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Locus coeruleus (LC) noradrenergic (NE) neurons supply the main adrenergic

input to the forebrain. NE is a dual modulator of cognition and

neuroinflammation. NE neurons of the LC are particularly vulnerable to

degeneration both with normal aging and in neurodegenerative disorders.

Consequences of this vulnerability can be observed in both cognitive

impairment and dysregulation of neuroinflammation. LC NE neurons are

pacemaker neurons that are active during waking and arousal and are

responsive to stressors in the environment. Chronic overactivation is thought

to be a major contributor to the vulnerability of these neurons. Here we review

what is known about the mechanisms underlying this neuronal vulnerability and

combinations of environmental and genetic factors that contribute to confer

risk to these important brainstem neuromodulatory and immunomodulatory

neurons. Finally, we discuss proposed and potential interventions that may

reduce the overall risk for LC NE neuronal degeneration.
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1 Introduction

Neurons of the locus coeruleus (LC) are the primary source of forebrain norepinephrine

(NE). LC NE neurons are activated with waking and have a wide range of firing rates during

various behavioral states related to attention, novelty, arousal, and in response to stressors,

and their function is essential for adaptation, survival, and multiple aspects of cognitive

function (Borodovitsyna et al., 2022; Chandler et al., 2019; Poe et al., 2020; Sara, 2009). The

NE system is also essential for the regulation of neuroinflammation (Galea et al., 2003;

Heneka et al., 2010; Feinstein et al., 2016; Weinshenker, 2018; Evans et al., 2020). Due to

putative mechanisms that we will review here, LC NE neurons are one of the first sites of

pathology in the aging brain and are highly susceptible to degeneration (Braak andDel, 2011;
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Mather and Harley, 2016; Kelly et al., 2017; Weinshenker, 2018).

Given the role of theNE system inmodulating neuroinflammation,

it has been proposed that degeneration of the LC could be a

common underlying etiological factor in progressive

neuroinflammation observed widely in association with

neurodegenerative disorders. An early loss of NE neurons and

NE tone may contribute to and accelerate the deterioration of

cognitive function and an exacerbation of neuroinflammation,

contributing to the worsening of both symptoms and pathology

in neurodegenerative disorders. This has opened the possibility

that “selective neuronal vulnerability and degeneration” of the LC

neurons may be an initiation point for the cascade of pathological

events leading to a more widespread pathology and neuronal cell

death in the aging and diseased brain (Mather and Harley, 2016).

Why do LC neurons display this selective early-onset neuronal

vulnerability? What factors determine the aberrant signaling

leading to the initiation, temporal profile, and extent of this

selective neuronal cell loss? Many possible scenarios have been

suggested (see Figure 1), including chronic highmetabolic demand,

sensitivity to systemic inflammation, viral infection, or toxins in the

environment, the persistent activity of oxidizing enzymes such as

monoamine oxidase, mitochondrial dysfunction, oxidative and

nitrosative stress, and cellular stress in response to misfolded

proteins (Kang et al., 2020; Kang et al., 2022) (Zhang et al.,

2014a; Wang et al., 2020). Here we review environmental and

genetic factors contributing to the vulnerability of the LC and

discuss common mechanisms and possible therapeutic

interventions to attenuate this vulnerability. The aim of this

mini-review is to increase awareness of the multiple risk factors

that contribute to the vulnerability of the LC, to identify some

common mechanisms of vulnerability, and to initiate further

investigation into potential therapeutic interventions and

approaches.

The LC is essential for cognition, attention,
arousal, salience, stress adaptation, and
modulation of neuroimmune function.

The LC NE system regulates diverse aspects of cognitive

function, including arousal, attention, salience, learning and

memory, and pain and stress responses; this role in cognitive

function has been reviewed extensively (Aston-Jones et al., 2000;

Valentino and Van Bockstaele, 2008; Sara, 2009; Roozendaal and

McGaugh, 2011; Poe et al., 2020) (Rohampour et al., 2017; Farahani

et al., 2021). The LC is a small nucleus comprising between

FIGURE 1
Genetic and environmental risk factors converge to confer vulnerability to locus coeruleus (LC) noradrenergic (NE) neurons. Proximate
mechanisms of vulnerability that have been suggested to contribute to LC NE degeneration include actions of reactive oxygen and nitrogen species
(ROS/RNS), response to misfolded proteins, neuroinflammatory mechanisms, metabolic imbalance and mitochondrial dysfunction due to high
baseline rates of neuronal activity.
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30,000 and 60,000 neurons in the human brain (German et al.,

1988), and it has long been considered a homogeneous and broadly

projecting nucleus with diffuse ascending and descending

projections. Historically, functional specificity within the NE

system has mainly been attributed to differences in excitatory

and inhibitory postsynaptic receptor subtypes, receptor

distribution patterns, and patterns of neuronal firing rates.

