (2021)

Alkaloids Berberine By↓GPT1, ↓Hepatocellular carcinoma cell
growth

PLC/PRF/5 cell, MHCC97L cells tagged
with luciferase gene, normal human
liver MIHA cells

Guo et al. (2020b)

↓Akt pathway, ↓Skp2 expression, ↑FOXO3a
expression, ↑Transcription of p21Cip1 and p27Kip1

Human hepatoma cell line Huh-7 and
HepG2

Li et al. (2018)

↑67LR, ↑cGMP, ↑caspase-8/3 SMMC7721, HepG2, BEL7402,
LO2, H9

Zhou et al. (2018)

Tetrandrine ↓EMT, ↑p-β-catenin, ↓Wnt/β-catenin signaling
pathway

Human hepatoma cell line Huh7 and
Hep3B, cell lines HCCLM9

Zhang et al. (2018b)

↓p-CaMKIIδ HuH7, SMMC-7721, HepG2, PLC/
PRF/5, SK-Hep-1, SNU398, MHCC97H
cell

Huang et al. (2019)

Lycorine ↓cyclin A, ↓cyclin B1, ↓cdc2, ↓ROCK1/cofilin Human hepatoblastoma cell line
HepG2

Liu et al. (2019)

↓CDK1 Human hepatoma cell line HepG2,
HuH-7 and Hep3B

Yin et al. (2021)

Solamargine ↓LIF, ↑CD4+ T cells Huh-7, HepG2 Yin et al. (2022)

↑miR-4726-5p, ↓MUC1 HepG2, Huh-7 Tang et al. (2022)

Evodiamine ↑P53, ↑Bax, ↓Bcl2, ↓cyClinB1, ↓cdc2; ↓NOD1 Human hepatoma cell line Hep3B and
Huh-7

Guo et al. (2018)

↓PRAME Human hepatoma cell line HepG2 Zhu et al. (2019)

Matrine ↑Mst1-JNK, ↑JNK phosphorylation, ↑Mst1 Huh-7 liver cancer cell line and HepG2 Cao et al. (2019)

↓ERK1/2 HepG2 Yu et al. (2020)

↓EMT Human hepatoma cell line Huh-7 Wang et al. (2018b)

Capsaicin Inhibits the proliferation, migration and invasion
of hepatoma cells, hinders cell-matrix adhesion

Human normal liver L02 cells, human
hepatoma cells SMMC7721, human
hepatoma cell line HepG2

Wang et al. (2019c)

↓SIRT1, ↓SOX2 WB-F344 cells and HepG2 hepatoma
cells

Xie et al. (2022)

↓SIRT1, ↑NOX4 HepG2 and HL-7702 cells Hacioglu, (2022)

(Continued on following page)
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C/EBP homologous protein (CHOP) axis, with a subsequent

increase in the mRNA and protein expression levels of cell DNA

damage-inducing transcript 3 (DDIT3) in tumors; 3. Reduction

in the gene expression levels of cysteine-rich angiogenesis

inducer 61(Cyr61), heat shock protein 90(Hsp90) and vascular

endothelial growth factor (VEGF) in a dose-dependent manner;

4. Up-regulation of the expression levels of the pro-apoptotic-

related proteins caspase-3, caspase-8, caspase-9 and Bax, which

induce the apoptosis of tumor cells (Su et al., 2021).

3.1.3 Marine polysaccharides
Extracellular polysaccharide 11 (EPS11) is a natural

polysaccharide obtained from the marine bacterium Bacillus

sp. 11, which has shown remarkable anti-metastatic properties.

The extracellular matrix (ECM) is an important component of

the tumor microenvironment and is closely related to tumor

behavior, including tumor growth, angiogenesis, and metastasis.

(Liu X. et al., 2022). proved that EPS11 can directly target type I

collagen (an ECM protein) through the β1-integrin signaling

pathway (the receptor that mediates ECM-cell interactions),

effectively inhibiting the migration of liver cancer cells (Liu

et al., 2021a). This research team also confirmed that the

filamentous structure promoting cell adhesion was almost

completely inhibited when the tumor cells were treated with a

9 nM concentration of EPS11, and that tumor cell migration was

reduced under the same conditions. At the same time, mRNA

TABLE 1 (Continued) Anti-hepatoma mechanism/effect table of active substances (↑ increase/enhance, ↓ decrease/inhibit).

Kind Active substance Mechanism/Effect Research model References

Phenols Resveratrol ↑p53; ↓Phosphoinositide 3-kinase/Akt HCC MHC 97-H cells Zhang et al. (2018b)
↑IFN-γ- CD8+ T cells, TNF-αand IFN-γ; ↓
STAT3 ↓ Tregs, M2-macrophage; ↓TGF-β1,
IL-10

Mouse subcutaneous HCC tumor
model

Zhang et al. (2020a)

↑GST, GPx; ↑CAT、SIRT1; ↓GST-pi, SGPT,
SGOT, LPO, NF-κB

A rat model of liver cancer induced by
alcohol-aflatoxin B1

Rawat et al. (2021)

↑SOD, CAT; ↓ sirtuin 1, Urea, MDA A rat model of liver cancer induced by
alcohol-aflatoxin B1

Rawat et al. (2020)

Curcumin ↓ HSP70; ↓ TLR4, NF-κB HepG2 heat stress model Ren et al. (2018)

↓ IL-6, IL-6R. STAT3, snail, survivin, cyclin D1 A subchronic cell model of TCE
induction in vitro

Cao and Wang.,
2021

↑caspase-3; ↓ DJ-1, PTEN/PI3K/AKT HL-7702、SMMC-7721, HepG2 Han et al. (2020)

Rosmarinic acid ↑caspase-3 and 9、Bax; ↓ Bcl-2 HepG2 Jin et al. (2020a)

↑caspase-3, Bax; ↓ Bcl-2, PI3K, p-Akt, NF-κB HepG2 An et al. (2021)

↑EMT; ↓P13K/AKT/mTOR SMMC-7721 human hepatoma cells Wang et al. (2019d)

