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Adenosine receptors (ARs) have been identified as promising therapeutic targets

for countless pathological conditions, spanning from inflammatory diseases to

central nervous system disorders, from cancer to metabolic diseases, from

cardiovascular pathologies to respiratory diseases, and beyond. This

extraordinary therapeutic potential is mainly due to the plurality of

pathophysiological actions of adenosine and the ubiquitous expression of its

receptors. This is, however, a double-edged sword that makes the clinical

development of effective ligands with tolerable side effects difficult. Evidence of

this is the low number of AR agonists or antagonists that have reached the

market. An alternative approach is to target allosteric sites via allosteric

modulators, compounds endowed with several advantages over orthosteric

ligands. In addition to the typical advantages of allosteric modulators, those

acting on ARs could benefit from the fact that adenosine levels are elevated in

pathological tissues, thus potentially having negligible effects on normal tissues

where adenosine levels are maintained low. Several A1 and various A3AR

allosteric modulators have been identified so far, and some of them have

been validated in different preclinical settings, achieving promising results.

Less fruitful, instead, has been the discovery of A2A and A2BAR allosteric

modulators, although the results obtained up to now are encouraging.

Collectively, data in the literature suggests that allosteric modulators of ARs

could represent valuable pharmacological tools, potentially able to overcome

the limitations of orthosteric ligands.
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Introduction

Adenosine is a fundamental component of human

physiology. It is a major constituent of nucleic acids, of life’s

“energy currency” and signaling molecule adenosine

triphosphate (ATP), as well as a ubiquitous cell function

modulator itself. Adenosine acts as an autocrine/paracrine

mediator with a short half-life whose low extracellular levels

in healthy tissues are maintained mostly by rapid cellular uptake

and cytosolic metabolism by adenosine deaminase or adenosine

kinase (Haskó et al., 2008). However, following tissue injury, cells

release large amounts of ATP, which is then converted to

adenosine by ecto-nucleotidases. Generally, the resulting

increased concentration of adenosine has largely beneficial

effects in acute pathological conditions by restoring tissue

homeostasis (Borea et al., 2016), while its chronic

overproduction can be detrimental and cause inflammation,

fibrosis, and organ damage (Borea et al., 2017). Adenosine

triggers its effects through the interaction with four G-protein

coupled receptors (GPCRs), named A1, A2A, A2B, and A3

adenosine receptors (ARs). Some of the biological functions of

adenosine include, but are not limited to, regulation of

neurotransmitter release, neuronal excitability, heart rate and

contractility, blood flow, platelet aggregation, inflammation and

immune system responses, wound healing, and metabolic

processes (Borea et al., 2018). In addition to the several

physiological effects of adenosine, its receptor-mediated

signaling has many documented effects on the progression of

countless pathological states (Karmouty-Quintana et al., 2013).

Among the main ones, modulation of adenosine receptors has

been indicated as a promising therapeutic strategy in pathological

states such as cancer (Vijayan et al., 2017; Allard et al., 2020),

cardiovascular diseases (Reiss et al., 2019), pain (Vincenzi et al.,

2020a), neurological/neurodegenerative diseases (Blum et al.,

2018; Sebastião et al., 2018; Jenner et al., 2021; Merighi et al.,

2021), neuropsychiatric disorders (Pasquini et al., 2022),

inflammatory diseases (Pasquini et al., 2021; Antonioli et al.,

2022), respiratory diseases (Caruso et al., 2013), ocular diseases

(Spinozzi et al., 2021), diabetes, and other metabolic disorders

(Antonioli et al., 2015; Sanni and Terre’Blanche, 2021). Despite

this encouraging profusion of experimental evidence, relatively

few adenosinergic system-based drugs have so far achieved

clinical approval. When looking for accountability for this

lack of finalization, this cannot be attributed to the lack of

highly affine and selective ligands, as the search for new

ligands has been quite productive (Jacobson et al., 2021;

IJzerman et al., 2022), but rather the redundancy of adenosine

signaling, the agonist-dependent receptor desensitization, and

the broad expression of ARs provide the biggest challenges (Peleli

et al., 2017). As a result of these drawbacks, most attempts to test

orthosteric AR ligands in clinical trials have failed due to

inefficiency or serious and unfavorable side effects. Different

strategies were explored to overcome the above-mentioned

obstacles, including partial agonists (Greene et al., 2016;