However, anatomical subdivisions within the LC and the

existence of some functional subsets of NE neurons with specific

projection patterns have been described. For example, hippocampal

projecting LC NE neurons were shown to be located in the dorsal

core of the LC (Mason and Fibiger, 1979). Our understanding of LC

function has further evolved in the last 10 years, in particular, as it

relates to connectivity to other brain regions and tonic and phasic

regulation of neuronal circuits, (Chandler et al., 2019; Poe et al.,

2020). Recent investigation has demonstrated a robust functional

specificity within subtypes of LC NE neurons. (Chandler et al.,

2019). There is a functional topography with subpopulations of

neurons receiving distinct inputs and having precise projections

related to specific functions (Borodovitsyna et al., 2020). The

concept of heterogeneity of the LC NE system complements

nicely emerging evidence from other monoaminergic brainstem

neuromodulatory systems, such as dopaminergic (Lammel et al.,

2012; Beier et al., 2015; Watabe-Uchida and Uchida, 2018) and

serotonergic (Lowry et al., 2007; Lowry et al., 2008; Hale and Lowry,

2011) systems. This functional heterogeneity within the LC may

confer vulnerability to different subsets of LC NE neurons, which

supports evidence for heterogeneity of vulnerability of LC neurons

to degeneration in Alzheimer’s disease (AD) (German et al., 1992).

Given this heterogeneity within the LC, it becomes less useful to talk

about LC activation versus, for example, activation of hippocampal

or prefrontal cortical projecting LC neurons as functionally defined

collections of related neurons. The significance of this is illustrated in

studies demonstrating that following bout of stress, LC NE neurons

innervating the central nucleus of the amygdala become hyperactive

and hyperexcitable. In contrast, those projecting to the prefrontal

cortex have suppressed activity and excitability (Chandler et al.,

2019). In this case, “activation of the LC” depends on which

subpopulation of LC NE neurons is engaged in the specific task.

This is especially relevant in the context of vulnerability of LC

neurons in relation to chronic activation states.

Recent advances in optogenetic and chemogenetic

techniques have enabled precise targeting of NE neuronal

firing rates and have advanced our understanding of LC

function. Chemogenetic selective activation of the LC has

been shown to alter anxiety behavior and to induce large scale

functional changes in neural connectivity associated with

changes in pupil dilation (Zerbi et al., 2019). In a transgenic

rat model (TgF344-AD) in which rats express mutant amyloid

precursor protein and presenilin-1, rats show early

hyperphosphorylation of tau in the LC, loss of hippocampal

and cortical NE fibers, impaired reversal learning in the Morris

Water Maze, and behavioral deficits were reversed with

chemogenetic activation of the LC (Rorabaugh et al., 2017). In

a Ts65Dn mouse model of down syndrome, in which LC NE

neurons have been shown to degenerate, chemogenetic activation

of LC NE neurons reversed deficits in novel object recognition

(Fortress et al., 2015), while chemogenetic inhibition of LC NE

neurons resulted in impaired novel object recognition and

reversal learning and a potentiation of hippocampal microglia

activation (Hamlett et al., 2020).

The NE system is also an important endogenous modulator of

neuroinflammation and is involved in the recruitment of peripheral

immune cells to the brain (Elenkov et al., 2000; Feinstein et al., 2002;