Baicalin ↑PTEN, E-cadherin; ↓PI3K/Akt/NF-κB; ↓N-
cadherin, MMP-2、MMP-9

Human hepatoma cell lines HepG2,
Huh-7; human normal keratinocyte line

Ha et al. (2021)

Erianin ↓Akt, ERK and P38 phosphorylation; ↓ MMP-2,
MMP-7, MMP-9

Human liver cancer SMMC-7721,
HepG2

Yang et al. (2020)

Lysionotin ↑ROS; ↓MMP HepG2, MMC-7721 cells Yang et al. (2021)

Camellia oleifera phenol ↑SHP-1, ↓ JAK1, JAK2, STAT3, EMT liver cancer cell line LO2, HCCLM3 and
Huh7, liver cancer mouse model

Pei et al. (2016)

Polypeptide ONX0912 ↑LC3-II↑protein levels of PINK1 and Parkin,
↑Parkin/Pink pathway induces mitophagy and
expands liver cancer cells↓

Human liver cancer cell lines, Huh7,
HepG2, 97L, SMMC-7701, SMMC-
7721, LM6 and Hep3B

Wu et al. (2021)

ULK1 inhibitor ↓Expression of FOXM1 and its transcriptional
targets, ↓Hepatoma cell proliferation

HepG2 Rajak et al. (2020)

NMTP-5 ↓Endogenous MDM2 protein binds to
p53 protein, ↑p53 signal

SK-Hep-1 Cells Zhou et al. (2021)

P18 peptide ↓Phosphorylation of VEGFR2, ↓Activation of
the PI3K/Akt cascade, ↑mitochondrial-mediated
apoptosis and antiangiogenic activity

Human umbilical vein and micro-
vascular endothelial cells (HuVECs)
and human HCC cell, HepG2

Wang et al. (2017)

Active bacteria/
fungi

ZHD-0501 ↓Proliferation of human hepatoma cells Human hepatoma cells Aly et al. (2021)

Halomonas sp ↑Apoptosis, ↓G2/M cell cycle Human hepatoma cell line HepG2 El-Garawani et al.
(2020)

Lobophorin C, Lobophorin D cytotoxic activity against liver cancer cells Human hepatoma cell line HepG2 Bittner et al. (2021)

Proteus mirabilis ↓or kill HepG2 cells Human hepatoma cell line HepG2 Ren et al. (2021b)

Spectinabilin (1) ↓Protein levels of cyclin B1 and cdc2; ↓Cell cycle
in G2/M phase of SMMC7721 and HepG2 cells

Human hepatoma cell line HepG2 Gao et al. (2019b)
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and protein levels for CD99 (a glycosylated transmembrane

protein) decreased in a dose-dependent manner, further

confirming the anti-cell migration effects of EPS11 (Wang

J. et al., 2019). Surprisingly, this research group also isolated

and purified EPS364 from Vibrio alginolyticus 364, and not only

confirmed that EPS364 showed anti-tumor effects that were

similar to those of EPS11, but also that it possibly down-

regulated the fibroblast growth factor 19 (FGF19)- fibroblast

growth factor receptor 4 (FGFR4) signal axis. In this regard,

expression of intermediate regulatory molecules such as β-lotho
(KLB), β-catenin (CTNNB1), CDH2, alpha-fetoprotein (AFP),

activated leukocyte adhesion molecule (ALCAM) and

intercellular adhesion molecule-1 (ICAM-1) can induce ROS

production and apoptosis, inhibiting the growth and adhesion of

cancer cells (Wang et al., 2021a).

Alginate is a polysaccharide rich in sulfate groups which is

mainly found in brown algae (Li J. et al., 2020). It has been

reported that fucoidan (OF) can bind to the asialoglycoprotein

receptor (ASGR) in liver cancer cells, promoting the binding of

transcription activator 3 (STAT3) to the P1 promoter of

hepatocyte nuclear factor 4A (HNF4A), inducing the

expression of P1-HNF4A, and inhibiting the proliferation of

cancer cells (Wu et al., 2020). Wang et al. proved that

N-dihydrogalactochitosan combined with high-dose X-rays

(6–10 Gy) can increase the sensitivity of liver metastatic

4T1_L_3R tumor cells to radiation and significantly increase

the damage to DNA. This result shows that the synergistic effect

of polysaccharides and ionizing radiation can be used to improve

the treatment against metastatic tumor cells (Wang C. Y. et al.,

2019).

3.1.4 Fungal polysaccharides
Water-soluble yeast β-D- glucan (WSG) is a polysaccharide

composed of D-glucose monomers that naturally exists in

bacteria, fungi, algae, and grains. Wang’s research group

found that WSG can increase the pH in lysosomes and inhibit

cathepsin activity, resulting in dysfunction of lysosomes,

blockade of autophagy, and accumulation of damaged

mitochondria and ROS, accelerating the death of tumor cells.

In addition, WSG reduced the metabolites needed for recycling

during glycolysis and the TCA cycle, making HCC cells more

sensitive to apoptosis in case of nutritional deficiency. At the

same time, this research group also confirmed that WSG can

inhibit the growth of mouse primary HCC cells induced by

diethylnitrosamine/carbon tetrachloride (DEN/CCl4), without

showing signs of toxicity in mice (Wang N. et al., 2020).

Ganoderma lucidum polysaccharide (GLSP) has also been

found to exhibit anti-tumor properties, and its mechanisms of

action are multifaceted. (Song et al., 2022).found that GLSP-

treated macrophages could induce cell cycle arrest in the G2/M

phase of hepatocellular carcinoma cells and damage their DNA.

Culturing macrophages with GLSP also affected the ratio of

classically activated (M1 type) and selectively activated

(M2 type) macrophages, and GLSP participated in the

inhibition of the PI3K/AKT pathway with

phosphatidylinositol kinase and serine/threonine kinase

activities. The expression levels of pro-apoptotic factors (Bax,

Bad, Bak and Noxa) and of molecules downstream of Bcl-2 were

increased, affecting the mitochondrial apoptosis pathway and

jointly promoting the apoptosis of tumor cells (Song et al., 2021).