Voors et al., 2019), indirect receptor targeting (Kutryb-Zajac

et al., 2020; Wang et al., 2021), prodrugs (Suresh et al., 2020),

multi-target drugs (Huang et al., 2011), but one of the most

promising seems to be allosteric modulation. By affecting

endogenous agonist affinity and/or efficacy, a positive

allosteric modulator (PAM) is an allosteric ligand that

enhances an agonist-mediated receptor response, while a

negative allosteric modulator (NAM) attenuates activity

(Gentry et al., 2015). Other classes include neutral allosteric

ligands (NAL) that bind at the allosteric site without affecting

receptor or orthosteric ligand activity and allosteric agonists,

ligands that directly activate the receptors from the allosteric

site even in the absence of an orthosteric agonist. Traditionally,

GPCRs have been targeted using compounds that bind to the

orthosteric site. Allosteric ligands, binding at sites that are

topologically distinct from the orthosteric sites, have

expanded the ways to manipulate GPCR functionality,

providing several pharmacological advantages and potential

therapeutic benefits (Wootten et al., 2013). Due to the

reduced evolutionary pressure that would ordinarily be

necessary to maintain an orthosteric binding pocket capable

of accepting the endogenous ligand, allosteric sites are less

conserved among related receptor subtypes (Wild et al.,

2014). Furthermore, since allosteric modulators may cause a

variety of conformational changes in GPCR structures, they can

be rationally tailored to create a strong biased signaling

response from a GPCR triggered by an otherwise non-biased

orthosteric ligand (Wold and Zhou, 2018). By imparting biased

modulation upon orthosteric agonists, these allosteric

modulators have the ability to only enhance therapeutically

relevant signaling while preventing on-target side effects (Gao

et al., 2011; Slosky et al., 2021). Apart from allosteric agonists,

allosteric modulators such as PAMs and NAMs only have an

effect in the presence of orthosteric ligands and can enhance or

decrease receptor activation induced by endogenous agonists.

Therefore, they act more physiologically and are predicted to

have fewer adverse effects and tolerance-inducing

consequences than orthosteric ligands. A particularly crucial

element in the case of the short-lived molecule adenosine is the

ability of PAMs and NAMs to finely tune its activity by

following the spatiotemporal distribution of its extracellular

concentration. Another important advantage is the reciprocal

communication with the orthosteric domain: the allosteric

modulator exerts an effect on the binding of the endogenous

ligand, but the latter can also affect the binding of the

modulator. This mechanism supports the selectivity of

allosteric ligands, especially under conditions where there is

a pathology-dependent alteration in the concentration of the

endogenous agonist at a particular site (Draper-Joyce et al.,

2021). This review summarizes the advances in the

development of ARs allosteric modulators (Table 1) that

may provide support for their use as new therapeutic options.

Frontiers in Pharmacology frontiersin.org02

Pasquini et al. 10.3389/fphar.2022.1030895

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1030895


TABLE 1 Selected in vitro and in vivo studies on AR allosteric modulators.

Compound Type In vivo models Main results References

PD 81,723 ((2-amino-4,5-
dimethylthiophen-3-yl)-
[3-(trifluoromethyl)phenyl]methanone)

A1AR PAM Hyperglycemic cerebral ischemia
and reperfusion in rats

Hippocampal injury reduction
and Morris water maze
performance improvement

Meno et al. (2003)

Renal ischemia-reperfusion injury
in mice

Renal tubular necrosis and
inflammation reduction

Park et al. (2012)

T62 ((2-amino-4,5,6,7-
tetrahydro-1-benzothiophen-
3-yl)-(4-chlorophenyl)
methanone)

A1AR PAM Spinal nerve ligation-induced
mechanical hypersensitivity in rats

Mechanical hypersensitivity
decrease

Pan et al. (2001)

Carrageenin-induced thermal
hypersensitivity in rats

Thermal hypersensitivity decrease Li et al. (2003)

Plantar incision-induced
hypersensitivity in rats

Mechanical hypersensitivity
reduction

Obata et al. (2004)

TRR469 ((2-Amino-4-
[(4-(phenyl)piperazin-
1-yl)methyl]-5-(4-
fluorophenyl)thiophen-
3-yl)-(4-chlorophenyl)methanone)

A1AR PAM Formalin and writhing tests, and
streptozotocin-induced diabetic
neuropathic pain in mice

Acute and chronic pain reduction Vincenzi et al. (2014)

Anxiety behavioral paradigms in
mice

Anxiolytic-like effects Vincenzi et al. (2016)