Galea et al., 2003; Heneka et al., 2010;Madrigal et al., 2010; Hinojosa

et al., 2011; Gyoneva and Traynelis, 2013). The anti-inflammatory

effects of NE have been attributed mainly to the activation of beta-

adrenergic receptors (ADRB1 and ADRB2) andmodulation of both

microglia and astrocyte function. Both ADRB1 and

ADRB2 adrenergic receptors are expressed in microglia and

astrocytes, although ADRB2 receptors are more highly expressed

in both cell types (Zhang et al., 2014b). NE and beta-adrenergic

agonists, via agonism of beta-adrenergic receptors, reduce the

expression of proinflammatory cytokines in the brain (Feinstein

et al., 2002; Zapater et al., 2012; Weber et al., 2015; Ardestani et al.,

2017; Evans et al., 2020). An ADRB2 agonist, salmeterol, inhibits

inflammasome activation and induction of tumor necrosis factor

alpha (TNFa) and interleukin 1-beta (IL1b) in a lipopolysaccharide

model of systemic inflammation (Song et al., 2018a). Another beta-

adrenergic agonist, mabuterol, potentiates IL10 and attenuates

macrophage inflammatory protein 1-alpha (MIP1a) in a

lipopolysaccharide model of inflammation. Conversely, the beta-

adrenergic antagonist propanol attenuates IL10 and potentiates

MIP1a, demonstrating the bidirectional effects of noradrenergic

pharmacology on the regulation of neuroimmune homeostasis in

the brain (Evans et al., 2020). Given this role in the modulation of

inflammation, degeneration of LC NE neurons and loss of

adrenergic tone may result in dysregulation of neuroimmune

homeostasis and potentiation of pathological neuroinflammation

in neurodegenerative disorders (Feinstein et al., 2016) and may

potentiate both inflammation and neuronal loss in

neurodegenerative disorders such as Parkinson’s disease (PD)

and AD (Weinshenker, 2008; Heneka et al., 2010; Weinshenker,

2018). Furthermore, the clinical use of beta-blockers for

hypertension can further dysregulate the neuroimmune

homeostasis in the vulnerable aging population and initiate a

cascade of events leading to cognitive decline.

2 Pathophysiology of the LC in aging
and neurodegenerative
disorders – environmental and
genetic contributions to vulnerability

Loss of LC NE neurons occurs with normal aging and is

accelerated in neurodegenerative disorders such as AD and PD,
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suggesting these neurons are fundamentally vulnerable to

degeneration (Braak and Del, 2011; Kelly et al., 2017; Liu

et al., 2019). The LC is one of the first brain regions to

develop tau pathology in AD (Braak and Del, 2011) and to

show significant early signs of neurodegeneration (German et al.,

1992). Early-onset LC degeneration has been reported in patients

with mild cognitive impairment before the full-blown

manifestation of AD symptoms (Kelly et al., 2017). It has

been suggested that degeneration of the LC and the extended

LC network may actually precede and be a risk factor for more

widespread degeneration in AD patients (Ross et al., 2015;

Mather and Harley, 2016; Weinshenker, 2018; Jacobs et al.,

2021). Under experimental conditions, loss of NE tone

resulting from pharmacological antagonism or lesion of LC

NE neurons exacerbates the behavioral deficits,

neuroinflammation, and pathology observed in animal models

of AD (Heneka et al., 2006; Kalinin et al., 2007; Heneka et al.,

2010; Evans et al., 2020). In humans, pathology in the LC also

precedes more widespread pathological cell death in

neurodegenerative disorders such as AD and PD (Braak and

Del, 2011; Betts et al., 2019). In an experimental model of AD,

transfection of rat LC neurons with the gene for human mutant

tau leads to spreading of pathological tau and behavioral changes

related to odor discrimination learning in rats (Ghosh et al.,

2019). Consequences of age-related degeneration of the LC NE

system may be further exacerbated by the clinical use of brain-

permeable beta-adrenergic antagonists, commonly prescribed

beta-blockers for controlling hypertension and anxiety, which

have been shown to impair cognitive function and potentiate

inflammation (Gliebus and Lippa, 2007; Paran et al., 2010; Evans

et al., 2020). Epidemiological studies have identified beta-blocker

use as a risk factor for chronic neurodegenerative disorders such

as PD and AD (Mittal et al., 2017; Cepeda et al., 2019).

Degeneration of the LC can be readily observed and

quantified using imaging techniques such as structural MRI,

but can also be detected early through more indirect

measurement of physiological responses known to be

controlled by the LC, such as pupillary dilation reflex, as well

as in more complex indicators such as attention, and arousal

(Marien et al., 2004; Grudzien et al., 2007; Jacobs et al., 2021;

Mather and Harley, 2016;Weinshenker, 2018; Liu et al., 2019; Liu

et al., 2020; Matchett et al., 2021). Notably, altered adrenergic

signaling with an impact on cognitive function may precede the

loss of noradrenergic neurons as the LC becomes dysregulated

prior to degeneration (Goodman et al., 2021). This dysregulation

may contribute to and precede degeneration as hyperactivity can

lead to vulnerability factors such as metabolic and oxidative

stress. Why is the LC so susceptible to dysregulation and

degeneration? Both environmental and genetic factors may

contribute to this vulnerability of LC NE neurons.