Dictyophora polysaccharide has been shown to exhibit potential

value for the treatment of liver cancer. After 24 h of treatment

with 0.5 mg/ml of Dictyophora polysaccharide, the cell growth

inhibition rate was 3.13%. After 24, 48 and 72 h of treatment with

4 mg/ml of Dictyophora polysaccharide, the growth rates of liver

cancer cells were inhibited by 45.3%, 59% and 63.4% respectively.

This data show that Dictyophora polysaccharide inhibits the

growth of liver cancer cells in a dose- and time-dependent

manner. Like other polysaccharide inhibitory mechanisms

mentioned before, Dictyophora polysaccharide also blocks the

cell cycle in the G2/M phase and regulates the expression of pro-

apoptotic proteins and genes (Hu et al., 2020).

3.2 Alkaloids

Alkaloids are a class of nitrogen-containing alkaline organic

compounds that exist in nature and have a variety of biological

activities. At present, natural alkaloids with anti-liver cancer

properties can be divided into various categories, such as

isoquinoline alkaloids, steroidal alkaloids, indole alkaloids and

others, according to their different structures.

3.2.1 Isoquinoline alkaloids
Berberine (BBR) is an isoquinoline alkaloid isolated from

Coptis chinensis Franch. (Zhu et al., 2022). BBR can inhibit the

growth of liver cancer cells, and regulate tumor-related

pathways to induce apoptosis. Glutamic-pyruvic

transaminase 1 (GPT1) is an important regulator of

hepatocellular carcinoma growth and plays an important

role in amino acid and glucose metabolism. BBR can

inhibit the growth of hepatocellular carcinoma cells by

inhibiting GPT1 (Guo P. et al., 2020). At the same time,

BBR can induce G0/G1 cell cycle arrest in hepatoma cells.

Studies have found that BBR can inhibit the Akt pathway and

the S-phase kinase-associated protein 2 (Skp2), promote the

expression and translocation of Forkhead box O3a (FoxO3a)

to the nucleus, and promote the transcription of the cyclin-

dependent kinase inhibitors (CDKIs) p21Cip1 and p27Kip1,

resulting in G0/G1 cell cycle arrest in liver cancer cells (Li

et al., 2018). Cyclic guanosine 3′,5′-monophosphate (cGMP)

is an important signaling molecule downstream of 67LR and

plays a key role in cell proliferation, differentiation, and

apoptosis. BBR can induce the activation of 67LR, leading

to up-regulation of cGMP and activation of caspase-8/3,

which ultimately triggers apoptosis (Zhou et al., 2018).
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Tetrandrine (Tet) is a natural product isolated and purified

from Stephania tetrandra S that belongs to the

bisbenzylisoquinoline alkaloid family (Luan et al., 2020).

Tetrandrine can affect the proliferation and survival of cancer

cells and inhibit tumor invasion and migration. Tetrandrine can

inhibit the metastasis of hepatoma cells by inhibiting the EMT of

human hepatoma cells. In addition, it increases p-β-catenin
protein levels and inhibits the Wnt/β-catenin signaling

pathway, which is critical for tumor metastasis and normal

development (Zhang Z. et al., 2018). CaMKII is a

multifunctional serine/threonine kinase that regulates many

key biological processes in cancer, including cell division,

proliferation, and differentiation. Tetrandrine can significantly

reduce the phosphorylation of Ca2+/calmodulin-dependent

protein kinase II δ (CaMKIIδ), thereby inhibiting its kinase

activity and inhibiting the growth of hepatoma cells (Huang

et al., 2019).

Lycorine is an alkaloid isolated from Lycoris radiata.

Lycorine not only induces G2/M cell cycle arrest in

HepG2 cells by downregulating cyclin A, cyclin B1 and cell

division cycle gene 2 (cdc2), but also inhibits the proliferation

and migration of HepG2 hepatoblastoma cells by inhibiting

Rho-associated coiled-coil containing protein kinase 1

(ROCK1)/cofilin-induced actin dynamics (Liu et al., 2019).

In addition, cyclin-dependent kinase 1 (CDK1) can play an

important role in cell cycle regulation and is closely related to

the occurrence and development of tumors. Studies have

found that lycorine can interfere with the expression of

CDK1 to promote senescence and autophagy in liver cancer

cells (Yin et al., 2021).

In addition to the above, neferine, extracted from lotus

(Nelumbo nucifera) seed embryos and colchicine extracted

from Colchicum autumnale L. also show positive effects in the

treatment of liver cancer (Deng et al., 2017; Lin et al., 2021).

3.2.2 Steroidal alkaloids
Solamargine (SM) is a steroidal alkaloid extracted from

Solanum nigrum Linn. (Kalalinia and Karimi-Sani, 2017). SM

can induce apoptosis and autophagy of liver cancer cells and

regulate the immune microenvironment. SM can down-regulate

the abnormally elevated oncogene LIF in liver cancer tissue and

be used to treat liver cancer by inducing autophagy and apoptosis

through the LIF/miR192-5p/CyR61/Akt axis. In addition, SM

can influence immune cell populations in the immune (tumor)

microenvironment by regulating macrophages (Yin et al., 2022).

SM also has a significant inhibitory effect on the growth of liver

cancer. Studies have found that MUC1 is a key target of SM to

inhibit the growth of liver cancer, and that SM can inhibit the

growth of liver cancer cells by up-regulating the expression of

miR-4726-5p and binding to the MUC1 protein (Tang et al.,

2022).

Solanine is a steroidal alkaloid extracted from Solanum

tuberosum Linn. Studies have found that solanine can enhance

the anti-tumor immune response by down-regulating

CD4+CD25+Tregs in tumor tissue and down-regulating the

expression of Foxp3 and TGF-β (Gao et al., 2020).

Veratramine is a steroidal alkaloid extracted from Veratrum

nigrum L. Veratridine not only inhibits the proliferation,

migration, and invasion of HepG2 cells, but also induces

autophagy and apoptosis. The Bcl2/Bax ratio is considered a

decisive factor to determine whether a cell will undergo

apoptosis. Veratridine not only significantly up-regulates the

expression of Bax and down-regulates the expression of Bcl2,

but also significantly up-regulates Beclin-1 and Lc3-II proteins,

which are markers of autophagy (Yin et al., 2020).