Glutamate-induced injury in
PC12 cells

Cell death, caspase activation, ROS
production, and mitochondrial
membrane potential loss
abrogation

Vincenzi et al. (2020b)

VCP333 (tert-butyl 2-
amino-3-(4-chlorobenzoyl)-
7,8-dihydro-4H-thieno
[2,3-d]azepine-6(5H)-
carboxylate)

A1AR PAM Ischemia-reperfusion in murine
isolated hearts

Cardiac function improvement
and myocardial cell death
reduction

Butcher et al. (2013)

VCP171 ((2-amino-4-[3-
(trifluoromethyl)phenyl)thiophen-3-
yl]-phenylmethanone)

A1AR PAM Partial nerve-injury neuropathic
pain in rats

eEPSC amplitude of nerve-injury
inhibition

Imlach et al. (2015)

(Continued on following page)
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TABLE 1 (Continued) Selected in vitro and in vivo studies on AR allosteric modulators.

Compound Type In vivo models Main results References

MIPS521 (2-amino-4-
(3,5-bis(trifluoromethyl)phenyl)
thiophen-3-yl) (4-chlorophenyl)
methanone)

A1AR PAM Partial nerve ligation-induced
neuropathic pain in rats

Spinal nociceptive signaling and
mechanical allodynia reduction

Draper-Joyce et al. (2021)

AEA061 (Chemical structure not disclosed) A2AAR PAM LPS-induced endotoxemia in mice Plasma TNF-α and MCP-1 level
reduction, and IL-10 increase

Welihinda and Amento (2014)

LPS-stimulated splenic
monocytes/macrophages

Cytokine/chemokine reduction Welihinda and Amento (2014; Welihinda
et al. (2018)

Imiquimod- or IL-23-induced
psoriasis-like dermatitis in mice

Clinical score and cytokine
expression reduction

Welihinda et al. (2022)

A2AR PAM-1 (3,4-difluoro-2-
((2-fluoro-4-iodophenyl)amino)
benzoic acid)

A2AAR PAM EEG/EMG electrodes implanted
in mice

Slow-wave sleep induction Korkutata et al. (2017, 2019)

KI-7 (2-(1-benzyl-1H-indol-3-yl)-
2-oxo-N-phenylacetamide)

A2BAR PAM Mesenchymal stem cells Osteoblast differentiation and
survival increase

Trincavelli et al. (2014a)

Compound 9 (N-
(4-chlorobenzyl)-2-
(benzofuran-2-yl)glyoxylamide)

A2BAR PAM Mesenchymal stem cells Matrix mineralization stimulation Barresi et al. (2021a)

(Continued on following page)
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TABLE 1 (Continued) Selected in vitro and in vivo studies on AR allosteric modulators.

Compound Type In vivo models Main results References

LUF6000 (CF602) A3AR PAM Adjuvant-induced arthritis in rats Arthritis clinical score reduction Cohen et al. (2014)

Monoiodoacetate-induced
osteoarthritis in rats

Knee swelling and edema decrease

Concanavalin A-induced liver
inflammation in mice

Serum glutamic pyruvate
transaminase and serum glutamic
oxaloacetic transaminase decrease

Diabetic erectile dysfunction in
rats

Intracavernosal pressure increase Itzhak et al. (2022)

LUF6096 (N-[2-(3,4-
dichloroanilino) quinolin-
4-yl]cyclohexane carboxamide)

A3AR PAM Myocardial ischemia/reperfusion
injury in dogs

Infarct size reduction Du et al. (2012)
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Allosteric modulation of ARs

A1AR allosteric modulators

A1ARs are widespread and implicated in many

physiological mechanisms, therefore they are regarded as a

prominent drug target for different diseases. Adenosine

through A1ARs exerts sedative, anticonvulsant, anxiolytic,

and locomotor depressant effects (Varani et al., 2017).