Environmental risk factors for the development of AD

coincide with factors that have been implicated in LC

vulnerability, such as chronic stress, poor sleep hygiene, diet,

and chronic inflammation (Bredesen, 2015; Ross et al., 2018;

Zamore and Veasey, 2022). In terms of biological risk factors,

functional studies have identified AD risk-related genes (e.g.,

TREM2, CD33) linked to the neuroimmune system (Griciuc and

Tanzi, 2021) and proteomic changes implicating an altered

metabolome (Johnson et al., 2022).

It is important to note that degeneration within the LC is not

uniform (German et al., 1992), and biological features of subsets

of neurons may contribute to differential vulnerability.

Functional subsets of NE neurons, as defined by efferent

projections, share morphological features, suggesting

fundamental differences in subpopulations of LC NE neurons

within the nucleus. New developments in targeting and

identifying subpopulations of NE neurons in the LC using

genetic, developmental, anatomical, and neurophysiological

evidence have further characterized functional subsets of LC

neurons with targeted projection sites and involved in specific

cognitive functions (Totah et al., 2018; Chandler et al., 2019).

Characterizing features of these neuronal subpopulations may

help elucidate new mechanisms contributing to LC vulnerability.

2.1 Environmental contributors to
vulnerability of LC
neurons – Inflammation, sleep, diet, stress

Environmental factors that have been shown to impact LC

vulnerability include systemic inflammation (Song et al.,

2018b; Wang et al., 2020), viral infection, sleep (Zhang

et al., 2014a; Zhu et al., 2015; Zamore and Veasey, 2022),

diet (Chou et al., 2022) and stress (Ross et al., 2015) (see

Figure 1). Many of these environmental factors have been

modeled in rodents, enabling mechanistic studies of

neurodegeneration and, specifically, LC degeneration.

Underlying mechanistic factors contributing to neuronal

vulnerability across these models include both oxidative

and nitrosative stress, as discussed below.

2.1.1 Systemic inflammation
Systemic inflammation can lead to neuroinflammation

(Barrientos et al., 2005; Perry, 2010; Perry and Holmes, 2014)

and presents a risk factor for the degeneration of LC NE neurons.

Systemic inflammation induced by lipopolysaccharide in animal

models has been shown to lead to progressive neurodegeneration

with loss of neurons first seen in the locus coeruleus.

Neuroinflammation and LC degeneration in this model were

reduced in mice with the NADPH oxidase-2 (NOX2) gene

deletion or mice treated with a NOX2 inhibitor, implicating

NOX2 and production of reactive oxygen and nitrogen species in

LC degeneration induced by systemic inflammation (Wang et al.,

2020). Systemic inflammation in the presence of primed

microglia in the context of aging or chronic

neurodegenerative disease triggers a cascade of inflammatory
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signaling in the brain involving IL1b, neutrophil infiltration, and

inducible nitric oxide synthase expression and is associated with

increased neuronal death (Barrientos et al., 2005; Cunningham

et al., 2005; Cunningham et al., 2009). In patients with

Alzheimer’s disease, bouts of systemic inflammation and

concentrations of circulating plasma TNFa is predictive of

rates of cognitive decline (Holmes et al., 2009). We have

observed that a subpopulation of LC NE neurons that are

activated in response to systemic inflammation, labeled and

chronically tracked with the FosTrap technique, are more

susceptible to degeneration over time relative to those LC

neurons not activated by systemic inflammation.

2.1.2 Viral infection
Viruses are capable of triggering inflammatory processes

in the CNS by direct infiltration or by systemic activation of

the immune system (Dahm et al., 2016; Agner and Klein, 2018;

Xie et al., 2021). Neurological symptoms of viral infection may

include fever, vomiting, chronic fatigue, impaired

consciousness, and cognitive deficits (Wasay et al., 2008;

Bathoorn et al., 2011; Chen et al., 2021; Wouk et al., 2021).

While the acute immune response can be beneficial in

promoting CNS repair and slowing down viral replication,

chronic and/or irreversible complications that may persist

long after viral clearance could be detrimental to brain

function (Berth et al., 2009; Amor et al., 2014; Walker,

2018). The LC appears to be particularly vulnerable to

toxins and infections, possibly due to extensive innervation

of CNS vasculature and close proximity to the fourth ventricle,

exposing it to potential pathogens in circulating blood and

cerebrospinal fluid (Pamphlett, 2014; Mather and Harley,

2016). Although the causal link between viral infections

and neurodegeneration is undetermined, many studies have

investigated the association between the two factors and

provided hypotheses describing how different viruses may

impact neurodegeneration. For instance, herpes simplex virus

1 (HSV-1), which is widely implicated in neurodegenerative

disorders (Itzhaki, 2014; Harris and Harris, 2015; Tzeng et al.,

2018), can enter a dormant state in the trigeminal ganglion,

which projects to the LC (Baringer and Swoveland, 1973).