3.2.3 Indole alkaloids
Evodiamine (Evo) is an indole alkaloid isolated from Evodia

rutaecarpa Bentham (Yun et al., 2022). Evo not only inhibits the

growth of liver cancer cells, but also regulates related signaling

pathways to induce apoptosis. Evo up-regulates P53, Bcl2 and

Bax; and down-regulates Bcl2, cyClinB1 and cdc2 proteins,

significantly inducing G2/M cell cycle arrest in HepG2 cells,

and inducing hepatocellular carcinoma cell apoptosis by

inhibiting the NOD1 signaling pathway (Guo et al., 2018). In

addition, Evo can inhibit tumor metastasis. Melanoma

preferentially expressed antigen (PRAME) is highly expressed

in patients with liver cancer, and studies have found that Evo can

inhibit tumor metastasis by inhibiting the expression of PRAME

(Zhu et al., 2019).

In addition, brucine (Qin et al., 2018) and vincristine (Li M.

et al., 2021), which are indole alkaloids, have also shown

inhibitory effects on the growth and proliferation of tumor cells.

3.2.4 Other alkaloids
Matrine is a piperidine alkaloid isolated from Sophora

flavescens Ait. Matrine can promote apoptosis of liver cancer

cells. The Mst1-JNK pathway is a regulator of mitochondrial

homeostasis in metastatic liver cancer cells, and matrine can

activate the Mst1-JNK pathway, significantly upregulating JNK

phosphorylation and Mst1 expression, leading to mitochondrial

fission and apoptosis of liver cancer cells (Cao et al., 2019).

Matrine can also inhibit the proliferation and migration of liver

cancer cells by regulating related signaling pathways.

Extracellular signal-regulated kinases (ERKs), members of the

MAPK signal transduction family, are widely involved in cell

proliferation and differentiation and in the regulation of growth

factor receptors. Studies have found that matrine can inhibit the

proliferation and migration of liver cancer cells by

downregulating the ERK1/2 signaling pathway (Yu et al.,

2020). In addition, matrine can inhibit liver cancer cell

invasion and migration by modulating EMT (Wang et al.,

2018b).

Capsaicin is a vanillamide alkaloid derived from chili

peppers. Capsaicin has shown potential anti-metastatic effects,

significantly inhibiting proliferation, migration and invasion by
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hepatoma cells and hindering cell adhesion to the matrix (Wang

K. X. et al., 2019). SOX2 is a transcription factor that maintains

the stemness of cancer stem cells (CSCs). Silent information

regulator 1 (SIRT1) is a NAD-dependent deacetylase that

promotes tumor development. Studies have found that

capsaicin can inhibit the occurrence of liver cancer through

the SIRT1/SOX2 signaling pathway (Xie et al., 2022). In

addition, capsaicin can also affect the SIRT1/NOX4 signaling

pathway by reducing the level of SIRT1 protein, increasing

NOX4 protein levels and caspase-3/-7 activity, and promoting

oxidation, apoptosis and DNA damage in liver cancer cells

(Hacioglu, 2022).

Piperine is a pyridine alkaloid isolated from Piper longum L.

or Piper nigrum L. (Yadav et al., 2021). Studies have found that

piperine shows potential anti-proliferative effects on CD44+/

CD133+ cancer stem cells isolated from HepG2 cells. It can

induce cell cycle arrest in the G1/G0 phase, affecting cell cycle

progression (Tiwari et al., 2021).

Dehydrocrenatidine is a β-carolin alkaloid isolated from

Picrasma quassioides. Dehydroclatidine can induce cell cycle

arrest in the G2/M phase, activate the apoptosis pathway

mediated by mitochondria and death receptors, reduce the

viability of liver cancer cells, and trigger apoptosis of liver

cancer cells by inhibiting JNK1/2 phosphorylation

(Velmurugan et al., 2022).

Paclitaxel (PTX) is a terpenoid alkaloid isolated from Taxus

brevifolia. Studies have shown that PTX not only significantly

inhibits the proliferation of hepatoma cells, but also inhibits the

viability of HLE, L-02 and Bel 7402 hepatoma cells in a time- and

dose-dependent manner (Zhu et al., 2016).

3.3 Phenols

Phenols are widely found in plants and have a variety of

health-promoting effects. Various flavonoids, such as resveratrol,

curcumin, rosmarinic acid, baicalin, quercetin, kaempferol,

silybin, baicalein, galangin, and luteolin have anti-cancer

effects through mechanisms that include scavenging free

radicals and inducing cell death (Baby et al., 2021).

3.3.1 Resveratrol
Resveratrol (RES), an important phytochemical component

of grapes, is a polyphenol with effects against various types of

tumors, including liver cancer, breast cancer, cervical cancer,

blood cancer, skin cancer, etc. (Rauf et al., 2018). RES affects

various stages, including cancer initiation, promotion, and

progression, by modulating multiple signal transduction

pathways that control cell growth, division, inflammation,

apoptosis, metastasis, and angiogenesis (Ko et al., 2017).

RES can significantly inhibit the viability of hepatoma cells in

a time- and dose-dependent manner. RES inhibits the

proliferation and migration of hepatoma cells by activating

p53 and inhibiting phosphoinositide 3-kinase/Akt-induced

autophagy. Combining RES with an autophagy inducer can

enhance its antitumor effects (Zhang B. et al., 2018). A study

showed that RES inhibited STAT3 signaling and tumor growth in

a subcutaneous model of Hepa1-6 liver cancer, reduced the

frequency of CD8+CD122+ Treg and M2-macrophages in the

lymph nodes and spleen of tumor-bearing mice, inhibited

CD8+CD122+ Treg CD8 in vitro differentiation of CD122−

T cells, down-regulated TGF-β1 and interleukin-10 levels in

tumors, increased the proportion of IFN-γ-CD8+ T cells in

tumors and peripheral blood lymphoid organs, and elevated

TNF-α and IFN-γ (Zhang Q. et al., 2020).