Furthermore, the heart rate and rhythm, the conduction

speed in the atrioventricular node, and cardiac muscle

contraction are negatively controlled by A1ARs (Deb et al.,

2019; Jacobson et al., 2019). In particular, A1AR agonists

mediate cardioprotection through the inhibition of

norepinephrine release (Dinh et al., 2017). An important

role of A1ARs is in nociception, due to their location in

peripheral sensory nerve terminals in the spinal cord dorsal

horn and in supraspinal pain-processing structures (Sawynok,

2016; Vincenzi et al., 2020a). Many studies have been

conducted to exploit the therapeutic potential of these

receptors, but the development of orthosteric agonists has

been hampered by several drawbacks, the main ones being

cardiac side effects and receptor desensitization. An alternative

strategy to exploit the positive effects of A1AR stimulation is

allosteric modulation. Much research effort in recent decades

has been devoted to the synthesis and in vitro and in vivo

evaluation of A1AR PAMs (Romagnoli et al., 2015b; Jacobson

and Gao, 2016). The first and most extensively studied class of

compounds synthesized are the benzoylthiophene derivatives,

the prototype of which is PD 81,723 (Bruns et al., 1990).

Different studies revealed a potential application of PD

81,723 in ischemic injury (Meno et al., 2003; Park et al.,

2012). Another extensively studied compound belonging to

this class of modulators is T62 (Baraldi et al., 2000). It was

effective in reducing nociception and hypersensitivity in

animal models of neuropathic pain (Pan et al., 2001; Li

et al., 2002, 2003; Obata et al., 2004). It was also used in a

phase II clinical trial for postherpetic neuropathic pain.

However, the study was abandoned due to a lack of efficacy

and the presence of transient high levels of liver transaminase

in some patients (Giorgi and Nieri, 2013). Subsequently,

numerous other derivatives were discovered, endowed with

greater allosteric activity (Romagnoli et al., 2008, 2012, 2013,

2014; 2015a). Of these, TRR469 was selected for in vivo studies.

TRR469 has been reported to have an analgesic effect

comparable to that of morphine in animal models of both

acute and neuropathic pain without showing the side effects

typical of orthosteric A1AR agonists such as locomotor

disturbances or sedation (Vincenzi et al., 2014). This

compound also proved effective as an anxiolytic in several

mouse models of anxiety with an effect comparable to that of

diazepam but without the locomotor side effects typical of

benzodiazepines (Vincenzi et al., 2016). Also noteworthy is the

protective effect of TRR469 found in an in vitro model of

glutamate-induced cytotoxicity in neuronal cells (Vincenzi

et al., 2020b). Another series of 2-amino-3-

benzoylthiophene A1AR PAMs were synthesized (Aurelio

et al., 2009), including VCP171, whose in vivo analgesic

effect in a model of neuropathic pain proved weaker than

that of the orthosteric A1AR agonist, but which nevertheless

has greater therapeutic potential due to fewer side effects,

particularly in tissues with higher adenosine concentrations

or A1AR tone (Imlach et al., 2015). Instead, VCP333 has been

shown to improve cardiac function and reduce cardiomyocyte

death following cardiac ischemia (Butcher et al., 2013). The

most recently synthesized is MIPS521, an A1AR PAM that has

shown analgesic effects in models of neuropathic pain by being

able to modulate the high concentrations of adenosine present.

Interestingly, a new binding pocket was identified by studying

the structure of the A1AR bound to adenosine, MIPS521, and

the Gi protein. This lead to hypothesize that the modulator also

exerts its effects by stabilizing the adenosine-receptor-G

protein complex (Draper-Joyce et al., 2021). Recently, a

multisite binding model for A1AR allosteric modulation has

been proposed. It predicts that there are several extracellular

sites capable of binding the modulator, not just a distinct

pocket generally located on the second extracellular loop

(Deganutti et al., 2021).

A2AAR allosteric modulators

Adenosine, mainly through the activation of A2AARs

expressed in peripheral immune cells, represents a potent

inflammatory self-limiting factor (Antonioli et al., 2022).

Depending on the pathology, this can have both positive and

negative impacts. On the positive side, A2AAR activation is

potentially useful for the treatment of autoimmune and

inflammatory diseases (Vincenzi et al., 2013), as evidenced by

the fact that the anti-inflammatory and immunosuppressive

effects of methotrexate, a gold standard for the treatment of

rheumatoid arthritis, as well as some of the anti-inflammatory

effects of sulfasalazine, are mediated by adenosine (Cronstein

and Sitkovsky, 2017). Although A2AAR agonists may be effective

in the treatment of inflammatory illnesses, they are likely to have

too many adverse effects to be tolerated, mainly owing to their

significant hypotensive effect. One alternative approach that

could potentially circumvent the agonist-related side effects

while enhancing the potent anti-inflammatory action of

adenosine is represented by A2AAR PAMs. On the negative

side of adenosine-mediated inflammation suppression, many

solid tumors escape immune response by increasing the

concentration of adenosine in the tumor microenvironment.