When reactivated, it has been hypothesized that HSV-1 may

spread to the LC (Mather and Harley, 2016), where it can

induce Aβ accumulation which can contribute to

neurodegeneration (Santana et al., 2012; Gupta and Goyal,

2016). The H5N1 influenza virus has also been implicated in

neurodegenerative disease. H5N1 infection in a mouse model

induced parkinsonian-like symptoms and activated microglia.

Alpha-synuclein aggregation, a hallmark of

neurodegenerative disorders, was also induced and

persisted after the infection was resolved. Behavioral

impairments and brain dysfunction have been reported

with infection by Severe Acute Respiratory Syndrome

Coronavirus 2 (SARS-CoV-2) (Niazkar et al., 2020), the

virus that causes COVID-19, with some patients

experiencing post-COVID symptoms that may last for

years. Symptoms may be related to elevated

proinflammatory cytokines, prolonged neuroinflammation,

and potentially hypoxia (de Erausquin et al., 2021). The

direct viral infection of the brain has also been proposed as

a cause for these symptoms, as SARS-CoV-2 viral proteins

were detected in the brain tissue of patients who died from

COVID-19 (Matschke et al., 2020). It has been suggested that

increased COVID-19 susceptibility and severity could

increase the risk for neurodegenerative disorders (Li et al.,

2022). While further investigations are required to clarify a

causal link, these collective findings demonstrate the

importance of understanding the neurodegenerative

sequelae of viral infections.

2.1.3 Sleep
Sleep deprivation or poor sleep hygiene (e.g., frequent

waking, apnea) is a risk factor for Alzheimer’s disease (Ross

et al., 2015; Bredesen et al., 2016; Feinstein et al., 2016) and in

animal models has been shown to be causally linked to

degeneration of LC NE neurons (Zhu et al., 2016). LC NE

neurons are most active during wakefulness, with enhanced

activity during times of novelty and unpredictability, and are

quiet during sleep. LC NE neurons are vulnerable to

neurodegeneration following prolonged wakefulness

(Zamore and Veasey, 2022). Increased metabolic demand

from short bouts of sleep deprivation (i.e., NE neurons

remaining active for extended periods of wakefulness) is

accompanied by a neuroprotective upregulation of

mitochondrial sirtuin 3 (SirT3) signaling (Zhang et al.,

2014a). SirT3 has been proposed to have many

neuroprotective functions, such as deacetylation of

mitochondrial ETC proteins and upregulation of molecules

such as glutathione dehydrogenase and activation of isocitrate

dehydrogenase, both of which increase levels of reduced

glutathione, serving as an important antioxidant. It has

been proposed that the extended periods of increased

wakefulness and chronic activation of LC NE neurons may

also lead to prolonging monoamine production in LC, leading

to oxidative stress and shutting off the transient

neuroprotective upregulation of mitochondrial

SirT3 signaling (Zhang et al., 2014a). Other mechanisms

linking extended wakefulness with neuronal vulnerability

include NOS activation, mitochondrial stress, and

activation of cleaved caspase-3 (Zhang et al., 2014a).

2.1.4 Diet
Insulin resistance and neuroinflammation resulting from a

high-fat, high-carbohydrate, Western-style diet have both been

identified as risk factors for the development of Alzheimer’s

disease (Liu et al., 2011; Bredesen, 2015). Postmortem brain from

patients with AD show deficits in the insulin–PI3K–AKT
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signaling pathway, which could contribute to tau

hyperphosphorylation in the LC through activation of

glycogen synthase kinase-3β (Liu et al., 2011). Rats sustained

on a high-fat carbohydrate-rich diet for 30 weeks show loss of NE

neurons in the LC and the substantia nigra (as measured by

tyrosine hydroxylase-positive neurons). This cell loss is

associated with a deficit in astrocytes (Chou et al., 2022).

Astrocytes contribute to a neuroprotective environment by

preventing nitrosative damage, as discussed below (Madrigal

et al., 2007; Madrigal et al., 2017).