RES has shown a significant protective effect against alcohol-

aflatoxin B1-induced liver cancer. RES significantly reduced

GST-pi levels, increased glutathione S-transferase (GST) and

glutathione peroxidase (GPx) levels, and enhanced catalase in

an alcohol-aflatoxin B1-induced liver cancer rat model. It

decreased the levels of liver dysfunction biomarkers (SGPT

and SGOT), lipid peroxidation (LPO), and stimulated

SIRT1 to inhibit NF-κB, thereby increasing the sensitivity of

liver cancer cells to TNF-α-induced apoptosis (Rawat et al.,

2021). MSc et al. studied the role of RES and nicotinamide in

renal toxicity during alcohol-aflatoxin-B1-induced HCC. It was

found that RES treatment normalized urea, lipid peroxidation,

lactate, and lactate dehydrogenase levels in hepatocytes, and

downregulated elevated SIRT1 expression in hepatocellular

carcinoma kidney tissue (Rawat et al., 2020).

3.3.2 Curcumin
The yellow pigment curcumin is an active substance

extracted from turmeric. Curcumin (CUR) includes

demethoxycurcumin, double demethoxycurcumin and

cyclocurcumin. It has shown antioxidant, anti-inflammatory,

anti-cancer, anti-diabetic, hepatoprotective, and anti-allergic

properties (Dei Cas and Ghidoni, 2019). CUR is widely used

to treat a variety of diseases, including lung, cervical, prostate,

breast, bone, and liver cancer (Feng et al., 2017).

CUR can regulate the NF-κB pathway, reducing oxidative

stress, inflammation, and apoptosis to prevent liver injury (Li W.

et al., 2021). It can also activate the p38MAPK pathway,

promoting HepG2 cell apoptosis and inhibiting liver tumor

growth (He et al., 2021). Upon binding of heat shock protein

70 (HSP70) to Toll-like receptor 4 (TLR4), NF-κB is activated to

promote the transcription of inflammatory genes, including

cytokines, chemokines, and growth factors. Ren et al. used

CUR to treat thermal tolerance HepG2 cells (HepG2TT), and

found that CUR inhibited proliferation, metastasis, and invasion

of HepG2 cells. CUR significantly inhibited activation of the

HSP70-mediated TLR4 signaling pathway by reducing the

expression of HSP70 in HepG2TT cells. It inhibited the

expression of TLR4 in liver tumor cells, thereby inhibiting the

NF-κB pathway (Ren et al., 2018). CUR significantly inhibited IL-

6-induced expression of IL-6R, STAT3, snail, survivin, and cyclin
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D1 in HepG2 cells, and inhibited IL-6/STAT3 to reduce

inflammation and EMT. In vivo, CUR inhibited the IL-6/

STAT3 signaling pathway to control liver tumorigenesis and

size. CUR also inhibits HepG2 cell proliferation in vitro (Cao

et al., 2021). CUR reduced the expression of CXCR4 in PGCs

in vitro and in vivo, thus inhibiting hepatic metastasis of PGCs,

possibly by inhibiting stromal cell-derived factor-1/

CXCR4 signaling (Gu et al., 2019).

Phosphatase and tensin homologue deleted on chromosome

ten (PTEN) exerts tumor suppressor effects by inhibiting the

PI3K/AKT signaling pathway, while oncogene DJ-1 can

negatively regulate the expression of PTEN. CUR treatment

can significantly inhibit the proliferation of SMMC-7721 and

HepG2 hepatoma cells, increase the activity of caspase-3, and

inhibit the PTEN/PI3K/AKT signaling pathway by

downregulating the expression of DJ-1 (Han et al., 2020).

3.3.3 Rosmarinic acid
Rosmarinic acid (RA) significantly reduced the viability of

human HepG2 hepatoma cells in a dose-dependent manner,

induced apoptosis, activated caspases-3 and 9, and inhibited the

migration and invasion of hepatoma cells (Jin et al., 2020a). RA

can inhibit the expression of Fyn in HepG2 hepatoma cells, as

well as the proliferation, migration, and invasion of hepatoma

cells, and the expression of matrix metalloproteinase-2 (MMP-2)

and matrix metalloproteinase-9 (MMP-9) in a dose-dependent

manner. It increased the expression of cleaved caspase-3 and the

pro-apoptotic protein Bax, down-regulated the expression of the

apoptosis inhibitory protein Bcl-2 in a dose-dependent manner

and promoted the apoptosis of liver cancer cells, reducing the

expression levels of PI3K, p-Akt, and NF-κB proteins (An et al.,

2021).

EMT is a key regulator of tumor invasion and metastasis. RA

can inhibit invasion by the hepatoma cell line SMMC-7721 cells

by regulating EMT. It also promotes tumor cell apoptosis and

inhibits the activation of the P13K/AKT/mTOR signaling

pathway in vitro and in vivo (Wang L. et al., 2019).

3.3.4 Baicalin
Baicalin has shown different degrees of anticancer activity

against liver, gastric, non-small cell lung, cervical, and esophageal

cancer (Ji et al., 2021). Treatment with baicalin (25, 50 and

100 μM) can inhibit the migration and proliferation of

HepG2 cells in a dose-dependent manner. It can also down-

regulate PI3K/Akt/NF-κB signaling pathway-related proteins by

increasing the expression of PTEN, regulate EMT markers and

migration-related proteins, and regulate HepG2 cell migration by

upregulating E-cadherin and downregulating of CDH2, MMP-2,

and MMP-9 (Ha et al., 2021).

3.3.5 Quercetin
Quercetin inhibits liver inflammation mainly through NF-

κB/TLR/NLRP3. It also reduces oxidative stress mediated by

PI3K/nrf2, activates mTOR during autophagy, and inhibits the

expression of apoptotic factors related to the development of liver

disease. In addition, quercetin shows different mechanisms of

action at different stages of liver disease, including regulation of

PPAR, UCP, and plin2-related factors through brown fat

activation in hepatic steatosis. This compound inhibits

stromal ECM deposition during the fibrotic liver stage,

affecting TGF1β, ERs and apoptosis. In the late stage of liver

cancer, it can inhibit the proliferation and spread of cancer cells

by modulating the hTERT, MEK1/ERK1/2, Notch, and Wnt/β-
catenin related signaling pathways (Zhao et al., 2021).