Both animal studies and clinical trials have shown that

blocking A2AAR can induce tumor regression (Sun et al.,

2022). Although not yet tested, one can speculate that A2AAR
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NAM could potentially counteract in a spatial-selective manner

the tumor-increased adenosine immunosuppressive action. In

the CNS, blockade of A2AARs is indicated, with varying degrees

of preclinical and clinical evidence, as a promising therapeutic

strategy for Parkinson’s disease, supported by the recent approval

of the antagonist istradefylline as add-on therapy (Chen and

Cunha, 2020), but also for Alzheimer’s disease (Merighi et al.,

2022), acute brain dysfunction (Cunha, 2016), and some

neuropsychiatric disorders such as fragile X syndrome,

depression, and anxiety (Domenici et al., 2019).

Unfortunately, only a small number of A2AAR allosteric

modulators have been reported so far. Some N6-1,3-

diphenylurea derivatives of 2-phenyl-9-benzyladenines and 8-

azaadenines have been suggested to act as allosteric modulators

at the A2AARs (Giorgi et al., 2008). Later, using a fragment

screening technique, some PAMs and NAMs of ARs were

identified. In particular, ZB1854 potentiated the action of the

A2AAR agonist CGS 21680, thereby behaving as a PAM (Chen

et al., 2012). A compound denoted as AEA061 increased

adenosine’s anti-inflammatory properties by allosterically

enhancing its activity at A2AARs in the lipopolysaccharide

(LPS)-induced mouse model of inflammation (Welihinda and

Amento, 2014). In a subsequent work, AEA061 was also shown

to enhance inosine-mediated A2AAR activation and consequent

inhibition of pro-inflammatory cytokine and chemokine

production in splenic monocytes (Welihinda et al., 2018).

Very recently, AEA061 also reduced clinical scores and

cytokine expression in two different models of psoriasis-like

dermatitis induced by imoquimod or IL-23 (Welihinda et al.,

2022). Another A2AAR PAM, named A2AR PAM-1, increased the

total amount of slow wave sleep, from which individuals with

insomnia might benefit, without affecting blood pressure, heart

rhythm, and body temperature as the agonist CGS21680 did

(Korkutata et al., 2017, 2019).

A2BAR allosteric modulators

The A2BAR is widely expressed in organs such as the bladder,

intestine, and lung, as well as in various cell types such as

fibroblasts, smooth muscle, endothelial, immune, and alveolar

epithelial cells (Borea et al., 2018). Of all the ARs, the A2B subtype

is the least characterized from a pharmacological point of view. It

has been proposed as a potential target in acute lung injury, as its

activation with the agonist BAY 60–6,583 led to a reduction in

inflammation and pulmonary edema, and an increase in alveolar

fluid clearance (Eckle et al., 2013; Hoegl et al., 2015; Wang et al.,

2020). Recently, Gnad and others found that activation of

A2BARs restores muscle and brown fat function in elderly and

obese mice to that of young, lean animals, establishing its anti-

aging and anti–obesity potential (Gnad et al., 2022). In addition,

it has been suggested that A2BARs have therapeutic potential in

bone diseases, as their activation appears to promote osteoblast

differentiation and bone formation (Carroll et al., 2012; Corciulo

et al., 2016).

The first class of allosteric modulators for the A2BAR, a series

of 1-benzyl-3-ketoindoles, was serendipitously discovered

(starting from a scaffold previously used to develop

benzodiazepine receptor ligands) and consisted of three PAM

and four NAM (Taliani et al., 2013; Trincavelli et al., 2014b).

Subsequently, one of these A2BAR PAMs, denoted as KI-7, was

shown to enhance the effects of adenosine and synthetic A2BAR

agonists in the differentiation of mesenchymal stem cells (MSC)

to osteoblasts while also increasing differentiated osteoblast

viability (Trincavelli et al., 2014a). More recently, a series of

novel derivatives chemically related to those previously

synthesized has been reported. One of these compounds, a

benzofurane derivative that was confirmed to behave as

A2BAR PAM, stimulated matrix mineralization in MSC,

making it a lead structure for the synthesis of new

compounds with anti-osteoporosis properties (Barresi et al.,

2021a; 2021b).

Since A2BAR blockade may represent a promising approach

for the treatment of some diseases, such as in cancer

immunotherapy (Gao and Jacobson, 2019), A2BAR NAM

could also result in a valuable pharmacological resource.