2.1.5 Stress
Stress and elevated glucocorticoid levels engage LC NE

neurons (Curtis et al., 2002; Valentino and Van Bockstaele,

2008) and may cause long-term aberrant signaling changes

leading to neuronal vulnerability (Ross et al., 2015;

Borodovitsyna et al., 2018). Chronic social stress increases

mu opioid receptor expression in the LC and results in chronic

suppression of LC activity that resembles opiate dependence,

an effect that endures long after the stress has ended (Chaijale

et al., 2013). In light of recent work identifying differential

effects of stress on subpopulations of LC NE neurons, this

opioid-dependent suppression of LC activity could be within a

subpopulation of functionally relevant NE neurons, but this

remains to be seen (Borodovitsyna et al., 2020). These changes

in response to increased endogenous opioid tone have been

linked to corticotrophin-releasing hormone signaling from

the amygdala. Social stress also upregulates proinflammatory

gene expression in the LC, including IL1β (Wood et al., 2015).

Stress increases nitric oxide synthesis in the brain, which may

lead to degeneration (Madrigal et al., 2006). In experimental

rodent models of stress, chronic unpredictable mild stress

results in the generation of reactive oxygen species in the brain

coupled with neuroinflammation. The effects of stress on

neuroinflammation can be exacerbated in transgenic mice

in which the mitochondrial uncoupling protein 2 (UCP2)

has been knocked out, as reviewed by (Anderson and Maes,

2014). In humans, psychological stress is associated with

increased markers of oxidative stress in students (Sivonova

et al., 2004).

2.2 Genetic contributors to vulnerability of
LC neurons

GenomeWide Association Studies and large-scale proteomic

analyses have identified genetic risk factors and biological

pathways related to susceptibility to developing AD, several of

which may contribute directly to neuronal vulnerability (Zhang

et al., 2013; Griciuc and Tanzi, 2021; Johnson et al., 2022).

Proteomic analyses have identified biological pathways

underlying AD risks, such as cellular metabolism and

mitochondrial oxidative stress, as a clear source of

vulnerability for the development of AD (Johnson et al.,

2022). Genes and proteins that have been identified include

Triggering receptors expressed on myeloid cells 2 (TREM2),

sialic acid binding Ig-like lectin 3 (Siglec-3; CD33),

apolipoprotein E version 4 (APOE4), and mitogen-activated

protein kinase (MAPK) signaling (Johnson et al., 2022). Other

proteins such as glutamate pyruvate transaminase 2 (GPT2), a

metabolic enzyme related to cellular metabolism and the Krebs

cycle, implicate mitochondrial metabolism in LC NE neuronal

health as KO of gpt2 in mice results in LC degeneration and are

also linked to a neurological developmental disorder in children

(Baytas et al., 2022). CD33 mutation impairs phagocytosis of

beta-amyloid by microglia (Griciuc et al., 2013; Griciuc et al.,

2020). In a newly developed mouse model of genetic risk for

sporadic or late-onset Alzheimer’s disease (LOAD mice)

transgenic mice express humanized APOE4 and TREM2

(Oblak et al., 2021; Oblak et al., 2022) alongside a humanized

beta-amyloid precursor protein. This is an important

advancement in modeling disease mechanisms in the

laboratory as, up until this point, transgenic models have

focused mainly on genes related to early onset AD, such as

APP and presenilin mutations, which represent only a small

fraction of human AD patients. Broadening these models to

include genetic risk factors for sporadic or late-onset AD may

lead to more scaleable results. Studies combining environmental

risk factors with LOAD genetic susceptibility mark a new path

forward (Kotredes et al., 2021; Oblak et al., 2022).

2.3 Common mechanisms underlying
vulnerability of LC neurons

NE neurons of the LC are pacemaker neurons with a high

metabolic rate during waking, arousal, and stress. The increased

metabolic demand on LC NE neurons, with the extended activity

of monoamine oxidase and related accumulation of free oxygen

radicals, may contribute to their vulnerability (Zhang et al.,

2014a; Wang et al., 2020). Overactivation of NE neurons may

also lead to the accumulation of neurotoxic metabolites shown to

induce tau pathology (Kang et al., 2020; Kang et al., 2022). NE

neurons produce a toxic metabolite, DOPEGAL, when

overactivated, which contributes to tau hyperphosphorylation

(Kang et al., 2022). Hyperactivation of LC NE neurons may also

contribute to mitochondrial oxidative stress through activity-

dependent increases in nitric oxide production (Sanchez-Padilla

et al., 2014), triggering aberrant cellular signaling and leading to

neuronal cell death. LC neurons are also susceptible to tau

hyperphosphorylation through alpha-2a adrenergic receptor

signaling on LC neurons which, through an autoreceptor

mechanism, has been shown to potentiate tau

hyperphosphorylation (Zhang et al., 2020). Conversely,

antagonism of alpha-2a adrenergic receptors, which blocks

autoreceptors on LC neurons and increases NE release,
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reduces NOS expression and prevents beta-amyloid-induced

nitrosative damage (Kalinin et al., 2006). Even under normal

physiological conditions, LC NE neurons show higher levels of

mitochondrial oxidative stress, which is then exacerbated with

further cellular stress inducers such as systemic inflammation

(Wang et al., 2020). Aged mice have evidence of oxidative stress

and changes in key mitochondrial proteins involved in energy

homeostasis in the LC at an early stage before any evident sign of

neuronal degeneration (Evans et al., 2021).