3.3.6 Others
Tannins play important roles by regulating multiple

tumor signaling pathways, including the JAK/STAT, RAS/

RAF/mTOR, TGF-β1/TGF-β1R, VEGF/VEGFR and

CXCL12/CXCR4 axes. Tannins relieve liver cancer and

show antifibrotic and anticancer effects (A. Youness et al.,

2021). Erianin can reduce the proliferation, migration and

invasion of liver cancer cells; down-regulate invasion-related

proteins such as MMP-2, MMP-7, and MMP-9; promote cell

apoptosis; and inhibit Akt and ERK/P38 phosphorylation in

the PI3K/Akt and ERK/P38 pathways (Yang et al., 2020).

Lysionotin, a flavonoid compound found in Lysionotus

pauciflorus Maxim, can significantly reduce cell viability,

inhibit cell proliferation and migration, promote cell

apoptosis, increase the levels of intracellular ROS, reduce

mitochondrial membrane potential (MMP), and alter the

content of apoptosis-related proteins, inhibiting the growth

of HepG2 and SMMC-7721 tumors. It also shows significant

anti-HCC effects (Yang et al., 2021). Oleocanthal, a phenolic

compound found in olive oil, exerts its anti-hepatocellular

carcinoma effects by reducing the activities of JAK1 and

JAK2, increasing the activity of SHP-1, inhibiting the

activation of STAT3, and inhibiting EMT (Pei et al.,

2016). Honey contains polyphenols, such as chrysin,

isorhamnetin, myricetin, protocatechuic acid, etc., which

can protect against liver disease and hepatocellular

carcinoma by regulating NF-κB levels, oxidative stress,

inflammation, etc. (Talebi et al., 2020). Daphne flavone

has shown significant inhibitory effects against hepatoma

cells, and histone deacetylase 6 (HDAC6) has been identified

as a potential target of Daphne flavonoid (Chen et al., 2021).

3.4 Polypeptides

Polypeptides usually consist of 10–100 amino acids linked by

peptide bonds. They have relative molecular weights between

500 and 10,000, which fall in between that of small chemicals and

proteins. This lowmolecular weight can potentially allow them to

penetrate tissues. At present, several polypeptide drugs with anti-

liver cancer activity have been widely studied.
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3.4.1 Protease inhibitors
Protease inhibitors are polypeptide compounds showing

anti-tumor effects. Protease inhibitors play active roles in anti-

liver cancer therapies by regulating signaling pathways which

induce apoptosis and autophagy of liver cancer cells. They can

also inhibit the growth of liver cancer cells.

ONX0912 is a novel oral proteasome inhibitor.

ONX0912 can be used to treat liver cancer since it promotes

mitochondrial autophagy and apoptosis. ONX0912 can up-

regulate PINK1 and Parkin protein expression levels,

subsequently activating the Parkin/Pink pathway to induce

mitochondrial autophagy. In addition, ONX0912 also induces

collapse of the mitochondrial membrane potential and increases

mitochondrial ROS levels in tumor cells, triggering apoptosis

through the intrinsic mitochondrial pathway (Wu et al., 2021).

Unc-51 Like Autophagy Activating Kinase 1(ULK1) inhibitor

can inhibit autophagy in liver cancer cells. FoxM1 is associated

with proliferation, clone formation, drug resistance, anti-

apoptosis, cell cycle and senescence induction in hepatoma

cells (Hu et al., 2019). Studies have shown that the autophagy

protein ULK1 inhibitor attenuates the expression of FOXM1 and

its transcriptional targets, and also shows a synergistic effect

when combined with FOXM1 inhibitor to inhibit the growth of

HepG2 (Rajak et al., 2020).

3.4.2 Other polypeptides
Anticancer peptides (ACPs) are bioactive peptides extracted

from antibacterial peptides (AMPs) or natural resources, which

are widely found in many organisms, including mammals,

amphibians, insects, plants, and microorganisms. ACPs can

show anti-tumor effects through immunomodulation. Tumor-

associated antigens (TAAs) can be presented by antigen-

presenting cells to induce the activation of tumor-responsive

T lymphocytes. ACPs derived from TAA have shown

immunostimulant activity. They can be used to effectively

target tumor cells within an immunosuppressive

microenvironment, and play a significant role in enhancing

anti-HCC therapy (Zhang C. et al., 2019). SP94

(SFSIIHTPILPL) is a peptide isolated using phage-displayed

selection. Related studies have shown that pegylated

doxorubicin liposome (SP94-LD), formed by coupling the

SP94 peptide with non-targeted pegylated liposomal

doxorubicin (LD), can inhibit the growth of human

hepatocellular carcinoma xenografts without showing toxicity

against normal cells (Wu et al., 2018). NMTP-5 is a kind of

NRP1/MDM2-targeted d-peptide supramolecular

nanomedicine. Relevant studies have shown that MDM2 is a

negative regulator of p53. NMTP-5 can activate p53 signaling by

targeting NRP1 into the cytoplasm of cancer cells, and at the

same time interfere with MDM2-p53 interaction to up-regulate

p53 levels and activate the expression of target genes that mediate

cell cycle arrest and apoptosis in hepatocellular carcinoma (Zhou

et al., 2021).

Pigment epithelial-derived factor (PEDF) is an endogenous

angiogenesis inhibitor. A short and stable functional peptide,

P18, extracted from PEDF can enhance its stability to inhibit

angiogenesis more effectively. Relevant studies have shown that

the P18 peptide can target the phosphorylation of endothelial

growth factor receptor 2 (VEGFR2), modulate signaling

transduction between VEGF and VEGFR2 and suppress

activation of the PI3K/Akt cascade, leading to an increase in

mitochondrial-mediated apoptosis and anti-angiogenic activity

(Wang et al., 2017). The C7 peptide is a candidate peptide

composed of 7 amino acids, which has moderate affinity and

good specificity towards the mesenchymal-epithelial transition

(c-Met) on the surface of phages. C7 peptide can prevent

metastasis and invasion in liver cancer by inhibiting the Akt

and Erk1/2 signaling pathway, blocking the combination of HGF

and c-Met, and inhibiting HGF/c-Met and its downstream

signaling pathway (Zhao et al., 2019b).