Interestingly, the well-known selective A2BAR antagonist PSB

603 was recently suggested to act as a NAM, at least in A2B-

mediated cAMP accumulation in HEK 293 cells (Goulding et al.,

2018).

A3AR allosteric modulators

A3AR is expressed in the brain, heart, testis, lung, placenta,

uterus, kidneys, spleen, liver, bladder, and proximal colon, but,

while low expression is found in normal cells, this receptor

subtype is overexpressed in immune and cancer cells (Gessi

et al., 2008). The activation of A3AR mediates anti-

inflammatory, antitumor, and anti-ischemic beneficial effects,

showing a therapeutic potential for the treatment of

inflammatory diseases, such as rheumatoid arthritis and

psoriasis, hepatitis, cancer, glaucoma, cardiovascular diseases,

and cerebral ischemia (Borea et al., 2015).

In addition to some selective A3AR agonists, several series of

allosteric modulators, mainly PAMs, have also been developed,

representing an alternative approach for the treatment of those

aforementioned diseases in which A3AR activation appears to be

a promising therapeutic strategy (Gao et al., 2001, 2002; Göblyös

et al., 2006; Heitman et al., 2009; Kim et al., 2009). However, as

opposed to orthosteric agonists, A3AR PAMs have the benefit of

being able to target regions where adenosine levels are elevated,

such as tumor and inflammatory sites, with low or no effects on

normal tissues where adenosine levels are low.

Among the most well-known A3AR PAMS are the

LUF6000 and LUF6096. LUF6000 is an imidazoquinolinamine
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PAM at the A3AR that showed anti-inflammatory effects in a rat

adjuvant-induced arthritis model, inhibited monoiodoacetate-

induced osteoarthritis development, and exhibited protective

effects in a liver inflammation model of acute hepatitis in

mice. At the molecular level, LUF6000 administration resulted

in a marked deregulation of the NF-κB signaling pathway (Cohen

et al., 2014). Itzhak and co-workers evaluated the effect of

LUF6000 (also known as CF602) on resolving erectile

dysfunction (ED) in a diabetic ED rat model. CF602 increased

intracavernosal pressure, endothelial nitric oxide synthase

(eNOS), and vascular endothelial growth factor (VEGF) levels,

improving erectile function (Itzhak et al., 2022). This compound

may thus provide an alternative treatment for phosphodiesterase

5 (PDE5) inhibitors, which are usually employed in ED therapy,

considering that half of the patients with diabetes do not respond

to PDE5 inhibitors.

In addition, LUF6096, which is structurally similar to

LUF6000, reduced infarct size in a barbital-anesthetized dog

model of myocardial ischemia/reperfusion injury. The infarct

size reduction was equally evident when LUF6096 was

administered in two doses before coronary artery occlusion

and immediately before reperfusion or a single dose

immediately before reperfusion (Du et al., 2012).

Studies conducted by Lane and others suggest that the

endocannabinoid two- arachidonylglycerol (2-AG) acts as a

NAM at the A3AR. This evidence may be especially important

in certain pathological conditions like cerebral ischemia when

levels of 2-AG are elevated and could interact with A3AR

expressed in astrocytes and microglia (Lane et al., 2010).

Conclusion

GPCR allosteric modulators are promising therapeutic

agents. By altering the receptor conformation, they potentiate

or attenuate the effect of the endogenous agonist, acting more

physiologically than orthosteric ligands and offering

spatiotemporal selectivity. The adenosinergic system,

making use of a short-lived autocrine/paracrine mediator,

represents an ideal situation to take advantage of the benefits

of allosteric modulation. The available preclinical results are

encouraging, and there is hope for an acceleration that may

lead to the clinical use of allosteric modulators of ARs.

Nevertheless, no allosteric modulator has entered clinical

trials to date, underlining the challenges in the discovery

and development of this class of compounds. Allosteric sites

generally have a shallow structure-activity relationship and

are often unknown or difficult to discover as they are only

accessible in specific protein conformations. The fact that

allosteric sites are less evolutionarily conserved than

orthosteric ones can lead to species differences that can

hamper their validation. Furthermore, allosteric

modulators have a high propensity for molecular switching

and can show complex in vivo pharmacology. Despite these

challenges to identifying, validating, and developing

allosteric modulators for GPCRs, they have the potential to

become one of the most highly effective and minimally toxic

pharmacological agents.
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