Molecular damage attributed to reactive oxygen species

(ROS) is common in postmortem brains of Alzheimer’s

disease patients, including lipid oxidation and oxidative DNA

damage. Beta-amyloid aggregation induces the production of

ROS and may mediate some of the cellular damage associated

with plaque pathology (Ono et al., 2006). Damage to membrane-

bound transporters and ion channels through oxidation has been

proposed to underlie compromised mitochondrial function,

excitotoxicity, apoptosis, and synaptic degeneration (Mattson,

2004). Beta-amyloid induces astrocytic activation of NADPH

oxidase and generation of reactive oxygen species leading to

failure of mitochondrial respiration and neuronal death

(Abramov et al., 2004). Intracellular beta-amyloid aggregation

is also associated with decreased intracellular concentrations of

the important endogenous antioxidant glutathione (Madrigal

et al., 2007). Understanding the longitudinal progression of

the cellular injury and mechanisms underlying selective

neuronal vulnerability in the LC is essential for understanding

AD pathophysiology and will advance the development of

therapeutic interventions.

2.4 Therapeutic strategies for protecting
LC neurons from oxidative stress and
neurodegeneration

Multiple strategies combining lifestyle changes such as

improved sleep, diet, stress reduction, and physical activity

with natural pharmacological therapeutics targeting

mechanisms (e.g., reactive oxygen and nitrogen species,

inflammation, autophagy, NAD deficiencies, mitochondrial

stress) may be effective at preventing or slowing the course of

LC or neuronal degeneration (see Figure 2). These hypotheses,

while still needing much further validation and confirmation,

have been built on preclinical animal studies and epidemiological

studies in humans.

2.4.1 Lifestyle factors
Fasting and dietary restriction have been shown to reduce

cellular stress and may be neuroprotective (Mattson et al.,

2004). Whereas an unhealthy diet may contribute to systemic

inflammation and neuroinflammation, healthy nutrition can

contribute to a healthy and responsive immune system that

can help control systemic inflammation. Balanced nutrition

and access to vitamins are essential for a healthy immune

system and for replenishing precursors for important

biochemical metabolic pathways and antioxidants. Exercise

has been shown to have long-term anti-inflammatory effects

(De Miguel et al., 2021), and exercise/environmental

enrichment is protective against beta-amyloid-induced

hippocampal impairment and inflammation in mice (Li

et al., 2013; Xu et al., 2018). Whereas short-term effects of

exercise have been shown to activate the immune system, this

is thought to “train” the immune system and lead to the

development of a more responsive immune system capable

of being controlled more tightly and reducing the risk of

chronic inflammation. Good sleep hygiene allows NE

neurons to replenish antioxidant glutathione levels and

protective sirtuin pathways, as described above (Zamore

and Veasey, 2022). Finally, stress reduction, through a

multitude of practices including but not limited to practices

such as therapy sessions, meditation, and establishing a strong

social support system, has been shown to reduce systemic

markers of inflammation, increase cognitive performance, and

is thought to reduce risk for psychiatric disease, including

neurodegenerative disorders. It should also be noted that these

lifestyle factors are also highly interrelated and can be difficult

to dissect as exercise is a form of stress reduction, and stress

reduction is linked with improved sleep and improved

nutrition. The idea that the prevention of

neurodegenerative disease may require a multifactorial

approach using combined therapies, including lifestyle

factors, is gaining momentum in the field (Bredesen et al.,

2016).