3.5 Active bacteria/fungi

Currently, natural product extracts are the most promising

source of new anticancer drugs. Bacteria are the largest producers

of biologically active natural products and are of enormous

importance for drug discovery (El-Garawani et al., 2020).

Some crude extracts exhibit selective anticancer activity

against specific tumor cell lines, while having no effect on

non-tumor cell lines. Studies have shown that strains

exhibiting cytotoxic activity (Micromonas, Streptomyces,

Actinomycetes, etc.) are known producers of anticancer

compounds. Related studies have shown that the

Protobacterium luteum MOSEL-ME10a, found in the ocean,

shows a significant inhibitory effect against HepG2 cells

(Tanveer et al., 2021). Actinomycete species extracted from

marine sediments have also been described to produce

metabolites with potent anticancer activity, such as ZHD-

0501, a species that has been shown to inhibit the

proliferation of human liver cancer and leukemia cells (Aly

et al., 2021). Lobophorin C and Lobophorin D were isolated

from the fermentation broth of the symbiotic actinomycete

Streptomyces carnosus strain AZS 17, associated with the

sponge Hymeniacidon sp. in the coastal waters of the East

China Sea, and from sediment samples from the Cantabrian

Sea (at a depth of 2000 m by Sarmiento-Vizcaíno et al.). In

addition, paulomycin G produced by the marine strain

matsumotoense m-412, exhibited cytotoxicity against human

hepatoma HepG2 cells (Bittner et al., 2021).

When HepG2 cells were treated with the ocean-dwelling

Halomonas sp. (GWS-BW-H8hM strain), it was also found that it

exerted anticancer effects by inhibiting apoptosis initiation and

cell cycle progression. Studies showed that the Bax/BCL-2 ratio,

based on mRNA expression, was significantly increased, and that

caspase-3 and p53 were up-regulated after H. HA1 bacterial
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extract was applied to HepG2 cells. It is known that Bax is up-

regulated, whereas BCL-2 protein expression is down-regulated,

by p53 protein (El-Garawani et al., 2020). p53 is a nuclear

transcription factor that is normally activated during

apoptosis and which regulates a number of downstream

effectors (Kanapathipillai, 2018). Apoptosis can be induced in

a transcription-independent manner through mitochondrial

localization of p53 or by inducing endoplasmic reticulum

stress to prevent p53-dependent apoptosis through the

glycogen synthase kinase 3β pathway (D’Arcy, 2019).

Expression profiling of H. HA1 extracts indicated a p53-

dependent mitochondrial apoptotic pathway. Halomonas sp.

was shown to exert an antiproliferative effect on HepG2 cells

(El-Garawani et al., 2020).

Eighteen species of actinomycetes were isolated from three

species of Erylus sponges collected from the seas of Portugal,

namely E. discophorus (Berg01 and Berg02), E. deficiens (#91)

and E. mamillaris (SM). Experiments by Ren et al. showed that

extracts (195 μL) from strains Berg02-79 (medium: IN - CRY),

Berg02-22.2 (IN - CRY) and #91_40 (IN - CRY) had some

inhibitory effect on HepG2 cells. In 2019, Santos et al. tested

12 Firmicutes and 44 Proteobacteria isolated from Erylus

spp. sponges obtained from Portuguese waters. Growth media

and extraction methods were like those used with Actinobacteria.

The extracts from Proteus mirabilis #118_13, (IN - CRY),

Pseudovibrio sp. Berg02_9.1 (IN - CRY) and Psychrobacter

celer #118_17 (IN - CRY) (5 μL in 195 μL medium) showed

the strongest growth inhibitory effect against HepG2 hepatoma

cells (Santos et al., 2020). In addition, in the medium-scale

fermentation culture screening performed in the EPA vial,

5 μL of Mirabilis (Proteus mirabilis #118_13 (IN-CRY),

Paenibacillus sp. #91_7 (IN-CRY) and Pseudovibrio sp.

Berg02_10) inhibited or were lethal for HepG2 cells (Ren X.

et al., 2021).

Spectinabilin(1), a Spectinabilin derivative(2) and a novel

analog, 2-desmethyl-Spectinabilin(3), were isolated from a

Streptomyces spectabilis fermentation broth. Studies have

shown that Spectinabilin (1) exerts anti-tumor effects against

SMMC7721 and HepG2 cells by down-regulating the PI3K/

AKT signaling pathway, which is involved in a series of

processes such as cell proliferation, tumorigenesis, and

development. Further studies have demonstrated that

Spectinabilin(1) increases p21 protein levels (a cyclin-

dependent kinase inhibitor located downstream of the

p53 gene) by reducing cyclin B1 and cdc2 protein levels,

triggering G2/M cell cycle in SMMC7721 human hepatoma

and HepG2 cells. Spectinabilin (1) induces apoptosis of

SMMC7721 and HepG2 cells by down-regulating Bcl-2

protein expression, up-regulating Bax protein expression, and

activating the cleavage of caspase-9 and caspase-3 (Gao X. et al.,

2019).

Lactic acid bacteria, including Bifidobacteria, are

chemopreventive against colon, bladder, liver, breast, and

stomach cancers (Riaz Rajoka et al., 2017). Biotransformation

is one of the mechanisms by which Bifidobacteria exert their

antitumor effects. Essentially, the biotransformation function is

accomplished by converting compounds into usable energy

through biological processes. Many Bifidobacteria may be

involved in the production of enterolactone, which has

antitumor effects. Bifidobacteria also exhibit antitumor effects

by altering the expression of cancer-related genes and cytokines

(Wei et al., 2018).