2.4.2 Modulation of inflammation and oxidative
stress

Anti-inflammatory agents, such as non-steroidal anti-

inflammatory drugs, have been proposed to reduce the risk

for neurodegenerative diseases such as AD, and

epidemiological studies have shown mixed results. In mouse

models of AD, increasing adrenergic tone results in cognitive

improvement and attenuation of beta-amyloid load,

neuroinflammation, and tau pathology (Heneka et al., 2010;

Coutellier et al., 2014; Ardestani et al., 2017). Chronic

inhibition of NOS with a NOS inhibitor,

Diphenyleneiodonium (DPI), can be neuroprotective and

reverse mitochondrial stress and oxidative damage in animal

models of LC degeneration induced by systemic inflammation

(Wang et al., 2020). NE inhibits nitric oxide synthase by neuronal

production of the neuroprotective CX3CL1 (Feinstein et al.,

1993), which reduces nitric oxide production in microglia

(Madrigal et al., 2017). NE has been shown to increase the

production of the endogenous antioxidant glutathione in a

cascade thought to involve the activation of peroxisome

proliferator-activated receptors (PPARs) (Madrigal et al.,

2007). NE has been suggested to be neuroprotective through
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its effects on neuroplasticity, inflammation, energy metabolism,

and oxidative stress, for review, see (Marien et al., 2004).

Antioxidant properties of NE may underlie the

neuroprotective effects of NE on dopaminergic neurons in

culture (Troadec et al., 2001). A study including four million

Norwegians showed a reduced risk for neurodegenerative disease

using the commonly prescribed beta-adrenergic agonist,

salbutamol. In contrast, the use of the beta-adrenergic

antagonist propranolol correlated with increased risk and

worsening clinical outcomes (Mittal et al., 2017). This was

later confirmed in a follow study by Janssen Pharmaceutical

on 117 million people demonstrating adverse effects of the

commonly prescribed beta-blocker propranolol (Cepeda et al.,

2019).

2.4.3mTOR, autophagy, and cellularmetabolism
mTOR (mechanistic target of rapamycin) is an important

serine/threonine protein kinase with a critical regulatory function

in cellular and neuronal homeostasis in the regulation of

mitochondrial function, energy metabolism, and autophagy.

mTOR plays a key pathological role in blocking insulin receptor

signaling, autophagy, inflammation, and removal of the misfolded

protein aggregates such beta-amyloid. Inhibition of the mTOR has

been shown to be neuroprotective in neurodegenerative disorders, as

reviewed (Querfurth and Lee, 2021). It has also been suggested and

shown that mTOR inhibition can lead to the prolongation of life in

mice. This has now been investigated in multiple ongoing human

studies (Harrison et al., 2009). Finally, NAD depletion has been

suggested to be one of the major factors associated with

neurocognitive disorders and associated with neuronal cell death,

as reviewed (Guerreiro et al., 2020). Therefore a systemic

supplementation of NAD or pharmacological inhibition of the

CD38 enzyme responsible for the degradation of the NAD has

been explored as an additional potential therapeutic approach

(Guerreiro et al., 2020).

3 Concluding remarks and future
direction

Locus coeruleus noradrenergic neurons are one of the first sites

of pathology in neurodegenerative disorders. Their early

degeneration, coupled with a loss of noradrenergic tone, can

contribute to both cognitive impairment and enhanced pathology

and unchecked neuroinflammation associated with these disorders.

Risk factors associated with a higher incidence of brain disorders,

such as systemic inflammation, have been shown to lead to regional

neuroinflammation and chronic degeneration of locus coeruleus

FIGURE 2
The risk of locus coeruleus degeneration may be reduced through a combination of different interventions. These interventions remain
hypothetical and likely will work in concert to reduce vulnerability to what is likely a multi-dimensional disease etiology. Future well designed and
controlled studies are needed to explore the efficacy of these approaches.
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noradrenergic neurons in experimental models. These findings

warrant further investigation to understand why LC neurons

display this selective early-onset neuronal vulnerability in aging

and neurodegenerative diseases. What factors determine the

aberrant cellular cascades leading to the initiation, temporal

profile, and extent of this selective neuronal cell loss? In addition,

experimental and epidemiological findings have identified the long-

term use of CNS active blood-brain barrier permeable beta-blockers

as a risk factor for the deterioration of cognitive function in

neurodegenerative disorders such as Parkinson’s and Alzheimer’s.

While beta-blockers are important for cardiovascular and blood

pressure maintenance, a risk-to-benefit assessment and alternative

treatment with a different mode of action should be explored. Our

future effort should be focused on the elucidation of mechanistic

pathways triggered by risk factors such as systemic inflammation,

sleep disruption, chronic stress, and viral infections leading to

selective neuronal cell loss in LC and other key brain regions.

Identifying underlying mechanisms responsible for the particular

vulnerability of LC and examining factors contributing to its

resiliency through which protection or prevention may be

possible will be essential for understanding the pathophysiology

of neurodegenerative disorders and the development of effective

therapeutic approaches for its prevention.
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