4 Discussion

As one of the common causes of cancer-related death in

the world, liver cancer not only seriously threatens human

health, but also brings a huge economic and public health

burden to the world (Lv et al., 2020). At present, the treatment

of cancer is still mainly surgery, combined with adjuvant

therapy such as chemotherapy, radiotherapy, drug-targeted

therapy, and immunotherapy. However, surgical resection or

liver transplantation also has certain limitations. The low

resection rate and high recurrence rate are constraints for

liver cancer surgery. For most patients with liver cancer,

especially in the advanced stage, non-surgical treatment is

still an important treatment method, but it usually brings

serious complications to the patients (Dika and Abou-Alfa.,

2017). Therefore, exploring a therapeutic approach with

curative effect on liver cancer and low side effects has

become a new direction for cancer treatment in the future.

In this review, we mainly summarize the common

pathogenesis of liver cancer (metabolic fatty liver, virus and

alcohol) and the role of bioactive substances such as

polysaccharides, alkaloids, phenols, polypeptides and active

bacteria/fungi in the treatment mechanism of liver cancer. We

aim to combine pathogenic and therapeutic mechanisms to

provide a certain convenient way for scholars who are

studying this aspect, and at the same time expect to

propose reliable scientific evidence and more possibilities

on the targets and signaling pathways of liver cancer

treatment.

At the same time, we also found that there are still some

issues that need to be solved in the treatment of liver cancer:

1) Liver cancer has an insidious onset. It lacks typical symptoms

in the early stage, and most patients have developed to the

middle and late stages when clinical symptoms appear, thus

losing the optimal timing of treatment and other difficult-to-

control characteristics. How to improve the precision of liver

cancer screening should also become the focus of research

(Hartke et al., 2017).

2) Tumor metastasis is one of the main causes of death in most

cancer patients, and inhibiting metastasis makes it possible to

prolong the survival time of cancer patients and even cure
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cancer (Fan et al., 2017). However, the treatment of cancer

metastases is not only related to the secondary tumor, but also

to the characteristics of the primary tumor itself and the

effectiveness of its available targets (Liu et al., 2022).

Therefore, looking for targets related to liver cancer and

primary tumor metastasis, understanding the mechanism

of action of these markers or signaling pathways, and

developing targeted drugs, will open up a new situation for

the treatment of liver cancer.

3) The treatment of liver cancer needs to cover multiple targets

and formulate an overall treatment strategy. Some of the

reported new therapeutic targets have not yet been truly

validated and transformed in clinical practice. For example,

researches on the tumor immune microenvironment and

immunosuppressive therapy of liver cancer still require a

lot of preclinical studies (Oura et al., 2021). We believe that in

future research, we can not only try to discover new

therapeutic pathways, but also try to combine multiple

therapeutic pathways to analyze the mechanism of action

of bioactive substances in the treatment of liver cancer.

4) In addition, whether various active ingredients with different

regulatory effects can play a common role to form an anti-

hepatocellular carcinoma interaction network from various

aspects such as apoptosis, cycle operation, invasion and

metastasis. In the future, it is necessary to further explore

the specific targets of active ingredients. Through network

pharmacology, genomics, metabolomics and other methods

to sort out relevant targets, find the possibility of a variety of

active ingredients working together to fight cancer in an all-

round way, and provide a more powerful reference for the

development of more scientific and effective anti-cancer

drugs (Ruan et al., 2022).

5) More toxicity and dose studies are needed for biologically

active substances. At present, most studies focus on exploring

the therapeutic mechanism of bioactive substances on liver

cancer, and studies on the toxicity and related doses of

bioactive substances still need to be supplemented to

support further clinical research.

6) Novel drug delivery systems such as lipid nanoparticles are

promising and efficiently tailored drug delivery systems in liver

cancer therapy, which can provide a new avenue for highly

specific and efficient liver cancer therapy (Alanazi et al., 2020).

For example, Zhang et al. designed a preparation of

doxorubicin (DOX) targeted for the treatment of liver

cancer, using ASP as a hydrophilic group and deoxycholic

acid (DOCA) as a hydrophobic group to form an amphiphilic

conjugate (ASP-DOCA), and prepared DOX-loaded

chemotherapeutic drug nanoparticles (DOX/ASP-DOCA

NPs). In addition to showing higher affinity for the

asialoglycoprotein receptor (ASGPR) when compared with

free DOX, ASP exerted more significant inhibition of tumor

cell proliferation, while reducing the side effects of free DOX

(Zhang Y. et al., 2019). At the same time, the combination with

the existing hepatocellular carcinoma chemotherapy drugs is

also a new direction for future research. Combination therapy

with Cur and sorafenib was found to reduce cyclin A, B2 and

D1 protein levels, phosphorylated retinoblastoma and B-cell

lymphoma (Bcl) super large protein. Sorafenib, Cur or

kaempferol (KMF) combination therapy can cause S-phase

and G2/M-phase arrest of hepatoma cells and significantly

induce apoptosis (Bahman et al., 2018). Furthermore, artificial

synthesis is another method to improve the effectiveness of

active substances against liver cancer. Peng Zhu et al. designed

and synthesized 14 novel phenylallyl cyclohexanone analogs

based on piperine. The results showed that the newly

synthesized compound 9M could inhibit thioredoxin

reductase (TrxR) activity, increase ROS levels, reduce the

mitochondrial transmembrane potential (MTP) by

regulating autophagy-related proteins Lc3, p62 and Beclin-1,

and induce autophagy in Bel7402/5-FU hepatoma cells (Zhu

et al., 2020). In future research, more attention should be paid

to the fields of bioavailability, pharmacokinetics and

pharmacodynamics of biologically active substances, based

on the preparation of novel drug delivery systems for use in

combination with existing chemotherapeutic drugs for

hepatocellular carcinoma, and artificial synthesis of new

substances. Explore how more bioactive substances can be

used as effective anticancer drugs, bridging the gap between

preclinical research and clinical research (Rodriguez et al.,

2021).

7) As mentioned earlier, underlying liver diseases (such as

hepatitis virus infection, alcohol abuse, or nonalcoholic

fatty liver disease) occur in the majority of HCC patients,

which means that most HCC cases occur in the context of

chronic inflammation. Therefore, linking liver immunology

and tumor therapy, and finding the connection and effective

targets between the two will help provide opportunities for

designing personalized combined immunotherapy for

advanced HCC patients (Lindblad et al., 2021).
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